Adsorption of non-ionic surfactant from aqueous solution onto various ultrafiltration membranes
Ultrafiltration of aqueous surfactant solutions shows in this study a high micelle retention and the permeability decline below, as well as above the critical micelle concentration (cmc). The trajectory of concentration-dependent permeability gives comparable patterns for various membranes under sim...
Ausführliche Beschreibung
Autor*in: |
Nguyen, L.A.T. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
14 |
---|
Übergeordnetes Werk: |
Enthalten in: Steering charge kinetics in W - Yue, Xin-Zheng ELSEVIER, 2019, the official journal of the North American Membrane Society, New York, NY [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:493 ; year:2015 ; day:1 ; month:11 ; pages:120-133 ; extent:14 |
Links: |
---|
DOI / URN: |
10.1016/j.memsci.2015.06.026 |
---|
Katalog-ID: |
ELV013057561 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV013057561 | ||
003 | DE-627 | ||
005 | 20230625111535.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180602s2015 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.memsci.2015.06.026 |2 doi | |
028 | 5 | 2 | |a GBVA2015012000016.pica |
035 | |a (DE-627)ELV013057561 | ||
035 | |a (ELSEVIER)S0376-7388(15)00551-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 570 | |
082 | 0 | 4 | |a 570 |q DE-600 |
082 | 0 | 4 | |a 540 |q VZ |
084 | |a 35.17 |2 bkl | ||
084 | |a 58.50 |2 bkl | ||
084 | |a 43.12 |2 bkl | ||
100 | 1 | |a Nguyen, L.A.T. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Adsorption of non-ionic surfactant from aqueous solution onto various ultrafiltration membranes |
264 | 1 | |c 2015transfer abstract | |
300 | |a 14 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Ultrafiltration of aqueous surfactant solutions shows in this study a high micelle retention and the permeability decline below, as well as above the critical micelle concentration (cmc). The trajectory of concentration-dependent permeability gives comparable patterns for various membranes under similar filtration conditions. This phenomenon is analysed by applying the two following models: (1) constant pressure blocking filtration laws established by Hermia; (2) adsorption model proposed by Zhu and Gu. From experimental flux data, all Hermia’s models fail to explain flux decline during stepwise increasing the surfactant concentration covering a range from (a) 0 to cmc and (b) cmc to 4·cmc. In contrast, the adsorption model is proven to be a helpful method to identify the responsible process causing the flux decline. Applying the two-step model with S-shape, we determined the equilibrium adsorption constant K and hemimicelle aggregation number n from permeability decline in dependence of surfactant concentration. This study contributes a qualitative and quantitative comparison of adsorption behaviours regarding the hydrophilicity of the membrane surface, the MWCO and the polarity of the feed solution. Moreover, the difference in the filtration performance between MEUF and reverse MEUF is systematically investigated here to explain the reason for the technical infeasibility of reverse MEUF. | ||
520 | |a Ultrafiltration of aqueous surfactant solutions shows in this study a high micelle retention and the permeability decline below, as well as above the critical micelle concentration (cmc). The trajectory of concentration-dependent permeability gives comparable patterns for various membranes under similar filtration conditions. This phenomenon is analysed by applying the two following models: (1) constant pressure blocking filtration laws established by Hermia; (2) adsorption model proposed by Zhu and Gu. From experimental flux data, all Hermia’s models fail to explain flux decline during stepwise increasing the surfactant concentration covering a range from (a) 0 to cmc and (b) cmc to 4·cmc. In contrast, the adsorption model is proven to be a helpful method to identify the responsible process causing the flux decline. Applying the two-step model with S-shape, we determined the equilibrium adsorption constant K and hemimicelle aggregation number n from permeability decline in dependence of surfactant concentration. This study contributes a qualitative and quantitative comparison of adsorption behaviours regarding the hydrophilicity of the membrane surface, the MWCO and the polarity of the feed solution. Moreover, the difference in the filtration performance between MEUF and reverse MEUF is systematically investigated here to explain the reason for the technical infeasibility of reverse MEUF. | ||
650 | 7 | |a Hydrophilic membranes |2 Elsevier | |
650 | 7 | |a Surfactant diffusion |2 Elsevier | |
650 | 7 | |a Adsorption model |2 Elsevier | |
650 | 7 | |a Reverse micelles |2 Elsevier | |
650 | 7 | |a Micellar-enhanced ultrafiltration |2 Elsevier | |
700 | 1 | |a Schwarze, M. |4 oth | |
700 | 1 | |a Schomäcker, R. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Yue, Xin-Zheng ELSEVIER |t Steering charge kinetics in W |d 2019 |d the official journal of the North American Membrane Society |g New York, NY [u.a.] |w (DE-627)ELV002478420 |
773 | 1 | 8 | |g volume:493 |g year:2015 |g day:1 |g month:11 |g pages:120-133 |g extent:14 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.memsci.2015.06.026 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 35.17 |j Katalyse |q VZ |
936 | b | k | |a 58.50 |j Umwelttechnik: Allgemeines |q VZ |
936 | b | k | |a 43.12 |j Umweltchemie |q VZ |
951 | |a AR | ||
952 | |d 493 |j 2015 |b 1 |c 1101 |h 120-133 |g 14 | ||
953 | |2 045F |a 570 |
