Flexible one-dimensional carbon–selenium composite nanofibers with superior electrochemical performance for Li–Se/Na–Se batteries
A facile strategy is developed to synthesis selenium/carbon composites (SeCNFs-CNT) by co-heating Se powder and electrospun Polyacrylonitrile (PAN)-CNT nanofibers at 600°Cin a sealed vessel. The Se molecules are chemically bonded and physical encapsulated by carbonized PAN-CNT composite (CNFs-CNT),...
Ausführliche Beschreibung
Autor*in: |
Zeng, Linchao [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
9 |
---|
Übergeordnetes Werk: |
Enthalten in: Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method - Xiao, Hong ELSEVIER, 2013, the international journal on the science and technology of electrochemical energy systems, New York, NY [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:281 ; year:2015 ; day:1 ; month:05 ; pages:461-469 ; extent:9 |
Links: |
---|
DOI / URN: |
10.1016/j.jpowsour.2015.02.029 |
---|
Katalog-ID: |
ELV013128752 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV013128752 | ||
003 | DE-627 | ||
005 | 20230625111619.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180602s2015 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jpowsour.2015.02.029 |2 doi | |
028 | 5 | 2 | |a GBV00000000000192A.pica |
035 | |a (DE-627)ELV013128752 | ||
035 | |a (ELSEVIER)S0378-7753(15)00252-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 620 | |
082 | 0 | 4 | |a 620 |q DE-600 |
082 | 0 | 4 | |a 690 |q VZ |
084 | |a 50.92 |2 bkl | ||
100 | 1 | |a Zeng, Linchao |e verfasserin |4 aut | |
245 | 1 | 0 | |a Flexible one-dimensional carbon–selenium composite nanofibers with superior electrochemical performance for Li–Se/Na–Se batteries |
264 | 1 | |c 2015transfer abstract | |
300 | |a 9 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a A facile strategy is developed to synthesis selenium/carbon composites (SeCNFs-CNT) by co-heating Se powder and electrospun Polyacrylonitrile (PAN)-CNT nanofibers at 600°Cin a sealed vessel. The Se molecules are chemically bonded and physical encapsulated by carbonized PAN-CNT composite (CNFs-CNT), which leads to prevent the dissolution of polyselenide intermediates in carbonate based electrolyte. When directly used as flexible free-standing cathode material for Li–Se batteries in low cost carbonate-based electrolyte, the Se@CNFs-CNT electrode exhibits improved cyclability (517 mAh g−1 after 500 cycles at 0.5 A g−1) and rate capability (485 mAh g−1 at 1 A g−1). Moreover, when tested as sodium batteries, it maintains a reversible capacity of 410 mAh g−1 after 240 cycles at 0.5 A g−1. The superior electrochemical performance (especially at high rates) of Se@CNFs-CNT is attributed to synergistic effect of the additive of CNT, the well confine of Se in the CNFs-CNT matrix through chemical bonding and the 3D interconnected carbon nanofibers (CNFs). This simple yet efficient process thus provides a promising route towards fabrication of a variety of high performance flexible Li–Se and Na–Se batteries. | ||
520 | |a A facile strategy is developed to synthesis selenium/carbon composites (SeCNFs-CNT) by co-heating Se powder and electrospun Polyacrylonitrile (PAN)-CNT nanofibers at 600°Cin a sealed vessel. The Se molecules are chemically bonded and physical encapsulated by carbonized PAN-CNT composite (CNFs-CNT), which leads to prevent the dissolution of polyselenide intermediates in carbonate based electrolyte. When directly used as flexible free-standing cathode material for Li–Se batteries in low cost carbonate-based electrolyte, the Se@CNFs-CNT electrode exhibits improved cyclability (517 mAh g−1 after 500 cycles at 0.5 A g−1) and rate capability (485 mAh g−1 at 1 A g−1). Moreover, when tested as sodium batteries, it maintains a reversible capacity of 410 mAh g−1 after 240 cycles at 0.5 A g−1. The superior electrochemical performance (especially at high rates) of Se@CNFs-CNT is attributed to synergistic effect of the additive of CNT, the well confine of Se in the CNFs-CNT matrix through chemical bonding and the 3D interconnected carbon nanofibers (CNFs). This simple yet efficient process thus provides a promising route towards fabrication of a variety of high performance flexible Li–Se and Na–Se batteries. | ||
650 | 7 | |a Na–Se batteries |2 Elsevier | |
