Construction of silver nanochains on DNA template for flexible electrical conductive composites
A facile synthesis of silver nanochains was represented by directly reducing the silver ions adsorbed on the DNA chains. The synthesized silver nanochains consist of spherical nanoparticles (10–20nm) connected together in line. Then the flexible electrical conductive composites were fabricated for t...
Ausführliche Beschreibung
Autor*in: |
Chen, Shilong [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
4 |
---|
Übergeordnetes Werk: |
Enthalten in: New associations and host status: Infestability of kiwifruit by the fruit fly species - Follett, Peter A. ELSEVIER, 2018, an interdisciplinary journal affiliated with the Materials Research Society and the Materials Society Japan, devoted to the rapid publication of short communications on the science, applications and processing of materials, New York, NY [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:147 ; year:2015 ; day:15 ; month:05 ; pages:109-112 ; extent:4 |
Links: |
---|
DOI / URN: |
10.1016/j.matlet.2015.02.048 |
---|
Katalog-ID: |
ELV012894923 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV012894923 | ||
003 | DE-627 | ||
005 | 20230625111243.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180602s2015 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.matlet.2015.02.048 |2 doi | |
028 | 5 | 2 | |a GBVA2015006000010.pica |
035 | |a (DE-627)ELV012894923 | ||
035 | |a (ELSEVIER)S0167-577X(15)00241-4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 530 |a 600 |a 670 | |
082 | 0 | 4 | |a 530 |q DE-600 |
082 | 0 | 4 | |a 600 |q DE-600 |
082 | 0 | 4 | |a 670 |q DE-600 |
082 | 0 | 4 | |a 630 |a 580 |q VZ |
084 | |a BIODIV |q DE-30 |2 fid | ||
084 | |a 48.00 |2 bkl | ||
100 | 1 | |a Chen, Shilong |e verfasserin |4 aut | |
245 | 1 | 0 | |a Construction of silver nanochains on DNA template for flexible electrical conductive composites |
264 | 1 | |c 2015transfer abstract | |
300 | |a 4 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a A facile synthesis of silver nanochains was represented by directly reducing the silver ions adsorbed on the DNA chains. The synthesized silver nanochains consist of spherical nanoparticles (10–20nm) connected together in line. Then the flexible electrical conductive composites were fabricated for the first time by incorporating Ag nanochains and Ag-coated Cu flakes in polymer matrix. The silver nanochains play important roles of flexible and conductive bridges to construct effective electronic networks among the fillers. The composites filled with small amount of AgNPs shows a much lower volume resistivity of 2.13×10-4 Ωcm, and the resistance change (R/R 0) was only 3.65 when rolling at 4mm, while that of controlled sample reached to 8.89. This method provides a new perspective for researchers to further explore other chain-like metal and their applications in flexible electrical conductive materials. | ||
520 | |a A facile synthesis of silver nanochains was represented by directly reducing the silver ions adsorbed on the DNA chains. The synthesized silver nanochains consist of spherical nanoparticles (10–20nm) connected together in line. Then the flexible electrical conductive composites were fabricated for the first time by incorporating Ag nanochains and Ag-coated Cu flakes in polymer matrix. The silver nanochains play important roles of flexible and conductive bridges to construct effective electronic networks among the fillers. The composites filled with small amount of AgNPs shows a much lower volume resistivity of 2.13×10-4 Ωcm, and the resistance change (R/R 0) was only 3.65 when rolling at 4mm, while that of controlled sample reached to 8.89. This method provides a new perspective for researchers to further explore other chain-like metal and their applications in flexible electrical conductive materials. | ||
650 | 7 | |a Conductive |2 Elsevier | |
650 | 7 | |a Electronic materials |2 Elsevier | |
650 | 7 | |a Flexible |2 Elsevier | |
650 | 7 | |a Composite |2 Elsevier | |
650 | 7 | |a Nanochains |2 Elsevier | |
700 | 1 | |a Liu, Konghua |4 oth | |
700 | 1 | |a Luo, Yuanfang |4 oth | |
700 | 1 | |a Wei, Yong |4 oth | |
700 | 1 | |a Li, Fucheng |4 oth | |
700 | 1 | |a Liu, Lan |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Follett, Peter A. ELSEVIER |t New associations and host status: Infestability of kiwifruit by the fruit fly species |d 2018 |d an interdisciplinary journal affiliated with the Materials Research Society and the Materials Society Japan, devoted to the rapid publication of short communications on the science, applications and processing of materials |g New York, NY [u.a.] |w (DE-627)ELV000885371 |