author_variant |
l n ln |
---|---|
matchkey_str |
nguyenlatschwarzemschomckerr:2015----:dopinfoincufcatrmqeusltootvrosl |
hierarchy_sort_str |
2015transfer abstract |
bklnumber |
35.17 58.50 43.12 |
publishDate |
2015 |
allfields |
10.1016/j.memsci.2015.06.026 doi GBVA2015012000016.pica (DE-627)ELV013057561 (ELSEVIER)S0376-7388(15)00551-7 DE-627 ger DE-627 rakwb eng 570 570 DE-600 540 VZ 35.17 bkl 58.50 bkl 43.12 bkl Nguyen, L.A.T. verfasserin aut Adsorption of non-ionic surfactant from aqueous solution onto various ultrafiltration membranes 2015transfer abstract 14 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Ultrafiltration of aqueous surfactant solutions shows in this study a high micelle retention and the permeability decline below, as well as above the critical micelle concentration (cmc). The trajectory of concentration-dependent permeability gives comparable patterns for various membranes under similar filtration conditions. This phenomenon is analysed by applying the two following models: (1) constant pressure blocking filtration laws established by Hermia; (2) adsorption model proposed by Zhu and Gu. From experimental flux data, all Hermia’s models fail to explain flux decline during stepwise increasing the surfactant concentration covering a range from (a) 0 to cmc and (b) cmc to 4·cmc. In contrast, the adsorption model is proven to be a helpful method to identify the responsible process causing the flux decline. Applying the two-step model with S-shape, we determined the equilibrium adsorption constant K and hemimicelle aggregation number n from permeability decline in dependence of surfactant concentration. This study contributes a qualitative and quantitative comparison of adsorption behaviours regarding the hydrophilicity of the membrane surface, the MWCO and the polarity of the feed solution. Moreover, the difference in the filtration performance between MEUF and reverse MEUF is systematically investigated here to explain the reason for the technical infeasibility of reverse MEUF. Ultrafiltration of aqueous surfactant solutions shows in this study a high micelle retention and the permeability decline below, as well as above the critical micelle concentration (cmc). The trajectory of concentration-dependent permeability gives comparable patterns for various membranes under similar filtration conditions. This phenomenon is analysed by applying the two following models: (1) constant pressure blocking filtration laws established by Hermia; (2) adsorption model proposed by Zhu and Gu. From experimental flux data, all Hermia’s models fail to explain flux decline during stepwise increasing the surfactant concentration covering a range from (a) 0 to cmc and (b) cmc to 4·cmc. In contrast, the adsorption model is proven to be a helpful method to identify the responsible process causing the flux decline. Applying the two-step model with S-shape, we determined the equilibrium adsorption constant K and hemimicelle aggregation number n from permeability decline in dependence of surfactant concentration. This study contributes a qualitative and quantitative comparison of adsorption behaviours regarding the hydrophilicity of the membrane surface, the MWCO and the polarity of the feed solution. Moreover, the difference in the filtration performance between MEUF and reverse MEUF is systematically investigated here to explain the reason for the technical infeasibility of reverse MEUF. Hydrophilic membranes Elsevier Surfactant diffusion Elsevier Adsorption model Elsevier Reverse micelles Elsevier Micellar-enhanced ultrafiltration Elsevier Schwarze, M. oth Schomäcker, R. oth Enthalten in Elsevier Yue, Xin-Zheng ELSEVIER Steering charge kinetics in W 2019 the official journal of the North American Membrane Society New York, NY [u.a.] (DE-627)ELV002478420 volume:493 year:2015 day:1 month:11 pages:120-133 extent:14 https://doi.org/10.1016/j.memsci.2015.06.026 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.17 Katalyse VZ 58.50 Umwelttechnik: Allgemeines VZ 43.12 Umweltchemie VZ AR 493 2015 1 1101 120-133 14 045F 570 |
spelling |
10.1016/j.memsci.2015.06.026 doi GBVA2015012000016.pica (DE-627)ELV013057561 (ELSEVIER)S0376-7388(15)00551-7 DE-627 ger DE-627 rakwb eng 570 570 DE-600 540 VZ 35.17 bkl 58.50 bkl 43.12 bkl Nguyen, L.A.T. verfasserin aut Adsorption of non-ionic surfactant from aqueous solution onto various ultrafiltration membranes 2015transfer abstract 14 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Ultrafiltration of aqueous surfactant solutions shows in this study a high micelle retention and the permeability decline below, as well as above the critical micelle concentration (cmc). The trajectory of concentration-dependent permeability gives comparable patterns for various membranes under similar filtration conditions. This phenomenon is analysed by applying the two following models: (1) constant pressure blocking filtration laws established by Hermia; (2) adsorption model proposed by Zhu and Gu. From experimental flux data, all Hermia’s models fail to explain flux decline during stepwise increasing the surfactant concentration covering a range from (a) 0 to cmc and (b) cmc to 4·cmc. In contrast, the adsorption model is proven to be a helpful method to identify the responsible process causing the flux decline. Applying the two-step model with S-shape, we determined the equilibrium adsorption constant K and hemimicelle aggregation number n from permeability decline in dependence of surfactant concentration. This study contributes a qualitative and quantitative comparison of