650 | 7 | |a Flexible |2 Elsevier | |
650 | 7 | |a Li–Se batteries |2 Elsevier | |
650 | 7 | |a Selenium/carbon composites |2 Elsevier | |
650 | 7 | |a Carbon nanofibers |2 Elsevier | |
700 | 1 | |a Wei, Xiang |4 oth | |
700 | 1 | |a Wang, Jiaqing |4 oth | |
700 | 1 | |a Jiang, Yu |4 oth | |
700 | 1 | |a Li, Weihan |4 oth | |
700 | 1 | |a Yu, Yan |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Xiao, Hong ELSEVIER |t Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method |d 2013 |d the international journal on the science and technology of electrochemical energy systems |g New York, NY [u.a.] |w (DE-627)ELV00098745X |
773 | 1 | 8 | |g volume:281 |g year:2015 |g day:1 |g month:05 |g pages:461-469 |g extent:9 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jpowsour.2015.02.029 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 50.92 |j Meerestechnik |q VZ |
951 | |a AR | ||
952 | |d 281 |j 2015 |b 1 |c 0501 |h 461-469 |g 9 | ||
953 | |2 045F |a 620 |
author_variant |
l z lz |
---|---|
matchkey_str |
zenglinchaoweixiangwangjiaqingjiangyuliw:2015----:lxbendmninlabneeimopstnnfbrwtsproeetohmcle |
hierarchy_sort_str |
2015transfer abstract |
bklnumber |
50.92 |
publishDate |
2015 |
allfields |
10.1016/j.jpowsour.2015.02.029 doi GBV00000000000192A.pica (DE-627)ELV013128752 (ELSEVIER)S0378-7753(15)00252-9 DE-627 ger DE-627 rakwb eng 620 620 DE-600 690 VZ 50.92 bkl Zeng, Linchao verfasserin aut Flexible one-dimensional carbon–selenium composite nanofibers with superior electrochemical performance for Li–Se/Na–Se batteries 2015transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier A facile strategy is developed to synthesis selenium/carbon composites (SeCNFs-CNT) by co-heating Se powder and electrospun Polyacrylonitrile (PAN)-CNT nanofibers at 600°Cin a sealed vessel. The Se molecules are chemically bonded and physical encapsulated by carbonized PAN-CNT composite (CNFs-CNT), which leads to prevent the dissolution of polyselenide intermediates in carbonate based electrolyte. When directly used as flexible free-standing cathode material for Li–Se batteries in low cost carbonate-based electrolyte, the Se@CNFs-CNT electrode exhibits improved cyclability (517 mAh g−1 after 500 cycles at 0.5 A g−1) and rate capability (485 mAh g−1 at 1 A g−1). Moreover, when tested as sodium batteries, it maintains a reversible capacity of 410 mAh g−1 after 240 cycles at 0.5 A g−1. The superior electrochemical performance (especially at high rates) of Se@CNFs-CNT is attributed to synergistic effect of the additive of CNT, the well confine of Se in the CNFs-CNT matrix through chemical bonding and the 3D interconnected carbon nanofibers (CNFs). This simple yet efficient process thus provides a promising route towards fabrication of a variety of high performance flexible Li–Se and Na–Se batteries. A facile strategy is developed to synthesis selenium/carbon composites (SeCNFs-CNT) by co-heating Se powder and electrospun Polyacrylonitrile (PAN)-CNT nanofibers at 600°Cin a sealed vessel. The Se molecules are chemically bonded and physical encapsulated by carbonized PAN-CNT composite (CNFs-CNT), which leads to prevent the dissolution of polyselenide intermediates in carbonate based electrolyte. When directly used as flexible free-standing cathode material for Li–Se batteries in low cost carbonate-based electrolyte, the Se@CNFs-CNT electrode exhibits improved cyclability (517 mAh g−1 after 500 cycles at 0.5 A g−1) and rate capability (485 mAh g−1 at 1 A g−1). Moreover, when tested as sodium batteries, it maintains a reversible capacity of 410 mAh g−1 after 240 cycles at 0.5 A g−1. The superior electrochemical performance (especially at high rates) of Se@CNFs-CNT is attributed to synergistic effect of the additive of CNT, the well confine of Se in the CNFs-CNT matrix through chemical bonding and the 3D interconnected carbon nanofibers (CNFs). This simple yet efficient process thus provides a promising route towards fabrication of a variety of high performance flexible Li–Se and Na–Se batteries. Na–Se batteries Elsevier Flexible Elsevier Li–Se batteries Elsevier Selenium/carbon composites Elsevier Carbon nanofibers Elsevier Wei, Xiang oth Wang, Jiaqing oth Jiang, Yu oth Li, Weihan oth Yu, Yan oth Enthalten in Elsevier Xiao, Hong ELSEVIER Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method 2013 the international journal on the science and technology of electrochemical energy systems New York, NY [u.a.] (DE-627)ELV00098745X volume:281 year:2015 day:1 month:05 pages:461-469 extent:9 https://doi.org/10.1016/j.jpowsour.2015.02.029 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.92 Meerestechnik VZ AR 281 2015 1 0501 461-469 9 045F 620 |