773 | 1 | 8 | |g volume:147 |g year:2015 |g day:15 |g month:05 |g pages:109-112 |g extent:4 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.matlet.2015.02.048 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OPC-FOR | ||
936 | b | k | |a 48.00 |j Land- und Forstwirtschaft: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 147 |j 2015 |b 15 |c 0515 |h 109-112 |g 4 | ||
953 | |2 045F |a 530 |
author_variant |
s c sc |
---|---|
matchkey_str |
chenshilongliukonghualuoyuanfangweiyongl:2015----:osrcinfivraohisnntmltfrlxbelcrc |
hierarchy_sort_str |
2015transfer abstract |
bklnumber |
48.00 |
publishDate |
2015 |
allfields |
10.1016/j.matlet.2015.02.048 doi GBVA2015006000010.pica (DE-627)ELV012894923 (ELSEVIER)S0167-577X(15)00241-4 DE-627 ger DE-627 rakwb eng 530 600 670 530 DE-600 600 DE-600 670 DE-600 630 580 VZ BIODIV DE-30 fid 48.00 bkl Chen, Shilong verfasserin aut Construction of silver nanochains on DNA template for flexible electrical conductive composites 2015transfer abstract 4 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier A facile synthesis of silver nanochains was represented by directly reducing the silver ions adsorbed on the DNA chains. The synthesized silver nanochains consist of spherical nanoparticles (10–20nm) connected together in line. Then the flexible electrical conductive composites were fabricated for the first time by incorporating Ag nanochains and Ag-coated Cu flakes in polymer matrix. The silver nanochains play important roles of flexible and conductive bridges to construct effective electronic networks among the fillers. The composites filled with small amount of AgNPs shows a much lower volume resistivity of 2.13×10-4 Ωcm, and the resistance change (R/R 0) was only 3.65 when rolling at 4mm, while that of controlled sample reached to 8.89. This method provides a new perspective for researchers to further explore other chain-like metal and their applications in flexible electrical conductive materials. A facile synthesis of silver nanochains was represented by directly reducing the silver ions adsorbed on the DNA chains. The synthesized silver nanochains consist of spherical nanoparticles (10–20nm) connected together in line. Then the flexible electrical conductive composites were fabricated for the first time by incorporating Ag nanochains and Ag-coated Cu flakes in polymer matrix. The silver nanochains play important roles of flexible and conductive bridges to construct effective electronic networks among the fillers. The composites filled with small amount of AgNPs shows a much lower volume resistivity of 2.13×10-4 Ωcm, and the resistance change (R/R 0) was only 3.65 when rolling at 4mm, while that of controlled sample reached to 8.89. This method provides a new perspective for researchers to further explore other chain-like metal and their applications in flexible electrical conductive materials. Conductive Elsevier Electronic materials Elsevier Flexible Elsevier Composite Elsevier Nanochains Elsevier Liu, Konghua oth Luo, Yuanfang oth Wei, Yong oth Li, Fucheng oth Liu, Lan oth Enthalten in Elsevier Follett, Peter A. ELSEVIER New associations and host status: Infestability of kiwifruit by the fruit fly species 2018 an interdisciplinary journal affiliated with the Materials Research Society and the Materials Society Japan, devoted to the rapid publication of short communications on the science, applications and processing of materials New York, NY [u.a.] (DE-627)ELV000885371 volume:147 year:2015 day:15 month:05 pages:109-112 extent:4 https://doi.org/10.1016/j.matlet.2015.02.048 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA SSG-OPC-FOR 48.00 Land- und Forstwirtschaft: Allgemeines VZ AR 147 2015 15 0515 109-112 4 045F 530 |
spelling |
10.1016/j.matlet.2015.02.048 doi GBVA2015006000010.pica (DE-627)ELV012894923 (ELSEVIER)S0167-577X(15)00241-4 DE-627 ger DE-627 rakwb eng 530 600 670 530 DE-600 600 DE-600 670 DE-600 630 580 VZ BIODIV DE-30 fid 48.00 bkl Chen, Shilong verfasserin aut Construction of silver nanochains on DNA template for flexible electrical conductive composites 2015transfer abstract 4 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier A facile synthesis of silver nanochains was represented by directly reducing the silver ions adsorbed on the DNA chains. The synthesized silver nanochains consist of spherical nanoparticles (10–20nm) connected together in line. Then the flexible electrical conductive composites were fabricated for the first time by incorporating Ag nanochains and Ag-coated Cu flakes in polymer matrix. The silver nanochains play important roles of flexible and conductive bridges to construct effective electronic networks among the fillers. The composites filled with small amount of AgNPs shows a much lower volume resistivity of 2.13×10-4 