adsorption behaviours regarding the hydrophilicity of the membrane surface, the MWCO and the polarity of the feed solution. Moreover, the difference in the filtration performance between MEUF and reverse MEUF is systematically investigated here to explain the reason for the technical infeasibility of reverse MEUF. Ultrafiltration of aqueous surfactant solutions shows in this study a high micelle retention and the permeability decline below, as well as above the critical micelle concentration (cmc). The trajectory of concentration-dependent permeability gives comparable patterns for various membranes under similar filtration conditions. This phenomenon is analysed by applying the two following models: (1) constant pressure blocking filtration laws established by Hermia; (2) adsorption model proposed by Zhu and Gu. From experimental flux data, all Hermia’s models fail to explain flux decline during stepwise increasing the surfactant concentration covering a range from (a) 0 to cmc and (b) cmc to 4·cmc. In contrast, the adsorption model is proven to be a helpful method to identify the responsible process causing the flux decline. Applying the two-step model with S-shape, we determined the equilibrium adsorption constant K and hemimicelle aggregation number n from permeability decline in dependence of surfactant concentration. This study contributes a qualitative and quantitative comparison of adsorption behaviours regarding the hydrophilicity of the membrane surface, the MWCO and the polarity of the feed solution. Moreover, the difference in the filtration performance between MEUF and reverse MEUF is systematically investigated here to explain the reason for the technical infeasibility of reverse MEUF. Hydrophilic membranes Elsevier Surfactant diffusion Elsevier Adsorption model Elsevier Reverse micelles Elsevier Micellar-enhanced ultrafiltration Elsevier Schwarze, M. oth Schomäcker, R. oth Enthalten in Elsevier Yue, Xin-Zheng ELSEVIER Steering charge kinetics in W 2019 the official journal of the North American Membrane Society New York, NY [u.a.] (DE-627)ELV002478420 volume:493 year:2015 day:1 month:11 pages:120-133 extent:14 https://doi.org/10.1016/j.memsci.2015.06.026 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.17 Katalyse VZ 58.50 Umwelttechnik: Allgemeines VZ 43.12 Umweltchemie VZ AR 493 2015 1 1101 120-133 14 045F 570 |
allfields_unstemmed |
10.1016/j.memsci.2015.06.026 doi GBVA2015012000016.pica (DE-627)ELV013057561 (ELSEVIER)S0376-7388(15)00551-7 DE-627 ger DE-627 rakwb eng 570 570 DE-600 540 VZ 35.17 bkl 58.50 bkl 43.12 bkl Nguyen, L.A.T. verfasserin aut Adsorption of non-ionic surfactant from aqueous solution onto various ultrafiltration membranes 2015transfer abstract 14 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Ultrafiltration of aqueous surfactant solutions shows in this study a high micelle retention and the permeability decline below, as well as above the critical micelle concentration (cmc). The trajectory of concentration-dependent permeability gives comparable patterns for various membranes under similar filtration conditions. This phenomenon is analysed by applying the two following models: (1) constant pressure blocking filtration laws established by Hermia; (2) adsorption model proposed by Zhu and Gu. From experimental flux data, all Hermia’s models fail to explain flux decline during stepwise increasing the surfactant concentration covering a range from (a) 0 to cmc and (b) cmc to 4·cmc. In contrast, the adsorption model is proven to be a helpful method to identify the responsible process causing the flux decline. Applying the two-step model with S-shape, we determined the equilibrium adsorption constant K and hemimicelle aggregation number n from permeability decline in dependence of surfactant concentration. This study contributes a qualitative and quantitative comparison of adsorption behaviours regarding the hydrophilicity of the membrane surface, the MWCO and the polarity of the feed solution. Moreover, the difference in the filtration performance between MEUF and reverse MEUF is systematically investigated here to explain the reason for the technical infeasibility of reverse MEUF. Ultrafiltration of aqueous surfactant solutions shows in this study a high micelle retention and the permeability decline below, as well as above the critical micelle concentration (cmc). The trajectory of concentration-dependent permeability gives comparable patterns for various membranes under similar filtration conditions. This phenomenon is analysed by applying the two following models: (1) constant pressure blocking filtration laws established by Hermia; (2) adsorption model proposed by Zhu and Gu. From experimental flux data, all Hermia’s models fail to explain flux decline during stepwise increasing the surfactant concentration covering a range from (a) 0 to cmc and (b) cmc to 4·cmc. In contrast, the adsorption model is proven to be a helpful method to identify the responsible process causing the flux decline. Applying the two-step model with S-shape, we determined the equilibrium adsorption constant K and hemimicelle aggregation number n from permeability decline in dependence of surfactant concentration. This study contributes a qualitative and quantitative comparison of adsorption behaviours regarding the hydrophilicity of the membrane surface, the MWCO and the polarity of the feed solution. Moreover, the difference in the filtration performance between MEUF and reverse MEUF is systematically investigated here to explain the reason for the technical infeasibility of reverse MEUF. Hydrophilic membranes Elsevier Surfactant diffusion Elsevier Adsorption model Elsevier Reverse micelles Elsevier Micellar-enhanced ultrafiltration Elsevier Schwarze, M. oth Schomäcker, R. oth Enthalten in Elsevier Yue, Xin-Zheng ELSEVIER Steering charge kinetics in W 2019 the official journal of the North American Membrane Society New York, NY [u.a.] (DE-627)ELV002478420 volume:493 year:2015 day:1 month:11 pages:120-133 extent:14 https://doi.org/10.1016/j.memsci.2015.06.026 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.17 Katalyse VZ 58.50 Umwelttechnik: Allgemeines VZ 43.12 Umweltchemie VZ AR 493 2015 1 1101 120-133 14 045F 570 |