spelling |
10.1016/j.jpowsour.2015.02.029 doi GBV00000000000192A.pica (DE-627)ELV013128752 (ELSEVIER)S0378-7753(15)00252-9 DE-627 ger DE-627 rakwb eng 620 620 DE-600 690 VZ 50.92 bkl Zeng, Linchao verfasserin aut Flexible one-dimensional carbon–selenium composite nanofibers with superior electrochemical performance for Li–Se/Na–Se batteries 2015transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier A facile strategy is developed to synthesis selenium/carbon composites (SeCNFs-CNT) by co-heating Se powder and electrospun Polyacrylonitrile (PAN)-CNT nanofibers at 600°Cin a sealed vessel. The Se molecules are chemically bonded and physical encapsulated by carbonized PAN-CNT composite (CNFs-CNT), which leads to prevent the dissolution of polyselenide intermediates in carbonate based electrolyte. When directly used as flexible free-standing cathode material for Li–Se batteries in low cost carbonate-based electrolyte, the Se@CNFs-CNT electrode exhibits improved cyclability (517 mAh g−1 after 500 cycles at 0.5 A g−1) and rate capability (485 mAh g−1 at 1 A g−1). Moreover, when tested as sodium batteries, it maintains a reversible capacity of 410 mAh g−1 after 240 cycles at 0.5 A g−1. The superior electrochemical performance (especially at high rates) of Se@CNFs-CNT is attributed to synergistic effect of the additive of CNT, the well confine of Se in the CNFs-CNT matrix through chemical bonding and the 3D interconnected carbon nanofibers (CNFs). This simple yet efficient process thus provides a promising route towards fabrication of a variety of high performance flexible Li–Se and Na–Se batteries. A facile strategy is developed to synthesis selenium/carbon composites (SeCNFs-CNT) by co-heating Se powder and electrospun Polyacrylonitrile (PAN)-CNT nanofibers at 600°Cin a sealed vessel. The Se molecules are chemically bonded and physical encapsulated by carbonized PAN-CNT composite (CNFs-CNT), which leads to prevent the dissolution of polyselenide intermediates in carbonate based electrolyte. When directly used as flexible free-standing cathode material for Li–Se batteries in low cost carbonate-based electrolyte, the Se@CNFs-CNT electrode exhibits improved cyclability (517 mAh g−1 after 500 cycles at 0.5 A g−1) and rate capability (485 mAh g−1 at 1 A g−1). Moreover, when tested as sodium batteries, it maintains a reversible capacity of 410 mAh g−1 after 240 cycles at 0.5 A g−1. The superior electrochemical performance (especially at high rates) of Se@CNFs-CNT is attributed to synergistic effect of the additive of CNT, the well confine of Se in the CNFs-CNT matrix through chemical bonding and the 3D interconnected carbon nanofibers (CNFs). This simple yet efficient process thus provides a promising route towards fabrication of a variety of high performance flexible Li–Se and Na–Se batteries. Na–Se batteries Elsevier Flexible Elsevier Li–Se batteries Elsevier Selenium/carbon composites Elsevier Carbon nanofibers Elsevier Wei, Xiang oth Wang, Jiaqing oth Jiang, Yu oth Li, Weihan oth Yu, Yan oth Enthalten in Elsevier Xiao, Hong ELSEVIER Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method 2013 the international journal on the science and technology of electrochemical energy systems New York, NY [u.a.] (DE-627)ELV00098745X volume:281 year:2015 day:1 month:05 pages:461-469 extent:9 https://doi.org/10.1016/j.jpowsour.2015.02.029 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.92 Meerestechnik VZ AR 281 2015 1 0501 461-469 9 045F 620 |
allfields_unstemmed |