Ωcm, and the resistance change (R/R 0) was only 3.65 when rolling at 4mm, while that of controlled sample reached to 8.89. This method provides a new perspective for researchers to further explore other chain-like metal and their applications in flexible electrical conductive materials. A facile synthesis of silver nanochains was represented by directly reducing the silver ions adsorbed on the DNA chains. The synthesized silver nanochains consist of spherical nanoparticles (10–20nm) connected together in line. Then the flexible electrical conductive composites were fabricated for the first time by incorporating Ag nanochains and Ag-coated Cu flakes in polymer matrix. The silver nanochains play important roles of flexible and conductive bridges to construct effective electronic networks among the fillers. The composites filled with small amount of AgNPs shows a much lower volume resistivity of 2.13×10-4 Ωcm, and the resistance change (R/R 0) was only 3.65 when rolling at 4mm, while that of controlled sample reached to 8.89. This method provides a new perspective for researchers to further explore other chain-like metal and their applications in flexible electrical conductive materials. Conductive Elsevier Electronic materials Elsevier Flexible Elsevier Composite Elsevier Nanochains Elsevier Liu, Konghua oth Luo, Yuanfang oth Wei, Yong oth Li, Fucheng oth Liu, Lan oth Enthalten in Elsevier Follett, Peter A. ELSEVIER New associations and host status: Infestability of kiwifruit by the fruit fly species 2018 an interdisciplinary journal affiliated with the Materials Research Society and the Materials Society Japan, devoted to the rapid publication of short communications on the science, applications and processing of materials New York, NY [u.a.] (DE-627)ELV000885371 volume:147 year:2015 day:15 month:05 pages:109-112 extent:4 https://doi.org/10.1016/j.matlet.2015.02.048 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA SSG-OPC-FOR 48.00 Land- und Forstwirtschaft: Allgemeines VZ AR 147 2015 15 0515 109-112 4 045F 530 |
allfields_unstemmed |
10.1016/j.matlet.2015.02.048 doi GBVA2015006000010.pica (DE-627)ELV012894923 (ELSEVIER)S0167-577X(15)00241-4 DE-627 ger DE-627 rakwb eng 530 600 670 530 DE-600 600 DE-600 670 DE-600 630 580 VZ BIODIV DE-30 fid 48.00 bkl Chen, Shilong verfasserin aut Construction of silver nanochains on DNA template for flexible electrical conductive composites 2015transfer abstract 4 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier A facile synthesis of silver nanochains was represented by directly reducing the silver ions adsorbed on the DNA chains. The synthesized silver nanochains consist of spherical nanoparticles (10–20nm) connected together in line. Then the flexible electrical conductive composites were fabricated for the first time by incorporating Ag nanochains and Ag-coated Cu flakes in polymer matrix. The silver nanochains play important roles of flexible and conductive bridges to construct effective electronic networks among the fillers. The composites filled with small amount of AgNPs shows a much lower volume resistivity of 2.13×10-4 Ωcm, and the resistance change (R/R 0) was only 3.65 when rolling at 4mm, while that of controlled sample reached to 8.89. This method provides a new perspective for researchers to further explore other chain-like metal and their applications in flexible electrical conductive materials. A facile synthesis of silver nanochains was represented by directly reducing the silver ions adsorbed on the DNA chains. The synthesized silver nanochains consist of spherical nanoparticles (10–20nm) connected together in line. Then the flexible electrical conductive composites were fabricated for the first time by incorporating Ag nanochains and Ag-coated Cu flakes in polymer matrix. The silver nanochains play important roles of flexible and conductive bridges to construct effective electronic networks among the fillers. The composites filled with small amount of AgNPs shows a much lower volume resistivity of 2.13×10-4 Ωcm, and the resistance change (R/R 0) was only 3.65 when rolling at 4mm, while that of controlled sample reached to 8.89. This method provides a new perspective for researchers to further explore other chain-like metal and their applications in flexible electrical conductive materials. Conductive Elsevier Electronic materials Elsevier Flexible Elsevier Composite Elsevier Nanochains Elsevier Liu, Konghua oth Luo, Yuanfang oth Wei, Yong oth Li, Fucheng oth Liu, Lan oth Enthalten in Elsevier Follett, Peter A. ELSEVIER New associations and host status: Infestability of kiwifruit by the fruit fly species 2018 an interdisciplinary journal affiliated with the Materials Research Society and the Materials Society Japan, devoted to the rapid publication of short communications on the science, applications and processing of materials New York, NY [u.a.] (DE-627)ELV000885371 volume:147 year:2015 day:15 month:05 pages:109-112 extent:4 https://doi.org/10.1016/j.matlet.2015.02.048 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA SSG-OPC-FOR 48.00 Land- und Forstwirtschaft: Allgemeines VZ AR 147 2015 15 0515 109-112 4 045F 530 |
