The functional separator coated with core–shell structured silica–poly(methyl methacrylate) sub-microspheres for lithium-ion batteries
To improve the safety of lithium-ion batteries (LIBs), a functional ceramic-coated separator (FCC separator) is developed by coating core–shell structured silica–poly(methyl methacrylate) (SiO2–PMMA) sub-microspheres on one side of a conventional porous polyethylene (PE) separator. The FCC separator...
Ausführliche Beschreibung
Autor*in: |
Yang, Pingting [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
8 |
---|
Übergeordnetes Werk: |
Enthalten in: Steering charge kinetics in W - Yue, Xin-Zheng ELSEVIER, 2019, the official journal of the North American Membrane Society, New York, NY [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:474 ; year:2015 ; day:15 ; month:01 ; pages:148-155 ; extent:8 |
Links: |
---|
DOI / URN: |
10.1016/j.memsci.2014.09.047 |
---|
Katalog-ID: |
ELV013060694 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV013060694 | ||
003 | DE-627 | ||
005 | 20230625111540.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180602s2015 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.memsci.2014.09.047 |2 doi | |
028 | 5 | 2 | |a GBVA2015012000016.pica |
035 | |a (DE-627)ELV013060694 | ||
035 | |a (ELSEVIER)S0376-7388(14)00749-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 570 | |
082 | 0 | 4 | |a 570 |q DE-600 |
082 | 0 | 4 | |a 540 |q VZ |
084 | |a 35.17 |2 bkl | ||
084 | |a 58.50 |2 bkl | ||
084 | |a 43.12 |2 bkl | ||
100 | 1 | |a Yang, Pingting |e verfasserin |4 aut | |
245 | 1 | 4 | |a The functional separator coated with core–shell structured silica–poly(methyl methacrylate) sub-microspheres for lithium-ion batteries |
264 | 1 | |c 2015transfer abstract | |
300 | |a 8 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a To improve the safety of lithium-ion batteries (LIBs), a functional ceramic-coated separator (FCC separator) is developed by coating core–shell structured silica–poly(methyl methacrylate) (SiO2–PMMA) sub-microspheres on one side of a conventional porous polyethylene (PE) separator. The FCC separator possesses multi-functional properties of better separator thermostability and higher electrolyte stability by combining the advantages of both the ceramic-coated separator and the gel polymer electrolyte (GPE). The heat-resistant SiO2 core particles effectively protect the FCC separator from thermal shrinkage. Meanwhile, the PMMA shells form a gel after swelling and activation by the liquid electrolyte, which endows the FCC separator with the functional properties of the GPE to stabilize the electrolyte. As a result, the FCC separator shows considerable wettability for the liquid electrolyte and outstanding electrolyte retention ability at elevated temperature. Moreover, the FCC separator with the coating layer improves the safety performance of cells by preventing cells from experiencing internal short circuits at high temperature. Meanwhile, the cells assembled with such separators demonstrate superior cycle performance and C-rate capability. Therefore, the FCC separator provides LIBs with greater security and better electrochemical performance. | ||
520 | |a To improve the safety of lithium-ion batteries (LIBs), a functional ceramic-coated separator (FCC separator) is developed by coating core–shell structured silica–poly(methyl methacrylate) (SiO2–PMMA) sub-microspheres on one side of a conventional porous polyethylene (PE) separator. The FCC separator possesses multi-functional properties of better separator thermostability and higher electrolyte stability by combining the advantages of both the ceramic-coated separator and the gel polymer electrolyte (GPE). The heat-resistant SiO2 core particles effectively protect the FCC separator from thermal shrinkage. Meanwhile, the PMMA shells form a gel after swelling and activation by the liquid electrolyte, which endows the FCC separator with the functional properties of the GPE to stabilize the electrolyte. As a result, the FCC separator shows considerable wettability for the liquid electrolyte and outstanding electrolyte retention ability at elevated temperature. Moreover, the FCC separator with the coating layer improves the safety performance of cells by preventing cells from experiencing internal short circuits at high temperature. Meanwhile, the cells assembled with such separators demonstrate superior cycle performance and C-rate capability. Therefore, the FCC separator provides LIBs with greater security and better electrochemical performance. | ||
650 | 7 | |a Lithium-ion battery |2 Elsevier | |
650 | 7 | |a Electrolyte retention ability |2 Elsevier | |
650 | 7 | |a Core–shell structure |2 Elsevier | |
650 | 7 | |a Poly(methyl methacrylate) |2 Elsevier | |
650 | 7 | |a Ceramic-coated separator |2 Elsevier | |
700 | 1 | |a Zhang, Peng |4 oth | |
700 | 1 | |a Shi, Chuan |4 oth | |
700 | 1 | |a Chen, Lixiao |4 oth | |
700 | 1 | |a Dai, Jianhui |4 oth | |
700 | 1 | |a Zhao, Jinbao |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Yue, Xin-Zheng ELSEVIER |t Steering charge kinetics in W |d 2019 |d the official journal of the North American Membrane Society |g New York, NY [u.a.] |w (DE-627)ELV002478420 |
773 | 1 | 8 | |g volume:474 |g year:2015 |g day:15 |g month:01 |g pages:148-155 |g extent:8 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.memsci.2014.09.047 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 35.17 |j Katalyse |q VZ |
936 | b | k | |a 58.50 |j Umwelttechnik: Allgemeines |q VZ |
936 | b | k | |a 43.12 |j Umweltchemie |q VZ |
951 | |a AR | ||
952 | |d 474 |j 2015 |b 15 |c 0115 |h 148-155 |g 8 | ||