allfieldsGer |
10.1016/j.memsci.2015.06.026 doi GBVA2015012000016.pica (DE-627)ELV013057561 (ELSEVIER)S0376-7388(15)00551-7 DE-627 ger DE-627 rakwb eng 570 570 DE-600 540 VZ 35.17 bkl 58.50 bkl 43.12 bkl Nguyen, L.A.T. verfasserin aut Adsorption of non-ionic surfactant from aqueous solution onto various ultrafiltration membranes 2015transfer abstract 14 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Ultrafiltration of aqueous surfactant solutions shows in this study a high micelle retention and the permeability decline below, as well as above the critical micelle concentration (cmc). The trajectory of concentration-dependent permeability gives comparable patterns for various membranes under similar filtration conditions. This phenomenon is analysed by applying the two following models: (1) constant pressure blocking filtration laws established by Hermia; (2) adsorption model proposed by Zhu and Gu. From experimental flux data, all Hermia’s models fail to explain flux decline during stepwise increasing the surfactant concentration covering a range from (a) 0 to cmc and (b) cmc to 4·cmc. In contrast, the adsorption model is proven to be a helpful method to identify the responsible process causing the flux decline. Applying the two-step model with S-shape, we determined the equilibrium adsorption constant K and hemimicelle aggregation number n from permeability decline in dependence of surfactant concentration. This study contributes a qualitative and quantitative comparison of adsorption behaviours regarding the hydrophilicity of the membrane surface, the MWCO and the polarity of the feed solution. Moreover, the difference in the filtration performance between MEUF and reverse MEUF is systematically investigated here to explain the reason for the technical infeasibility of reverse MEUF. Ultrafiltration of aqueous surfactant solutions shows in this study a high micelle retention and the permeability decline below, as well as above the critical micelle concentration (cmc). The trajectory of concentration-dependent permeability gives comparable patterns for various membranes under similar filtration conditions. This phenomenon is analysed by applying the two following models: (1) constant pressure blocking filtration laws established by Hermia; (2) adsorption model proposed by Zhu and Gu. From experimental flux data, all Hermia’s models fail to explain flux decline during stepwise increasing the surfactant concentration covering a range from (a) 0 to cmc and (b) cmc to 4·cmc. In contrast, the adsorption model is proven to be a helpful method to identify the responsible process causing the flux decline. Applying the two-step model with S-shape, we determined the equilibrium adsorption constant K and hemimicelle aggregation number n from permeability decline in dependence of surfactant concentration. This study contributes a qualitative and quantitative comparison of adsorption behaviours regarding the hydrophilicity of the membrane surface, the MWCO and the polarity of the feed solution. Moreover, the difference in the filtration performance between MEUF and reverse MEUF is systematically investigated here to explain the reason for the technical infeasibility of reverse MEUF. Hydrophilic membranes Elsevier Surfactant diffusion Elsevier Adsorption model Elsevier Reverse micelles Elsevier Micellar-enhanced ultrafiltration Elsevier Schwarze, M. oth Schomäcker, R. oth Enthalten in Elsevier Yue, Xin-Zheng ELSEVIER Steering charge kinetics in W 2019 the official journal of the North American Membrane Society New York, NY [u.a.] (DE-627)ELV002478420 volume:493 year:2015 day:1 month:11 pages:120-133 extent:14 https://doi.org/10.1016/j.memsci.2015.06.026 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.17 Katalyse VZ 58.50 Umwelttechnik: Allgemeines VZ 43.12 Umweltchemie VZ AR 493 2015 1 1101 120-133 14 045F 570 |
allfieldsSound |
10.1016/j.memsci.2015.06.026 doi GBVA2015012000016.pica (DE-627)ELV013057561 (ELSEVIER)S0376-7388(15)00551-7 DE-627 ger DE-627 rakwb eng 570 570 DE-600 540 VZ 35.17 bkl 58.50 bkl 43.12 bkl Nguyen, L.A.T. verfasserin aut Adsorption of non-ionic surfactant from aqueous solution onto various ultrafiltration membranes 2015transfer abstract 14 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Ultrafiltration of aqueous surfactant solutions shows in this study a high micelle retention and the permeability decline below, as well as above the critical micelle concentration (cmc). The trajectory of concentration-dependent permeability gives comparable patterns for various membranes under similar filtration conditions. This phenomenon is analysed by applying the two following models: (1) constant pressure blocking filtration laws established by Hermia; (2) adsorption model proposed by Zhu and Gu. From experimental flux data, all Hermia’s models fail to explain flux decline during stepwise increasing the surfactant concentration