allfieldsGer |
10.1016/j.matlet.2015.02.048 doi GBVA2015006000010.pica (DE-627)ELV012894923 (ELSEVIER)S0167-577X(15)00241-4 DE-627 ger DE-627 rakwb eng 530 600 670 530 DE-600 600 DE-600 670 DE-600 630 580 VZ BIODIV DE-30 fid 48.00 bkl Chen, Shilong verfasserin aut Construction of silver nanochains on DNA template for flexible electrical conductive composites 2015transfer abstract 4 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier A facile synthesis of silver nanochains was represented by directly reducing the silver ions adsorbed on the DNA chains. The synthesized silver nanochains consist of spherical nanoparticles (10–20nm) connected together in line. Then the flexible electrical conductive composites were fabricated for the first time by incorporating Ag nanochains and Ag-coated Cu flakes in polymer matrix. The silver nanochains play important roles of flexible and conductive bridges to construct effective electronic networks among the fillers. The composites filled with small amount of AgNPs shows a much lower volume resistivity of 2.13×10-4 Ωcm, and the resistance change (R/R 0) was only 3.65 when rolling at 4mm, while that of controlled sample reached to 8.89. This method provides a new perspective for researchers to further explore other chain-like metal and their applications in flexible electrical conductive materials. A facile synthesis of silver nanochains was represented by directly reducing the silver ions adsorbed on the DNA chains. The synthesized silver nanochains consist of spherical nanoparticles (10–20nm) connected together in line. Then the flexible electrical conductive composites were fabricated for the first time by incorporating Ag nanochains and Ag-coated Cu flakes in polymer matrix. The silver nanochains play important roles of flexible and conductive bridges to construct effective electronic networks among the fillers. The composites filled with small amount of AgNPs shows a much lower volume resistivity of 2.13×10-4 Ωcm, and the resistance change (R/R 0) was only 3.65 when rolling at 4mm, while that of controlled sample reached to 8.89. This method provides a new perspective for researchers to further explore other chain-like metal and their applications in flexible electrical conductive materials. Conductive Elsevier Electronic materials Elsevier Flexible Elsevier Composite Elsevier Nanochains Elsevier Liu, Konghua oth Luo, Yuanfang oth Wei, Yong oth Li, Fucheng oth Liu, Lan oth Enthalten in Elsevier Follett, Peter A. ELSEVIER New associations and host status: Infestability of kiwifruit by the fruit fly species 2018 an interdisciplinary journal affiliated with the Materials Research Society and the Materials Society Japan, devoted to the rapid publication of short communications on the science, applications and processing of materials New York, NY [u.a.] (DE-627)ELV000885371 volume:147 year:2015 day:15 month:05 pages:109-112 extent:4 https://doi.org/10.1016/j.matlet.2015.02.048 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA SSG-OPC-FOR 48.00 Land- und Forstwirtschaft: Allgemeines VZ AR 147 2015 15 0515 109-112 4 045F 530 |
allfieldsSound |
10.1016/j.matlet.2015.02.048 doi GBVA2015006000010.pica (DE-627)ELV012894923 (ELSEVIER)S0167-577X(15)00241-4 DE-627 ger DE-627 rakwb eng 530 600 670 530 DE-600 600 DE-600 670 DE-600 630 580 VZ BIODIV DE-30 fid 48.00 bkl Chen, Shilong verfasserin aut Construction of silver nanochains on DNA template for flexible electrical conductive composites 2015transfer abstract 4 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier A facile synthesis of silver nanochains was represented by directly reducing the silver ions adsorbed on the DNA chains. The synthesized silver nanochains consist of spherical nanoparticles (10–20nm) connected together in line. Then the flexible electrical conductive composites were fabricated for the first time by incorporating Ag nanochains and Ag-coated Cu flakes in polymer matrix. The silver nanochains play important roles of flexible and conductive bridges to construct effective electronic networks among the fillers. The composites filled with small amount of AgNPs shows a much lower volume resistivity of 2.13×10-4 Ωcm, and the resistance change (R/R 0) was only 3.65 when rolling at 4mm, while that of controlled sample reached to 8.89. This method provides a new perspective