953 | |2 045F |a 570 |
author_variant |
p y py |
---|---|
matchkey_str |
yangpingtingzhangpengshichuanchenlixiaod:2015----:hfntoasprtrotdihoehlsrcueslcplmtymtarltsbir |
hierarchy_sort_str |
2015transfer abstract |
bklnumber |
35.17 58.50 43.12 |
publishDate |
2015 |
allfields |
10.1016/j.memsci.2014.09.047 doi GBVA2015012000016.pica (DE-627)ELV013060694 (ELSEVIER)S0376-7388(14)00749-2 DE-627 ger DE-627 rakwb eng 570 570 DE-600 540 VZ 35.17 bkl 58.50 bkl 43.12 bkl Yang, Pingting verfasserin aut The functional separator coated with core–shell structured silica–poly(methyl methacrylate) sub-microspheres for lithium-ion batteries 2015transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier To improve the safety of lithium-ion batteries (LIBs), a functional ceramic-coated separator (FCC separator) is developed by coating core–shell structured silica–poly(methyl methacrylate) (SiO2–PMMA) sub-microspheres on one side of a conventional porous polyethylene (PE) separator. The FCC separator possesses multi-functional properties of better separator thermostability and higher electrolyte stability by combining the advantages of both the ceramic-coated separator and the gel polymer electrolyte (GPE). The heat-resistant SiO2 core particles effectively protect the FCC separator from thermal shrinkage. Meanwhile, the PMMA shells form a gel after swelling and activation by the liquid electrolyte, which endows the FCC separator with the functional properties of the GPE to stabilize the electrolyte. As a result, the FCC separator shows considerable wettability for the liquid electrolyte and outstanding electrolyte retention ability at elevated temperature. Moreover, the FCC separator with the coating layer improves the safety performance of cells by preventing cells from experiencing internal short circuits at high temperature. Meanwhile, the cells assembled with such separators demonstrate superior cycle performance and C-rate capability. Therefore, the FCC separator provides LIBs with greater security and better electrochemical performance. To improve the safety of lithium-ion batteries (LIBs), a functional ceramic-coated separator (FCC separator) is developed by coating core–shell structured silica–poly(methyl methacrylate) (SiO2–PMMA) sub-microspheres on one side of a conventional porous polyethylene (PE) separator. The FCC separator possesses multi-functional properties of better separator thermostability and higher electrolyte stability by combining the advantages of both the ceramic-coated separator and the gel polymer electrolyte (GPE). The heat-resistant SiO2 core particles effectively protect the FCC separator from thermal shrinkage. Meanwhile, the PMMA shells form a gel after swelling and activation by the liquid electrolyte, which endows the FCC separator with the functional properties of the GPE to stabilize the electrolyte. As a result, the FCC separator shows considerable wettability for the liquid electrolyte and outstanding electrolyte retention ability at elevated temperature. Moreover, the FCC separator with the coating layer improves the safety performance of cells by preventing cells from experiencing internal short circuits at high temperature. Meanwhile, the cells assembled with such separators demonstrate superior cycle performance and C-rate capability. Therefore, the FCC separator provides LIBs with greater security and better electrochemical performance. Lithium-ion battery Elsevier Electrolyte retention ability Elsevier Core–shell structure Elsevier Poly(methyl methacrylate) Elsevier Ceramic-coated separator Elsevier Zhang, Peng oth Shi, Chuan oth Chen, Lixiao oth Dai, Jianhui oth Zhao, Jinbao oth Enthalten in Elsevier Yue, Xin-Zheng ELSEVIER Steering charge kinetics in W 2019 the official journal of the North American Membrane Society New York, NY [u.a.] (DE-627)ELV002478420 volume:474 year:2015 day:15 month:01 pages:148-155 extent:8 https://doi.org/10.1016/j.memsci.2014.09.047 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.17 Katalyse VZ 58.50 Umwelttechnik: Allgemeines VZ 43.12 Umweltchemie VZ AR 474 2015 15 0115 148-155 8 045F 570 |
spelling |
10.1016/j.memsci.2014.09.047 doi GBVA2015012000016.pica (DE-627)ELV013060694 (ELSEVIER)S0376-7388(14)00749-2 DE-627 ger DE-627 rakwb eng 570 570 DE-600 540 VZ 35.17 bkl 58.50 bkl 43.12 bkl Yang, Pingting verfasserin aut The functional separator coated with core–shell structured silica–poly(methyl methacrylate) sub-microspheres for lithium-ion batteries 2015transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier To improve the safety of lithium-ion batteries (LIBs), a functional ceramic-coated separator (FCC separator) is developed by coating core–shell structured silica–poly(methyl methacrylate) (SiO2–PMMA) sub-microspheres on one side of a conventional porous polyethylene (PE) separator. The FCC separator possesses multi-functional properties of better separator thermostability and higher electrolyte stability by combining the advantages of both the ceramic-coated separator and the gel polymer electrolyte (GPE). The heat-resistant SiO2 core particles effectively protect the FCC separator from thermal shrinkage. Meanwhile, the PMMA shells form a gel after swelling and activation by the liquid electrolyte, which endows the FCC separator with the functional properties of the GPE to stabilize the electrolyte. As a result, the FCC separator shows considerable wettability for the liquid electrolyte and outstanding electrolyte retention ability at elevated temperature. Moreover, the FCC separator with the coating layer improves the safety performance of cells by preventing cells from experiencing internal