10.1016/j.jpowsour.2015.02.029 doi GBV00000000000192A.pica (DE-627)ELV013128752 (ELSEVIER)S0378-7753(15)00252-9 DE-627 ger DE-627 rakwb eng 620 620 DE-600 690 VZ 50.92 bkl Zeng, Linchao verfasserin aut Flexible one-dimensional carbon–selenium composite nanofibers with superior electrochemical performance for Li–Se/Na–Se batteries 2015transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier A facile strategy is developed to synthesis selenium/carbon composites (SeCNFs-CNT) by co-heating Se powder and electrospun Polyacrylonitrile (PAN)-CNT nanofibers at 600°Cin a sealed vessel. The Se molecules are chemically bonded and physical encapsulated by carbonized PAN-CNT composite (CNFs-CNT), which leads to prevent the dissolution of polyselenide intermediates in carbonate based electrolyte. When directly used as flexible free-standing cathode material for Li–Se batteries in low cost carbonate-based electrolyte, the Se@CNFs-CNT electrode exhibits improved cyclability (517 mAh g−1 after 500 cycles at 0.5 A g−1) and rate capability (485 mAh g−1 at 1 A g−1). Moreover, when tested as sodium batteries, it maintains a reversible capacity of 410 mAh g−1 after 240 cycles at 0.5 A g−1. The superior electrochemical performance (especially at high rates) of Se@CNFs-CNT is attributed to synergistic effect of the additive of CNT, the well confine of Se in the CNFs-CNT matrix through chemical bonding and the 3D interconnected carbon nanofibers (CNFs). This simple yet efficient process thus provides a promising route towards fabrication of a variety of high performance flexible Li–Se and Na–Se batteries. A facile strategy is developed to synthesis selenium/carbon composites (SeCNFs-CNT) by co-heating Se powder and electrospun Polyacrylonitrile (PAN)-CNT nanofibers at 600°Cin a sealed vessel. The Se molecules are chemically bonded and physical encapsulated by carbonized PAN-CNT composite (CNFs-CNT), which leads to prevent the dissolution of polyselenide intermediates in carbonate based electrolyte. When directly used as flexible free-standing cathode material for Li–Se batteries in low cost carbonate-based electrolyte, the Se@CNFs-CNT electrode exhibits improved cyclability (517 mAh g−1 after 500 cycles at 0.5 A g−1) and rate capability (485 mAh g−1 at 1 A g−1). Moreover, when tested as sodium batteries, it maintains a reversible capacity of 410 mAh g−1 after 240 cycles at 0.5 A g−1. The superior electrochemical performance (especially at high rates) of Se@CNFs-CNT is attributed to synergistic effect of the additive of CNT, the well confine of Se in the CNFs-CNT matrix through chemical bonding and the 3D interconnected carbon nanofibers (CNFs). This simple yet efficient process thus provides a promising route towards fabrication of a variety of high performance flexible Li–Se and Na–Se batteries. Na–Se batteries Elsevier Flexible Elsevier Li–Se batteries Elsevier Selenium/carbon composites Elsevier Carbon nanofibers Elsevier Wei, Xiang oth Wang, Jiaqing oth Jiang, Yu oth Li, Weihan oth Yu, Yan oth Enthalten in Elsevier Xiao, Hong ELSEVIER Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method 2013 the international journal on the science and technology of electrochemical energy systems New York, NY [u.a.] (DE-627)ELV00098745X volume:281 year:2015 day:1 month:05 pages:461-469 extent:9 https://doi.org/10.1016/j.jpowsour.2015.02.029 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.92 Meerestechnik VZ AR 281 2015 1 0501 461-469 9 045F 620 |
allfieldsGer |
10.1016/j.jpowsour.2015.02.029 doi GBV00000000000192A.pica (DE-627)ELV013128752 (ELSEVIER)S0378-7753(15)00252-9 DE-627 ger DE-627 rakwb eng 620 620 DE-600 690 VZ 50.92 bkl Zeng, Linchao verfasserin aut Flexible one-dimensional carbon–selenium composite nanofibers with superior electrochemical performance for Li–Se/Na–Se batteries 2015transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier A facile strategy is developed to synthesis selenium/carbon composites (SeCNFs-CNT) by co-heating Se powder and electrospun Polyacrylonitrile (PAN)-CNT nanofibers at 600°Cin a sealed vessel. The Se molecules are chemically bonded and physical encapsulated by carbonized PAN-CNT composite (CNFs-CNT), which leads to prevent the dissolution of polyselenide intermediates in carbonate based electrolyte. When directly used as flexible free-standing cathode material for Li–Se batteries in low cost carbonate-based electrolyte, the Se@CNFs-CNT electrode exhibits improved cyclability (517 mAh g−1 after 500 cycles at 0.5 A g−1) and rate capability (485 mAh g−1 at 1 A g−1). Moreover, when tested as sodium batteries, it maintains a reversible capacity of 410 mAh g−1 after 240 cycles