for researchers to further explore other chain-like metal and their applications in flexible electrical conductive materials. A facile synthesis of silver nanochains was represented by directly reducing the silver ions adsorbed on the DNA chains. The synthesized silver nanochains consist of spherical nanoparticles (10–20nm) connected together in line. Then the flexible electrical conductive composites were fabricated for the first time by incorporating Ag nanochains and Ag-coated Cu flakes in polymer matrix. The silver nanochains play important roles of flexible and conductive bridges to construct effective electronic networks among the fillers. The composites filled with small amount of AgNPs shows a much lower volume resistivity of 2.13×10-4 Ωcm, and the resistance change (R/R 0) was only 3.65 when rolling at 4mm, while that of controlled sample reached to 8.89. This method provides a new perspective for researchers to further explore other chain-like metal and their applications in flexible electrical conductive materials. Conductive Elsevier Electronic materials Elsevier Flexible Elsevier Composite Elsevier Nanochains Elsevier Liu, Konghua oth Luo, Yuanfang oth Wei, Yong oth Li, Fucheng oth Liu, Lan oth Enthalten in Elsevier Follett, Peter A. ELSEVIER New associations and host status: Infestability of kiwifruit by the fruit fly species 2018 an interdisciplinary journal affiliated with the Materials Research Society and the Materials Society Japan, devoted to the rapid publication of short communications on the science, applications and processing of materials New York, NY [u.a.] (DE-627)ELV000885371 volume:147 year:2015 day:15 month:05 pages:109-112 extent:4 https://doi.org/10.1016/j.matlet.2015.02.048 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA SSG-OPC-FOR 48.00 Land- und Forstwirtschaft: Allgemeines VZ AR 147 2015 15 0515 109-112 4 045F 530 |
language |
English |
source |
Enthalten in New associations and host status: Infestability of kiwifruit by the fruit fly species New York, NY [u.a.] volume:147 year:2015 day:15 month:05 pages:109-112 extent:4 |
sourceStr |
Enthalten in New associations and host status: Infestability of kiwifruit by the fruit fly species New York, NY [u.a.] volume:147 year:2015 day:15 month:05 pages:109-112 extent:4 |
format_phy_str_mv |
Article |
bklname |
Land- und Forstwirtschaft: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Conductive Electronic materials Flexible Composite Nanochains |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
New associations and host status: Infestability of kiwifruit by the fruit fly species |
authorswithroles_txt_mv |
Chen, Shilong @@aut@@ Liu, Konghua @@oth@@ Luo, Yuanfang @@oth@@ Wei, Yong @@oth@@ Li, Fucheng @@oth@@ Liu, Lan @@oth@@ |
publishDateDaySort_date |
2015-01-15T00:00:00Z |
hierarchy_top_id |
ELV000885371 |
dewey-sort |
3530 |
id |
ELV012894923 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV012894923</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625111243.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.matlet.2015.02.048</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2015006000010.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV012894923</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0167-577X(15)00241-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530</subfield><subfield code="a">600</subfield><subfield code="a">670</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="a">580</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">48.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Shilong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Construction of silver nanochains on DNA template for flexible electrical conductive composites</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">4</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A facile synthesis of silver nanochains was represented by directly reducing the silver ions adsorbed on the DNA chains. The synthesized silver nanochains consist of spherical nanoparticles (10–20nm) connected together in line. Then the flexible electrical conductive composites were fabricated for the first time by incorporating Ag nanochains and Ag-coated Cu flakes in polymer matrix. The silver nanochains play important roles of flexible and conductive bridges to construct effective electronic networks among the fillers. The composites filled with small amount of AgNPs shows a much lower volume resistivity of 2.13×10-4 Ωcm, and the resistance change (R/R 0) was only 3.65 when rolling at 4mm, while that of controlled sample reached to 8.89. This method provides a new perspective for researchers to further explore other chain-like metal and their applications in flexible electrical conductive materials.