short circuits at high temperature. Meanwhile, the cells assembled with such separators demonstrate superior cycle performance and C-rate capability. Therefore, the FCC separator provides LIBs with greater security and better electrochemical performance. To improve the safety of lithium-ion batteries (LIBs), a functional ceramic-coated separator (FCC separator) is developed by coating core–shell structured silica–poly(methyl methacrylate) (SiO2–PMMA) sub-microspheres on one side of a conventional porous polyethylene (PE) separator. The FCC separator possesses multi-functional properties of better separator thermostability and higher electrolyte stability by combining the advantages of both the ceramic-coated separator and the gel polymer electrolyte (GPE). The heat-resistant SiO2 core particles effectively protect the FCC separator from thermal shrinkage. Meanwhile, the PMMA shells form a gel after swelling and activation by the liquid electrolyte, which endows the FCC separator with the functional properties of the GPE to stabilize the electrolyte. As a result, the FCC separator shows considerable wettability for the liquid electrolyte and outstanding electrolyte retention ability at elevated temperature. Moreover, the FCC separator with the coating layer improves the safety performance of cells by preventing cells from experiencing internal short circuits at high temperature. Meanwhile, the cells assembled with such separators demonstrate superior cycle performance and C-rate capability. Therefore, the FCC separator provides LIBs with greater security and better electrochemical performance. Lithium-ion battery Elsevier Electrolyte retention ability Elsevier Core–shell structure Elsevier Poly(methyl methacrylate) Elsevier Ceramic-coated separator Elsevier Zhang, Peng oth Shi, Chuan oth Chen, Lixiao oth Dai, Jianhui oth Zhao, Jinbao oth Enthalten in Elsevier Yue, Xin-Zheng ELSEVIER Steering charge kinetics in W 2019 the official journal of the North American Membrane Society New York, NY [u.a.] (DE-627)ELV002478420 volume:474 year:2015 day:15 month:01 pages:148-155 extent:8 https://doi.org/10.1016/j.memsci.2014.09.047 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.17 Katalyse VZ 58.50 Umwelttechnik: Allgemeines VZ 43.12 Umweltchemie VZ AR 474 2015 15 0115 148-155 8 045F 570 |
allfields_unstemmed |
10.1016/j.memsci.2014.09.047 doi GBVA2015012000016.pica (DE-627)ELV013060694 (ELSEVIER)S0376-7388(14)00749-2 DE-627 ger DE-627 rakwb eng 570 570 DE-600 540 VZ 35.17 bkl 58.50 bkl 43.12 bkl Yang, Pingting verfasserin aut The functional separator coated with core–shell structured silica–poly(methyl methacrylate) sub-microspheres for lithium-ion batteries 2015transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier To improve the safety of lithium-ion batteries (LIBs), a functional ceramic-coated separator (FCC separator) is developed by coating core–shell structured silica–poly(methyl methacrylate) (SiO2–PMMA) sub-microspheres on one side of a conventional porous polyethylene (PE) separator. The FCC separator possesses multi-functional properties of better separator thermostability and higher electrolyte stability by combining the advantages of both the ceramic-coated separator and the gel polymer electrolyte (GPE). The heat-resistant SiO2 core particles effectively protect the FCC separator from thermal shrinkage. Meanwhile, the PMMA shells form a gel after swelling and activation by the liquid electrolyte, which endows the FCC separator with the functional properties of the GPE to stabilize the electrolyte. As a result, the FCC separator shows considerable wettability for the liquid electrolyte and outstanding electrolyte retention ability at elevated temperature. Moreover, the FCC separator with the coating layer improves the safety performance of cells by preventing cells from experiencing internal short circuits at high temperature. Meanwhile, the cells assembled with such separators demonstrate superior cycle performance and C-rate capability. Therefore, the FCC separator provides LIBs with greater security and better electrochemical performance. To improve the safety of lithium-ion batteries (LIBs), a functional ceramic-coated separator (FCC separator) is developed by coating core–shell structured silica–poly(methyl methacrylate) (SiO2–PMMA) sub-microspheres on one side of a conventional porous polyethylene (PE) separator. The FCC separator possesses multi-functional properties of better separator thermostability and higher electrolyte stability by combining the advantages of both the ceramic-coated separator and the gel polymer electrolyte (GPE). The heat-resistant SiO2 core particles effectively protect the FCC separator from thermal shrinkage. Meanwhile, the PMMA shells form a gel after swelling and activation by the liquid electrolyte, which endows the FCC separator with the functional properties of the GPE to stabilize the electrolyte. As a result, the FCC separator shows considerable wettability for the liquid electrolyte and outstanding electrolyte retention ability at elevated temperature. Moreover, the FCC separator with the coating layer improves the safety performance of cells by preventing cells from experiencing internal short circuits at high temperature. Meanwhile, the cells assembled with such separators demonstrate superior cycle performance and C-rate capability. Therefore, the FCC separator provides LIBs with greater security and better electrochemical performance. Lithium-ion battery Elsevier Electrolyte retention ability Elsevier Core–shell structure Elsevier Poly(methyl methacrylate) Elsevier Ceramic-coated separator Elsevier Zhang, Peng oth Shi, Chuan oth Chen, Lixiao oth Dai, Jianhui oth Zhao, Jinbao oth Enthalten in Elsevier Yue, Xin-Zheng ELSEVIER Steering charge kinetics in W 2019 the official journal of the North American Membrane Society New York, NY [u.a.] (DE-627)ELV002478420 volume:474 year:2015 day:15 month:01 pages:148-155 extent:8 https://doi.org/10.1016/j.memsci.2014.09.047 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.17 Katalyse VZ 58.50 Umwelttechnik: Allgemeines VZ 43.12 Umweltchemie VZ AR 474 2015 15 0115 148-155 8 045F 570 |