covering a range from (a) 0 to cmc and (b) cmc to 4·cmc. In contrast, the adsorption model is proven to be a helpful method to identify the responsible process causing the flux decline. Applying the two-step model with S-shape, we determined the equilibrium adsorption constant K and hemimicelle aggregation number n from permeability decline in dependence of surfactant concentration. This study contributes a qualitative and quantitative comparison of adsorption behaviours regarding the hydrophilicity of the membrane surface, the MWCO and the polarity of the feed solution. Moreover, the difference in the filtration performance between MEUF and reverse MEUF is systematically investigated here to explain the reason for the technical infeasibility of reverse MEUF. Ultrafiltration of aqueous surfactant solutions shows in this study a high micelle retention and the permeability decline below, as well as above the critical micelle concentration (cmc). The trajectory of concentration-dependent permeability gives comparable patterns for various membranes under similar filtration conditions. This phenomenon is analysed by applying the two following models: (1) constant pressure blocking filtration laws established by Hermia; (2) adsorption model proposed by Zhu and Gu. From experimental flux data, all Hermia’s models fail to explain flux decline during stepwise increasing the surfactant concentration covering a range from (a) 0 to cmc and (b) cmc to 4·cmc. In contrast, the adsorption model is proven to be a helpful method to identify the responsible process causing the flux decline. Applying the two-step model with S-shape, we determined the equilibrium adsorption constant K and hemimicelle aggregation number n from permeability decline in dependence of surfactant concentration. This study contributes a qualitative and quantitative comparison of adsorption behaviours regarding the hydrophilicity of the membrane surface, the MWCO and the polarity of the feed solution. Moreover, the difference in the filtration performance between MEUF and reverse MEUF is systematically investigated here to explain the reason for the technical infeasibility of reverse MEUF. Hydrophilic membranes Elsevier Surfactant diffusion Elsevier Adsorption model Elsevier Reverse micelles Elsevier Micellar-enhanced ultrafiltration Elsevier Schwarze, M. oth Schomäcker, R. oth Enthalten in Elsevier Yue, Xin-Zheng ELSEVIER Steering charge kinetics in W 2019 the official journal of the North American Membrane Society New York, NY [u.a.] (DE-627)ELV002478420 volume:493 year:2015 day:1 month:11 pages:120-133 extent:14 https://doi.org/10.1016/j.memsci.2015.06.026 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.17 Katalyse VZ 58.50 Umwelttechnik: Allgemeines VZ 43.12 Umweltchemie VZ AR 493 2015 1 1101 120-133 14 045F 570 |
language |
English |
source |
Enthalten in Steering charge kinetics in W New York, NY [u.a.] volume:493 year:2015 day:1 month:11 pages:120-133 extent:14 |
sourceStr |
Enthalten in Steering charge kinetics in W New York, NY [u.a.] volume:493 year:2015 day:1 month:11 pages:120-133 extent:14 |
format_phy_str_mv |
Article |
bklname |
Katalyse Umwelttechnik: Allgemeines Umweltchemie |
institution |
findex.gbv.de |
topic_facet |
Hydrophilic membranes Surfactant diffusion Adsorption model Reverse micelles Micellar-enhanced ultrafiltration |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
Steering charge kinetics in W |
authorswithroles_txt_mv |
Nguyen, L.A.T. @@aut@@ Schwarze, M. @@oth@@ Schomäcker, R. @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
ELV002478420 |
dewey-sort |
3570 |
id |
ELV013057561 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV013057561</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625111535.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.memsci.2015.06.026</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2015012000016.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV013057561</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0376-7388(15)00551-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">570</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.17</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.50</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nguyen, L.A.T.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Adsorption of non-ionic surfactant from aqueous solution onto various ultrafiltration membranes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">14</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Ultrafiltration of aqueous surfactant solutions shows in this study a high micelle retention and the permeability decline below, as well as above the critical micelle concentration (cmc). The trajectory of concentration-dependent permeability gives comparable patterns for various membranes under similar filtration conditions. This phenomenon is analysed by applying the two following models: (1) constant pressure blocking filtration laws established by Hermia; (2) adsorption model proposed by Zhu and Gu. From experimental flux data, all Hermia’s models fail to explain flux decline during stepwise increasing the surfactant concentration covering a range from (a) 0 to cmc and (b) cmc to 4·cmc. In contrast, the adsorption model is proven to be a helpful method to identify the responsible process causing the flux decline. Applying the two-step model with S-shape, we determined the equilibrium adsorption constant K and hemimicelle aggregation number n from permeability decline in dependence of surfactant concentration. This study contributes a qualitative and quantitative comparison of adsorption behaviours regarding the hydrophilicity of the membrane surface, the MWCO and the polarity of the feed solution. Moreover, the difference in the filtration performance between MEUF and reverse MEUF is systematically investigated here to explain the reason for the technical infeasibility of reverse MEUF.