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A facile synthesis of silver nanochains was represented by directly reducing the silver ions adsorbed on the DNA chains. The synthesized silver nanochains consist of spherical nanoparticles (10–20nm) connected together in line. Then the flexible electrical conductive composites were fabricated for the first time by incorporating Ag nanochains and Ag-coated Cu flakes in polymer matrix. The silver nanochains play important roles of flexible and conductive bridges to construct effective electronic networks among the fillers. The composites filled with small amount of AgNPs shows a much lower volume resistivity of 2.13×10-4 Ωcm, and the resistance change (R/R 0) was only 3.65 when rolling at 4mm, while that of controlled sample reached to 8.89. This method provides a new perspective for researchers to further explore other chain-like metal and their applications in flexible electrical conductive materials.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Conductive</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Electronic materials</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Flexible</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Composite</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nanochains</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Konghua</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Luo, Yuanfang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wei, Yong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Fucheng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Lan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Follett, Peter A. ELSEVIER</subfield><subfield code="t">New associations and host status: Infestability of kiwifruit by the fruit fly species</subfield><subfield code="d">2018</subfield><subfield code="d">an interdisciplinary journal affiliated with the Materials Research Society and the Materials Society Japan, devoted to the rapid publication of short communications on the science, applications and processing of materials</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV000885371</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:147</subfield><subfield code="g">year:2015</subfield><subfield code="g">day:15</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:109-112</subfield><subfield code="g">extent:4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.matlet.2015.02.048</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FOR</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">48.00</subfield><subfield code="j">Land- und Forstwirtschaft: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">147</subfield><subfield code="j">2015</subfield><subfield code="b">15</subfield><subfield code="c">0515</subfield><subfield code="h">109-112</subfield><subfield code="g">4</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">530</subfield></datafield></record></collection>
|
author |
Chen, Shilong |
spellingShingle |
Chen, Shilong ddc 530 ddc 600 ddc 670 ddc 630 fid BIODIV bkl 48.00 Elsevier Conductive Elsevier Electronic materials Elsevier Flexible Elsevier Composite Elsevier Nanochains Construction of silver nanochains on DNA template for flexible electrical conductive composites |
authorStr |
Chen, Shilong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV000885371 |
format |
electronic Article |
dewey-ones |
530 - Physics 600 - Technology 670 - Manufacturing 630 - Agriculture & related technologies 580 - Plants (Botany) |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
530 600 670 530 DE-600 600 DE-600 670 DE-600 630 580 VZ BIODIV DE-30 fid 48.00 bkl Construction of silver nanochains on DNA template for flexible electrical conductive composites Conductive Elsevier Electronic materials Elsevier Flexible Elsevier Composite Elsevier Nanochains Elsevier |
topic |
ddc 530 ddc 600 ddc 670 ddc 630 fid BIODIV bkl 48.00 Elsevier Conductive Elsevier Electronic materials Elsevier Flexible Elsevier Composite Elsevier Nanochains |
topic_unstemmed |
ddc 530 ddc 600 ddc 670 ddc 630 fid BIODIV bkl 48.00 Elsevier Conductive Elsevier Electronic materials Elsevier Flexible Elsevier Composite Elsevier Nanochains |
topic_browse |
ddc 530 ddc 600 ddc 670 ddc 630 fid BIODIV bkl 48.00 Elsevier Conductive Elsevier Electronic materials Elsevier Flexible Elsevier Composite Elsevier Nanochains |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
k l kl y l yl y w yw f l fl l l ll |
hierarchy_parent_title |
New associations and host status: Infestability of kiwifruit by the fruit fly species |
hierarchy_parent_id |
ELV000885371 |
dewey-tens |
530 - Physics 600 - Technology 670 - Manufacturing 630 - Agriculture 580 - Plants (Botany) |
hierarchy_top_title |