allfieldsGer |
10.1016/j.memsci.2014.09.047 doi GBVA2015012000016.pica (DE-627)ELV013060694 (ELSEVIER)S0376-7388(14)00749-2 DE-627 ger DE-627 rakwb eng 570 570 DE-600 540 VZ 35.17 bkl 58.50 bkl 43.12 bkl Yang, Pingting verfasserin aut The functional separator coated with core–shell structured silica–poly(methyl methacrylate) sub-microspheres for lithium-ion batteries 2015transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier To improve the safety of lithium-ion batteries (LIBs), a functional ceramic-coated separator (FCC separator) is developed by coating core–shell structured silica–poly(methyl methacrylate) (SiO2–PMMA) sub-microspheres on one side of a conventional porous polyethylene (PE) separator. The FCC separator possesses multi-functional properties of better separator thermostability and higher electrolyte stability by combining the advantages of both the ceramic-coated separator and the gel polymer electrolyte (GPE). The heat-resistant SiO2 core particles effectively protect the FCC separator from thermal shrinkage. Meanwhile, the PMMA shells form a gel after swelling and activation by the liquid electrolyte, which endows the FCC separator with the functional properties of the GPE to stabilize the electrolyte. As a result, the FCC separator shows considerable wettability for the liquid electrolyte and outstanding electrolyte retention ability at elevated temperature. Moreover, the FCC separator with the coating layer improves the safety performance of cells by preventing cells from experiencing internal short circuits at high temperature. Meanwhile, the cells assembled with such separators demonstrate superior cycle performance and C-rate capability. Therefore, the FCC separator provides LIBs with greater security and better electrochemical performance. To improve the safety of lithium-ion batteries (LIBs), a functional ceramic-coated separator (FCC separator) is developed by coating core–shell structured silica–poly(methyl methacrylate) (SiO2–PMMA) sub-microspheres on one side of a conventional porous polyethylene (PE) separator. The FCC separator possesses multi-functional properties of better separator thermostability and higher electrolyte stability by combining the advantages of both the ceramic-coated separator and the gel polymer electrolyte (GPE). The heat-resistant SiO2 core particles effectively protect the FCC separator from thermal shrinkage. Meanwhile, the PMMA shells form a gel after swelling and activation by the liquid electrolyte, which endows the FCC separator with the functional properties of the GPE to stabilize the electrolyte. As a result, the FCC separator shows considerable wettability for the liquid electrolyte and outstanding electrolyte retention ability at elevated temperature. Moreover, the FCC separator with the coating layer improves the safety performance of cells by preventing cells from experiencing internal short circuits at high temperature. Meanwhile, the cells assembled with such separators demonstrate superior cycle performance and C-rate capability. Therefore, the FCC separator provides LIBs with greater security and better electrochemical performance. Lithium-ion battery Elsevier Electrolyte retention ability Elsevier Core–shell structure Elsevier Poly(methyl methacrylate) Elsevier Ceramic-coated separator Elsevier Zhang, Peng oth Shi, Chuan oth Chen, Lixiao oth Dai, Jianhui oth Zhao, Jinbao oth Enthalten in Elsevier Yue, Xin-Zheng ELSEVIER Steering charge kinetics in W 2019 the official journal of the North American Membrane Society New York, NY [u.a.] (DE-627)ELV002478420 volume:474 year:2015 day:15 month:01 pages:148-155 extent:8 https://doi.org/10.1016/j.memsci.2014.09.047 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.17 Katalyse VZ 58.50 Umwelttechnik: Allgemeines VZ 43.12 Umweltchemie VZ AR 474 2015 15 0115 148-155 8 045F 570 |
allfieldsSound |
10.1016/j.memsci.2014.09.047 doi GBVA2015012000016.pica (DE-627)ELV013060694 (ELSEVIER)S0376-7388(14)00749-2 DE-627 ger DE-627 rakwb eng 570 570 DE-600 540 VZ 35.17 bkl 58.50 bkl 43.12 bkl Yang, Pingting verfasserin aut The functional separator coated with core–shell structured silica–poly(methyl methacrylate) sub-microspheres for lithium-ion batteries 2015transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier To improve the safety of lithium-ion batteries (LIBs), a functional ceramic-coated separator (FCC separator) is developed by coating core–shell structured silica–poly(methyl methacrylate) (SiO2–PMMA) sub-microspheres on one side of a conventional porous polyethylene (PE) separator. The FCC separator possesses multi-functional properties of better separator thermostability and higher electrolyte stability by combining the advantages of both the ceramic-coated separator and the gel polymer electrolyte (GPE). The heat-resistant SiO2 core particles effectively protect the FCC separator from thermal shrinkage. Meanwhile, the PMMA shells form a gel after swelling and activation by the liquid electrolyte, which endows the FCC separator with the functional properties of the GPE to stabilize the electrolyte. As a result, the FCC separator