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Ultrafiltration of aqueous surfactant solutions shows in this study a high micelle retention and the permeability decline below, as well as above the critical micelle concentration (cmc). The trajectory of concentration-dependent permeability gives comparable patterns for various membranes under similar filtration conditions. This phenomenon is analysed by applying the two following models: (1) constant pressure blocking filtration laws established by Hermia; (2) adsorption model proposed by Zhu and Gu. From experimental flux data, all Hermia’s models fail to explain flux decline during stepwise increasing the surfactant concentration covering a range from (a) 0 to cmc and (b) cmc to 4·cmc. In contrast, the adsorption model is proven to be a helpful method to identify the responsible process causing the flux decline. Applying the two-step model with S-shape, we determined the equilibrium adsorption constant K and hemimicelle aggregation number n from permeability decline in dependence of surfactant concentration. This study contributes a qualitative and quantitative comparison of adsorption behaviours regarding the hydrophilicity of the membrane surface, the MWCO and the polarity of the feed solution. Moreover, the difference in the filtration performance between MEUF and reverse MEUF is systematically investigated here to explain the reason for the technical infeasibility of reverse MEUF.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hydrophilic membranes</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Surfactant diffusion</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Adsorption model</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Reverse micelles</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Micellar-enhanced ultrafiltration</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schwarze, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schomäcker, R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Yue, Xin-Zheng ELSEVIER</subfield><subfield code="t">Steering charge kinetics in W</subfield><subfield code="d">2019</subfield><subfield code="d">the official journal of the North American Membrane Society</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV002478420</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:493</subfield><subfield code="g">year:2015</subfield><subfield code="g">day:1</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:120-133</subfield><subfield code="g">extent:14</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.memsci.2015.06.026</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.17</subfield><subfield code="j">Katalyse</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.50</subfield><subfield code="j">Umwelttechnik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.12</subfield><subfield code="j">Umweltchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">493</subfield><subfield code="j">2015</subfield><subfield code="b">1</subfield><subfield code="c">1101</subfield><subfield code="h">120-133</subfield><subfield code="g">14</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">570</subfield></datafield></record></collection>
|
author |
Nguyen, L.A.T. |
spellingShingle |
Nguyen, L.A.T. ddc 570 ddc 540 bkl 35.17 bkl 58.50 bkl 43.12 Elsevier Hydrophilic membranes Elsevier Surfactant diffusion Elsevier Adsorption model Elsevier Reverse micelles Elsevier Micellar-enhanced ultrafiltration Adsorption of non-ionic surfactant from aqueous solution onto various ultrafiltration membranes |
authorStr |
Nguyen, L.A.T. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV002478420 |
format |
electronic Article |
dewey-ones |
570 - Life sciences; biology 540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
570 570 DE-600 540 VZ 35.17 bkl 58.50 bkl 43.12 bkl Adsorption of non-ionic surfactant from aqueous solution onto various ultrafiltration membranes Hydrophilic membranes Elsevier Surfactant diffusion Elsevier Adsorption model Elsevier Reverse micelles Elsevier Micellar-enhanced ultrafiltration Elsevier |
topic |
ddc 570 ddc 540 bkl 35.17 bkl 58.50 bkl 43.12 Elsevier Hydrophilic membranes Elsevier Surfactant diffusion Elsevier Adsorption model Elsevier Reverse micelles Elsevier Micellar-enhanced ultrafiltration |
topic_unstemmed |
ddc 570 ddc 540 bkl 35.17 bkl 58.50 bkl 43.12 Elsevier Hydrophilic membranes Elsevier Surfactant diffusion Elsevier Adsorption model Elsevier Reverse micelles Elsevier Micellar-enhanced ultrafiltration |
topic_browse |
ddc 570 ddc 540 bkl 35.17 bkl 58.50 bkl 43.12 Elsevier Hydrophilic membranes Elsevier Surfactant diffusion Elsevier Adsorption model Elsevier Reverse micelles Elsevier Micellar-enhanced ultrafiltration |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
m s ms r s rs |
hierarchy_parent_title |
Steering charge kinetics in W |
hierarchy_parent_id |
ELV002478420 |
dewey-tens |
570 - Life sciences; biology 540 - Chemistry |
hierarchy_top_title |
Steering charge kinetics in W |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV002478420 |
title |
Adsorption of non-ionic surfactant from aqueous solution onto various ultrafiltration membranes |
ctrlnum |