New associations and host status: Infestability of kiwifruit by the fruit fly species |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV000885371 |
title |
Construction of silver nanochains on DNA template for flexible electrical conductive composites |
ctrlnum |
(DE-627)ELV012894923 (ELSEVIER)S0167-577X(15)00241-4 |
title_full |
Construction of silver nanochains on DNA template for flexible electrical conductive composites |
author_sort |
Chen, Shilong |
journal |
New associations and host status: Infestability of kiwifruit by the fruit fly species |
journalStr |
New associations and host status: Infestability of kiwifruit by the fruit fly species |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
zzz |
container_start_page |
109 |
author_browse |
Chen, Shilong |
container_volume |
147 |
physical |
4 |
class |
530 600 670 530 DE-600 600 DE-600 670 DE-600 630 580 VZ BIODIV DE-30 fid 48.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Chen, Shilong |
doi_str_mv |
10.1016/j.matlet.2015.02.048 |
dewey-full |
530 600 670 630 580 |
title_sort |
construction of silver nanochains on dna template for flexible electrical conductive composites |
title_auth |
Construction of silver nanochains on DNA template for flexible electrical conductive composites |
abstract |
A facile synthesis of silver nanochains was represented by directly reducing the silver ions adsorbed on the DNA chains. The synthesized silver nanochains consist of spherical nanoparticles (10–20nm) connected together in line. Then the flexible electrical conductive composites were fabricated for the first time by incorporating Ag nanochains and Ag-coated Cu flakes in polymer matrix. The silver nanochains play important roles of flexible and conductive bridges to construct effective electronic networks among the fillers. The composites filled with small amount of AgNPs shows a much lower volume resistivity of 2.13×10-4 Ωcm, and the resistance change (R/R 0) was only 3.65 when rolling at 4mm, while that of controlled sample reached to 8.89. This method provides a new perspective for researchers to further explore other chain-like metal and their applications in flexible electrical conductive materials. |
abstractGer |
A facile synthesis of silver nanochains was represented by directly reducing the silver ions adsorbed on the DNA chains. The synthesized silver nanochains consist of spherical nanoparticles (10–20nm) connected together in line. Then the flexible electrical conductive composites were fabricated for the first time by incorporating Ag nanochains and Ag-coated Cu flakes in polymer matrix. The silver nanochains play important roles of flexible and conductive bridges to construct effective electronic networks among the fillers. The composites filled with small amount of AgNPs shows a much lower volume resistivity of 2.13×10-4 Ωcm, and the resistance change (R/R 0) was only 3.65 when rolling at 4mm, while that of controlled sample reached to 8.89. This method provides a new perspective for researchers to further explore other chain-like metal and their applications in flexible electrical conductive materials. |
abstract_unstemmed |
A facile synthesis of silver nanochains was represented by directly reducing the silver ions adsorbed on the DNA chains. The synthesized silver nanochains consist of spherical nanoparticles (10–20nm) connected together in line. Then the flexible electrical conductive composites were fabricated for the first time by incorporating Ag nanochains and Ag-coated Cu flakes in polymer matrix. The silver nanochains play important roles of flexible and conductive bridges to construct effective electronic networks among the fillers. The composites filled with small amount of AgNPs shows a much lower volume resistivity of 2.13×10-4 Ωcm, and the resistance change (R/R 0) was only 3.65 when rolling at 4mm, while that of controlled sample reached to 8.89. This method provides a new perspective for researchers to further explore other chain-like metal and their applications in flexible electrical conductive materials. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA SSG-OPC-FOR |
title_short |
Construction of silver nanochains on DNA template for flexible electrical conductive composites |
url |
https://doi.org/10.1016/j.matlet.2015.02.048 |
remote_bool |
true |
author2 |
Liu, Konghua Luo, Yuanfang Wei, Yong Li, Fucheng Liu, Lan |
author2Str |
Liu, Konghua Luo, Yuanfang Wei, Yong Li, Fucheng Liu, Lan |
ppnlink |
ELV000885371 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth |
doi_str |
10.1016/j.matlet.2015.02.048 |
up_date |
2024-07-06T17:27:02.012Z |
_version_ |