shows considerable wettability for the liquid electrolyte and outstanding electrolyte retention ability at elevated temperature. Moreover, the FCC separator with the coating layer improves the safety performance of cells by preventing cells from experiencing internal short circuits at high temperature. Meanwhile, the cells assembled with such separators demonstrate superior cycle performance and C-rate capability. Therefore, the FCC separator provides LIBs with greater security and better electrochemical performance. To improve the safety of lithium-ion batteries (LIBs), a functional ceramic-coated separator (FCC separator) is developed by coating core–shell structured silica–poly(methyl methacrylate) (SiO2–PMMA) sub-microspheres on one side of a conventional porous polyethylene (PE) separator. The FCC separator possesses multi-functional properties of better separator thermostability and higher electrolyte stability by combining the advantages of both the ceramic-coated separator and the gel polymer electrolyte (GPE). The heat-resistant SiO2 core particles effectively protect the FCC separator from thermal shrinkage. Meanwhile, the PMMA shells form a gel after swelling and activation by the liquid electrolyte, which endows the FCC separator with the functional properties of the GPE to stabilize the electrolyte. As a result, the FCC separator shows considerable wettability for the liquid electrolyte and outstanding electrolyte retention ability at elevated temperature. Moreover, the FCC separator with the coating layer improves the safety performance of cells by preventing cells from experiencing internal short circuits at high temperature. Meanwhile, the cells assembled with such separators demonstrate superior cycle performance and C-rate capability. Therefore, the FCC separator provides LIBs with greater security and better electrochemical performance. Lithium-ion battery Elsevier Electrolyte retention ability Elsevier Core–shell structure Elsevier Poly(methyl methacrylate) Elsevier Ceramic-coated separator Elsevier Zhang, Peng oth Shi, Chuan oth Chen, Lixiao oth Dai, Jianhui oth Zhao, Jinbao oth Enthalten in Elsevier Yue, Xin-Zheng ELSEVIER Steering charge kinetics in W 2019 the official journal of the North American Membrane Society New York, NY [u.a.] (DE-627)ELV002478420 volume:474 year:2015 day:15 month:01 pages:148-155 extent:8 https://doi.org/10.1016/j.memsci.2014.09.047 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.17 Katalyse VZ 58.50 Umwelttechnik: Allgemeines VZ 43.12 Umweltchemie VZ AR 474 2015 15 0115 148-155 8 045F 570 |
language |
English |
source |
Enthalten in Steering charge kinetics in W New York, NY [u.a.] volume:474 year:2015 day:15 month:01 pages:148-155 extent:8 |
sourceStr |
Enthalten in Steering charge kinetics in W New York, NY [u.a.] volume:474 year:2015 day:15 month:01 pages:148-155 extent:8 |
format_phy_str_mv |
Article |
bklname |
Katalyse Umwelttechnik: Allgemeines Umweltchemie |
institution |
findex.gbv.de |
topic_facet |
Lithium-ion battery Electrolyte retention ability Core–shell structure Poly(methyl methacrylate) Ceramic-coated separator |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
Steering charge kinetics in W |
authorswithroles_txt_mv |
Yang, Pingting @@aut@@ Zhang, Peng @@oth@@ Shi, Chuan @@oth@@ Chen, Lixiao @@oth@@ Dai, Jianhui @@oth@@ Zhao, Jinbao @@oth@@ |
publishDateDaySort_date |
2015-01-15T00:00:00Z |
hierarchy_top_id |
ELV002478420 |
dewey-sort |
3570 |
id |
ELV013060694 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV013060694</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625111540.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.memsci.2014.09.047</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2015012000016.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV013060694</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0376-7388(14)00749-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">570</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.17</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.50</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yang, Pingting</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The functional separator coated with core–shell structured silica–poly(methyl methacrylate) sub-microspheres for lithium-ion batteries</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To improve the safety of lithium-ion batteries (LIBs), a functional ceramic-coated separator (FCC separator) is developed by coating core–shell structured silica–poly(methyl methacrylate) (SiO2–PMMA) sub-microspheres on one side of a conventional porous polyethylene (PE) separator. The FCC separator possesses multi-functional properties of better separator thermostability and higher electrolyte stability by combining the advantages of both the ceramic-coated separator and the gel polymer electrolyte (GPE). The heat-resistant SiO2 core particles effectively protect the FCC separator from thermal shrinkage. Meanwhile, the PMMA shells form a gel after swelling and activation by the liquid electrolyte, which endows the FCC separator with the functional properties of the GPE to stabilize the electrolyte. As a result, the FCC separator shows considerable wettability for the liquid electrolyte and outstanding electrolyte retention ability at elevated temperature. Moreover, the FCC separator with the coating layer improves the safety performance of cells by preventing cells from experiencing internal short circuits at high temperature. Meanwhile, the cells assembled with such separators demonstrate superior cycle performance and C-rate capability. Therefore, the FCC separator provides LIBs with greater security and better electrochemical performance.