(DE-627)ELV013057561 (ELSEVIER)S0376-7388(15)00551-7 |
title_full |
Adsorption of non-ionic surfactant from aqueous solution onto various ultrafiltration membranes |
author_sort |
Nguyen, L.A.T. |
journal |
Steering charge kinetics in W |
journalStr |
Steering charge kinetics in W |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
zzz |
container_start_page |
120 |
author_browse |
Nguyen, L.A.T. |
container_volume |
493 |
physical |
14 |
class |
570 570 DE-600 540 VZ 35.17 bkl 58.50 bkl 43.12 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Nguyen, L.A.T. |
doi_str_mv |
10.1016/j.memsci.2015.06.026 |
dewey-full |
570 540 |
title_sort |
adsorption of non-ionic surfactant from aqueous solution onto various ultrafiltration membranes |
title_auth |
Adsorption of non-ionic surfactant from aqueous solution onto various ultrafiltration membranes |
abstract |
Ultrafiltration of aqueous surfactant solutions shows in this study a high micelle retention and the permeability decline below, as well as above the critical micelle concentration (cmc). The trajectory of concentration-dependent permeability gives comparable patterns for various membranes under similar filtration conditions. This phenomenon is analysed by applying the two following models: (1) constant pressure blocking filtration laws established by Hermia; (2) adsorption model proposed by Zhu and Gu. From experimental flux data, all Hermia’s models fail to explain flux decline during stepwise increasing the surfactant concentration covering a range from (a) 0 to cmc and (b) cmc to 4·cmc. In contrast, the adsorption model is proven to be a helpful method to identify the responsible process causing the flux decline. Applying the two-step model with S-shape, we determined the equilibrium adsorption constant K and hemimicelle aggregation number n from permeability decline in dependence of surfactant concentration. This study contributes a qualitative and quantitative comparison of adsorption behaviours regarding the hydrophilicity of the membrane surface, the MWCO and the polarity of the feed solution. Moreover, the difference in the filtration performance between MEUF and reverse MEUF is systematically investigated here to explain the reason for the technical infeasibility of reverse MEUF. |
abstractGer |
Ultrafiltration of aqueous surfactant solutions shows in this study a high micelle retention and the permeability decline below, as well as above the critical micelle concentration (cmc). The trajectory of concentration-dependent permeability gives comparable patterns for various membranes under similar filtration conditions. This phenomenon is analysed by applying the two following models: (1) constant pressure blocking filtration laws established by Hermia; (2) adsorption model proposed by Zhu and Gu. From experimental flux data, all Hermia’s models fail to explain flux decline during stepwise increasing the surfactant concentration covering a range from (a) 0 to cmc and (b) cmc to 4·cmc. In contrast, the adsorption model is proven to be a helpful method to identify the responsible process causing the flux decline. Applying the two-step model with S-shape, we determined the equilibrium adsorption constant K and hemimicelle aggregation number n from permeability decline in dependence of surfactant concentration. This study contributes a qualitative and quantitative comparison of adsorption behaviours regarding the hydrophilicity of the membrane surface, the MWCO and the polarity of the feed solution. Moreover, the difference in the filtration performance between MEUF and reverse MEUF is systematically investigated here to explain the reason for the technical infeasibility of reverse MEUF. |
abstract_unstemmed |
Ultrafiltration of aqueous surfactant solutions shows in this study a high micelle retention and the permeability decline below, as well as above the critical micelle concentration (cmc). The trajectory of concentration-dependent permeability gives comparable patterns for various membranes under similar filtration conditions. This phenomenon is analysed by applying the two following models: (1) constant pressure blocking filtration laws established by Hermia; (2) adsorption model proposed by Zhu and Gu. From experimental flux data, all Hermia’s models fail to explain flux decline during stepwise increasing the surfactant concentration covering a range from (a) 0 to cmc and (b) cmc to 4·cmc. In contrast, the adsorption model is proven to be a helpful method to identify the responsible process causing the flux decline. Applying the two-step model with S-shape, we determined the equilibrium adsorption constant K and hemimicelle aggregation number n from permeability decline in dependence of surfactant concentration. This study contributes a qualitative and quantitative comparison of adsorption behaviours regarding the hydrophilicity of the membrane surface, the MWCO and the polarity of the feed solution. Moreover, the difference in the filtration performance between MEUF and reverse MEUF is systematically investigated here to explain the reason for the technical infeasibility of reverse MEUF. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
title_short |
Adsorption of non-ionic surfactant from aqueous solution onto various ultrafiltration membranes |
url |
https://doi.org/10.1016/j.memsci.2015.06.026 |
remote_bool |
true |
author2 |
Schwarze, M. Schomäcker, R. |
author2Str |
Schwarze, M. Schomäcker, R. |
ppnlink |
ELV002478420 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1016/j.memsci.2015.06.026 |
up_date |
2024-07-06T17:56:05.425Z |