1803851474681200640 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV012894923</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625111243.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.matlet.2015.02.048</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2015006000010.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV012894923</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0167-577X(15)00241-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530</subfield><subfield code="a">600</subfield><subfield code="a">670</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="a">580</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">48.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Shilong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Construction of silver nanochains on DNA template for flexible electrical conductive composites</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">4</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A facile synthesis of silver nanochains was represented by directly reducing the silver ions adsorbed on the DNA chains. The synthesized silver nanochains consist of spherical nanoparticles (10–20nm) connected together in line. Then the flexible electrical conductive composites were fabricated for the first time by incorporating Ag nanochains and Ag-coated Cu flakes in polymer matrix. The silver nanochains play important roles of flexible and conductive bridges to construct effective electronic networks among the fillers. The composites filled with small amount of AgNPs shows a much lower volume resistivity of 2.13×10-4 Ωcm, and the resistance change (R/R 0) was only 3.65 when rolling at 4mm, while that of controlled sample reached to 8.89. This method provides a new perspective for researchers to further explore other chain-like metal and their applications in flexible electrical conductive materials.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A facile synthesis of silver nanochains was represented by directly reducing the silver ions adsorbed on the DNA chains. The synthesized silver nanochains consist of spherical nanoparticles (10–20nm) connected together in line. Then the flexible electrical conductive composites were fabricated for the first time by incorporating Ag nanochains and Ag-coated Cu flakes in polymer matrix. The silver nanochains play important roles of flexible and conductive bridges to construct effective electronic networks among the fillers. The composites filled with small amount of AgNPs shows a much lower volume resistivity of 2.13×10-4 Ωcm, and the resistance change (R/R 0) was only 3.65 when rolling at 4mm, while that of controlled sample reached to 8.89. This method provides a new perspective for researchers to further explore other chain-like metal and their applications in flexible electrical conductive materials.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Conductive</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Electronic materials</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Flexible</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Composite</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nanochains</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Konghua</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Luo, Yuanfang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wei, Yong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Fucheng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Lan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Follett, Peter A. ELSEVIER</subfield><subfield code="t">New associations and host status: Infestability of kiwifruit by the fruit fly species</subfield><subfield code="d">2018</subfield><subfield code="d">an interdisciplinary journal affiliated with the Materials Research Society and the Materials Society Japan, devoted to the rapid publication of short communications on the science, applications and processing of materials</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV000885371</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:147</subfield><subfield code="g">year:2015</subfield><subfield code="g">day:15</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:109-112</subfield><subfield code="g">extent:4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.matlet.2015.02.048</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FOR</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">48.00</subfield><subfield code="j">Land- und Forstwirtschaft: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">147</subfield><subfield code="j">2015</subfield><subfield code="b">15</subfield><subfield code="c">0515</subfield><subfield code="h">109-112</subfield><subfield code="g">4</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">530</subfield></datafield></record></collection>
|
score |
7.402068 |