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To improve the safety of lithium-ion batteries (LIBs), a functional ceramic-coated separator (FCC separator) is developed by coating core–shell structured silica–poly(methyl methacrylate) (SiO2–PMMA) sub-microspheres on one side of a conventional porous polyethylene (PE) separator. The FCC separator possesses multi-functional properties of better separator thermostability and higher electrolyte stability by combining the advantages of both the ceramic-coated separator and the gel polymer electrolyte (GPE). The heat-resistant SiO2 core particles effectively protect the FCC separator from thermal shrinkage. Meanwhile, the PMMA shells form a gel after swelling and activation by the liquid electrolyte, which endows the FCC separator with the functional properties of the GPE to stabilize the electrolyte. As a result, the FCC separator shows considerable wettability for the liquid electrolyte and outstanding electrolyte retention ability at elevated temperature. Moreover, the FCC separator with the coating layer improves the safety performance of cells by preventing cells from experiencing internal short circuits at high temperature. Meanwhile, the cells assembled with such separators demonstrate superior cycle performance and C-rate capability. Therefore, the FCC separator provides LIBs with greater security and better electrochemical performance.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lithium-ion battery</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Electrolyte retention ability</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Core–shell structure</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Poly(methyl methacrylate)</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ceramic-coated separator</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Peng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shi, Chuan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Lixiao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dai, Jianhui</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Jinbao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Yue, Xin-Zheng ELSEVIER</subfield><subfield code="t">Steering charge kinetics in W</subfield><subfield code="d">2019</subfield><subfield code="d">the official journal of the North American Membrane Society</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV002478420</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:474</subfield><subfield code="g">year:2015</subfield><subfield code="g">day:15</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:148-155</subfield><subfield code="g">extent:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.memsci.2014.09.047</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.17</subfield><subfield code="j">Katalyse</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.50</subfield><subfield code="j">Umwelttechnik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.12</subfield><subfield code="j">Umweltchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">474</subfield><subfield code="j">2015</subfield><subfield code="b">15</subfield><subfield code="c">0115</subfield><subfield code="h">148-155</subfield><subfield code="g">8</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">570</subfield></datafield></record></collection>
|
author |
Yang, Pingting |
spellingShingle |
Yang, Pingting ddc 570 ddc 540 bkl 35.17 bkl 58.50 bkl 43.12 Elsevier Lithium-ion battery Elsevier Electrolyte retention ability Elsevier Core–shell structure Elsevier Poly(methyl methacrylate) Elsevier Ceramic-coated separator The functional separator coated with core–shell structured silica–poly(methyl methacrylate) sub-microspheres for lithium-ion batteries |
authorStr |
Yang, Pingting |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV002478420 |
format |
electronic Article |
dewey-ones |
570 - Life sciences; biology 540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
570 570 DE-600 540 VZ 35.17 bkl 58.50 bkl 43.12 bkl The functional separator coated with core–shell structured silica–poly(methyl methacrylate) sub-microspheres for lithium-ion batteries Lithium-ion battery Elsevier Electrolyte retention ability Elsevier Core–shell structure Elsevier Poly(methyl methacrylate) Elsevier Ceramic-coated separator Elsevier |
topic |
ddc 570 ddc 540 bkl 35.17 bkl 58.50 bkl 43.12 Elsevier Lithium-ion battery Elsevier Electrolyte retention ability Elsevier Core–shell structure Elsevier Poly(methyl methacrylate) Elsevier Ceramic-coated separator |
topic_unstemmed |
ddc 570 ddc 540 bkl 35.17 bkl 58.50 bkl 43.12 Elsevier Lithium-ion battery Elsevier Electrolyte retention ability Elsevier Core–shell structure Elsevier Poly(methyl methacrylate) Elsevier Ceramic-coated separator |
topic_browse |
ddc 570 ddc 540 bkl 35.17 bkl 58.50 bkl 43.12 Elsevier Lithium-ion battery Elsevier Electrolyte retention ability Elsevier Core–shell structure Elsevier Poly(methyl methacrylate) Elsevier Ceramic-coated separator |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
p z pz c s cs l c lc j d jd j z jz |
hierarchy_parent_title |
Steering charge kinetics in W |
hierarchy_parent_id |
ELV002478420 |
dewey-tens |
570 - Life sciences; biology 540 - Chemistry |
hierarchy_top_title |
Steering charge kinetics in W |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV002478420 |
title |
The functional separator coated with core–shell structured silica–poly(methyl methacrylate) sub-microspheres for lithium-ion batteries |
ctrlnum |
(DE-627)ELV013060694 (ELSEVIER)S0376-7388(14)00749-2 |