_version_ |
1803853302780133376 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV013057561</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625111535.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.memsci.2015.06.026</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2015012000016.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV013057561</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0376-7388(15)00551-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">570</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.17</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.50</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nguyen, L.A.T.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Adsorption of non-ionic surfactant from aqueous solution onto various ultrafiltration membranes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">14</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Ultrafiltration of aqueous surfactant solutions shows in this study a high micelle retention and the permeability decline below, as well as above the critical micelle concentration (cmc). The trajectory of concentration-dependent permeability gives comparable patterns for various membranes under similar filtration conditions. This phenomenon is analysed by applying the two following models: (1) constant pressure blocking filtration laws established by Hermia; (2) adsorption model proposed by Zhu and Gu. From experimental flux data, all Hermia’s models fail to explain flux decline during stepwise increasing the surfactant concentration covering a range from (a) 0 to cmc and (b) cmc to 4·cmc. In contrast, the adsorption model is proven to be a helpful method to identify the responsible process causing the flux decline. Applying the two-step model with S-shape, we determined the equilibrium adsorption constant K and hemimicelle aggregation number n from permeability decline in dependence of surfactant concentration. This study contributes a qualitative and quantitative comparison of adsorption behaviours regarding the hydrophilicity of the membrane surface, the MWCO and the polarity of the feed solution. Moreover, the difference in the filtration performance between MEUF and reverse MEUF is systematically investigated here to explain the reason for the technical infeasibility of reverse MEUF.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Ultrafiltration of aqueous surfactant solutions shows in this study a high micelle retention and the permeability decline below, as well as above the critical micelle concentration (cmc). The trajectory of concentration-dependent permeability gives comparable patterns for various membranes under similar filtration conditions. This phenomenon is analysed by applying the two following models: (1) constant pressure blocking filtration laws established by Hermia; (2) adsorption model proposed by Zhu and Gu. From experimental flux data, all Hermia’s models fail to explain flux decline during stepwise increasing the surfactant concentration covering a range from (a) 0 to cmc and (b) cmc to 4·cmc. In contrast, the adsorption model is proven to be a helpful method to identify the responsible process causing the flux decline. Applying the two-step model with S-shape, we determined the equilibrium adsorption constant K and hemimicelle aggregation number n from permeability decline in dependence of surfactant concentration. This study contributes a qualitative and quantitative comparison of adsorption behaviours regarding the hydrophilicity of the membrane surface, the MWCO and the polarity of the feed solution. Moreover, the difference in the filtration performance between MEUF and reverse MEUF is systematically investigated here to explain the reason for the technical infeasibility of reverse MEUF.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hydrophilic membranes</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Surfactant diffusion</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Adsorption model</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Reverse micelles</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Micellar-enhanced ultrafiltration</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schwarze, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schomäcker, R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Yue, Xin-Zheng ELSEVIER</subfield><subfield code="t">Steering charge kinetics in W</subfield><subfield code="d">2019</subfield><subfield code="d">the official journal of the North American Membrane Society</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV002478420</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:493</subfield><subfield code="g">year:2015</subfield><subfield code="g">day:1</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:120-133</subfield><subfield code="g">extent:14</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.memsci.2015.06.026</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.17</subfield><subfield code="j">Katalyse</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.50</subfield><subfield code="j">Umwelttechnik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.12</subfield><subfield code="j">Umweltchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">493</subfield><subfield code="j">2015</subfield><subfield code="b">1</subfield><subfield code="c">1101</subfield><subfield code="h">120-133</subfield><subfield code="g">14</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">570</subfield></datafield></record></collection>
|
score |
7.402647 |