title_full |
The functional separator coated with core–shell structured silica–poly(methyl methacrylate) sub-microspheres for lithium-ion batteries |
author_sort |
Yang, Pingting |
journal |
Steering charge kinetics in W |
journalStr |
Steering charge kinetics in W |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
zzz |
container_start_page |
148 |
author_browse |
Yang, Pingting |
container_volume |
474 |
physical |
8 |
class |
570 570 DE-600 540 VZ 35.17 bkl 58.50 bkl 43.12 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Yang, Pingting |
doi_str_mv |
10.1016/j.memsci.2014.09.047 |
dewey-full |
570 540 |
title_sort |
functional separator coated with core–shell structured silica–poly(methyl methacrylate) sub-microspheres for lithium-ion batteries |
title_auth |
The functional separator coated with core–shell structured silica–poly(methyl methacrylate) sub-microspheres for lithium-ion batteries |
abstract |
To improve the safety of lithium-ion batteries (LIBs), a functional ceramic-coated separator (FCC separator) is developed by coating core–shell structured silica–poly(methyl methacrylate) (SiO2–PMMA) sub-microspheres on one side of a conventional porous polyethylene (PE) separator. The FCC separator possesses multi-functional properties of better separator thermostability and higher electrolyte stability by combining the advantages of both the ceramic-coated separator and the gel polymer electrolyte (GPE). The heat-resistant SiO2 core particles effectively protect the FCC separator from thermal shrinkage. Meanwhile, the PMMA shells form a gel after swelling and activation by the liquid electrolyte, which endows the FCC separator with the functional properties of the GPE to stabilize the electrolyte. As a result, the FCC separator shows considerable wettability for the liquid electrolyte and outstanding electrolyte retention ability at elevated temperature. Moreover, the FCC separator with the coating layer improves the safety performance of cells by preventing cells from experiencing internal short circuits at high temperature. Meanwhile, the cells assembled with such separators demonstrate superior cycle performance and C-rate capability. Therefore, the FCC separator provides LIBs with greater security and better electrochemical performance. |
abstractGer |
To improve the safety of lithium-ion batteries (LIBs), a functional ceramic-coated separator (FCC separator) is developed by coating core–shell structured silica–poly(methyl methacrylate) (SiO2–PMMA) sub-microspheres on one side of a conventional porous polyethylene (PE) separator. The FCC separator possesses multi-functional properties of better separator thermostability and higher electrolyte stability by combining the advantages of both the ceramic-coated separator and the gel polymer electrolyte (GPE). The heat-resistant SiO2 core particles effectively protect the FCC separator from thermal shrinkage. Meanwhile, the PMMA shells form a gel after swelling and activation by the liquid electrolyte, which endows the FCC separator with the functional properties of the GPE to stabilize the electrolyte. As a result, the FCC separator shows considerable wettability for the liquid electrolyte and outstanding electrolyte retention ability at elevated temperature. Moreover, the FCC separator with the coating layer improves the safety performance of cells by preventing cells from experiencing internal short circuits at high temperature. Meanwhile, the cells assembled with such separators demonstrate superior cycle performance and C-rate capability. Therefore, the FCC separator provides LIBs with greater security and better electrochemical performance. |
abstract_unstemmed |
To improve the safety of lithium-ion batteries (LIBs), a functional ceramic-coated separator (FCC separator) is developed by coating core–shell structured silica–poly(methyl methacrylate) (SiO2–PMMA) sub-microspheres on one side of a conventional porous polyethylene (PE) separator. The FCC separator possesses multi-functional properties of better separator thermostability and higher electrolyte stability by combining the advantages of both the ceramic-coated separator and the gel polymer electrolyte (GPE). The heat-resistant SiO2 core particles effectively protect the FCC separator from thermal shrinkage. Meanwhile, the PMMA shells form a gel after swelling and activation by the liquid electrolyte, which endows the FCC separator with the functional properties of the GPE to stabilize the electrolyte. As a result, the FCC separator shows considerable wettability for the liquid electrolyte and outstanding electrolyte retention ability at elevated temperature. Moreover, the FCC separator with the coating layer improves the safety performance of cells by preventing cells from experiencing internal short circuits at high temperature. Meanwhile, the cells assembled with such separators demonstrate superior cycle performance and C-rate capability. Therefore, the FCC separator provides LIBs with greater security and better electrochemical performance. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
title_short |
The functional separator coated with core–shell structured silica–poly(methyl methacrylate) sub-microspheres for lithium-ion batteries |
url |
https://doi.org/10.1016/j.memsci.2014.09.047 |
remote_bool |
true |
author2 |
Zhang, Peng Shi, Chuan Chen, Lixiao Dai, Jianhui Zhao, Jinbao |
author2Str |
Zhang, Peng Shi, Chuan Chen, Lixiao Dai, Jianhui Zhao, Jinbao |
ppnlink |
ELV002478420 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth |
doi_str |
10.1016/j.memsci.2014.09.047 |
up_date |
2024-07-06T17:56:39.184Z |
_version_ |
1803853338180059136 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV013060694</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625111540.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.memsci.2014.09.047</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2015012000016.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV013060694</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0376-7388(14)00749-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">570</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.17</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.50</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yang, Pingting</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The functional separator coated with core–shell structured silica–poly(methyl methacrylate) sub-microspheres for lithium-ion batteries</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To improve the safety of lithium-ion batteries (LIBs), a functional ceramic-coated separator (FCC separator) is developed by coating core–shell structured silica–poly(methyl methacrylate) (SiO2–PMMA) sub-microspheres on one side of a conventional porous polyethylene (PE) separator. The FCC separator possesses multi-functional properties of better separator thermostability and higher electrolyte stability by combining the advantages of both the ceramic-coated separator and the gel polymer electrolyte (GPE). The heat-resistant SiO2 core particles effectively protect the FCC separator from thermal shrinkage. Meanwhile, the PMMA shells form a gel after swelling and activation by the liquid electrolyte, which endows the FCC separator with the functional properties of the GPE to stabilize the electrolyte. As a result, the FCC separator shows considerable wettability for the liquid electrolyte and outstanding electrolyte retention ability at elevated temperature. Moreover, the FCC separator with the coating layer improves the safety performance of cells by preventing cells from experiencing internal short circuits at high temperature. Meanwhile, the cells assembled with such separators demonstrate superior cycle performance and C-rate capability. Therefore, the FCC separator provides LIBs with greater security and better electrochemical performance.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To improve the safety of lithium-ion batteries (LIBs), a functional ceramic-coated separator (FCC separator) is developed by coating core–shell structured silica–poly(methyl methacrylate) (SiO2–PMMA) sub-microspheres on one side of a conventional porous polyethylene (PE) separator. The FCC separator possesses multi-functional properties of better separator thermostability and higher electrolyte stability by combining the advantages of both the ceramic-coated separator and the gel polymer electrolyte (GPE). The heat-resistant SiO2 core particles effectively protect the FCC separator from thermal shrinkage. Meanwhile, the PMMA shells form a gel after swelling and activation by the liquid electrolyte, which endows the FCC separator with the functional properties of the GPE to stabilize the electrolyte. As a result, the FCC separator shows considerable wettability for the liquid electrolyte and outstanding electrolyte retention ability at elevated temperature. Moreover, the FCC separator with the coating layer improves the safety performance of cells by preventing cells from experiencing internal short circuits at high temperature. Meanwhile, the cells assembled with such separators demonstrate superior cycle performance and C-rate capability. Therefore, the FCC separator provides LIBs with greater security and better electrochemical performance.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lithium-ion battery</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Electrolyte retention ability</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Core–shell structure</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Poly(methyl methacrylate)</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ceramic-coated separator</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Peng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shi, Chuan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Lixiao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dai, Jianhui</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Jinbao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Yue, Xin-Zheng ELSEVIER</subfield><subfield code="t">Steering charge kinetics in W</subfield><subfield code="d">2019</subfield><subfield code="d">the official journal of the North American Membrane Society</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV002478420</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:474</subfield><subfield code="g">year:2015</subfield><subfield code="g">day:15</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:148-155</subfield><subfield code="g">extent:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.memsci.2014.09.047</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.17</subfield><subfield code="j">Katalyse</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.50</subfield><subfield code="j">Umwelttechnik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.12</subfield><subfield code="j">Umweltchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">474</subfield><subfield code="j">2015</subfield><subfield code="b">15</subfield><subfield code="c">0115</subfield><subfield code="h">148-155</subfield><subfield code="g">8</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">570</subfield></datafield></record></collection>
|
score |
7.402231 |