at 0.5 A g−1. The superior electrochemical performance (especially at high rates) of Se@CNFs-CNT is attributed to synergistic effect of the additive of CNT, the well confine of Se in the CNFs-CNT matrix through chemical bonding and the 3D interconnected carbon nanofibers (CNFs). This simple yet efficient process thus provides a promising route towards fabrication of a variety of high performance flexible Li–Se and Na–Se batteries. A facile strategy is developed to synthesis selenium/carbon composites (SeCNFs-CNT) by co-heating Se powder and electrospun Polyacrylonitrile (PAN)-CNT nanofibers at 600°Cin a sealed vessel. The Se molecules are chemically bonded and physical encapsulated by carbonized PAN-CNT composite (CNFs-CNT), which leads to prevent the dissolution of polyselenide intermediates in carbonate based electrolyte. When directly used as flexible free-standing cathode material for Li–Se batteries in low cost carbonate-based electrolyte, the Se@CNFs-CNT electrode exhibits improved cyclability (517 mAh g−1 after 500 cycles at 0.5 A g−1) and rate capability (485 mAh g−1 at 1 A g−1). Moreover, when tested as sodium batteries, it maintains a reversible capacity of 410 mAh g−1 after 240 cycles at 0.5 A g−1. The superior electrochemical performance (especially at high rates) of Se@CNFs-CNT is attributed to synergistic effect of the additive of CNT, the well confine of Se in the CNFs-CNT matrix through chemical bonding and the 3D interconnected carbon nanofibers (CNFs). This simple yet efficient process thus provides a promising route towards fabrication of a variety of high performance flexible Li–Se and Na–Se batteries. Na–Se batteries Elsevier Flexible Elsevier Li–Se batteries Elsevier Selenium/carbon composites Elsevier Carbon nanofibers Elsevier Wei, Xiang oth Wang, Jiaqing oth Jiang, Yu oth Li, Weihan oth Yu, Yan oth Enthalten in Elsevier Xiao, Hong ELSEVIER Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method 2013 the international journal on the science and technology of electrochemical energy systems New York, NY [u.a.] (DE-627)ELV00098745X volume:281 year:2015 day:1 month:05 pages:461-469 extent:9 https://doi.org/10.1016/j.jpowsour.2015.02.029 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.92 Meerestechnik VZ AR 281 2015 1 0501 461-469 9 045F 620 |
allfieldsSound |
10.1016/j.jpowsour.2015.02.029 doi GBV00000000000192A.pica (DE-627)ELV013128752 (ELSEVIER)S0378-7753(15)00252-9 DE-627 ger DE-627 rakwb eng 620 620 DE-600 690 VZ 50.92 bkl Zeng, Linchao verfasserin aut Flexible one-dimensional carbon–selenium composite nanofibers with superior electrochemical performance for Li–Se/Na–Se batteries 2015transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier A facile strategy is developed to synthesis selenium/carbon composites (SeCNFs-CNT) by co-heating Se powder and electrospun Polyacrylonitrile (PAN)-CNT nanofibers at 600°Cin a sealed vessel. The Se molecules are chemically bonded and physical encapsulated by carbonized PAN-CNT composite (CNFs-CNT), which leads to prevent the dissolution of polyselenide intermediates in carbonate based electrolyte. When directly used as flexible free-standing cathode material for Li–Se batteries in low cost carbonate-based electrolyte, the Se@CNFs-CNT electrode exhibits improved cyclability (517 mAh g−1 after 500 cycles at 0.5 A g−1) and rate capability (485 mAh g−1 at 1 A g−1). Moreover, when tested as sodium batteries, it maintains a reversible capacity of 410 mAh g−1 after 240 cycles at 0.5 A g−1. The superior electrochemical performance (especially at high rates) of Se@CNFs-CNT is attributed to synergistic effect of the additive of CNT, the well confine of Se in the CNFs-CNT matrix through chemical bonding and the 3D interconnected carbon nanofibers (CNFs). This simple yet efficient process thus provides a promising route towards fabrication of a variety of high performance flexible Li–Se and Na–Se batteries. A facile strategy is developed to synthesis selenium/carbon composites (SeCNFs-CNT) by co-heating Se powder and electrospun Polyacrylonitrile (PAN)-CNT nanofibers at 600°Cin a sealed vessel. The Se molecules are chemically bonded and physical encapsulated by carbonized PAN-CNT composite (CNFs-CNT), which leads to prevent the dissolution of polyselenide intermediates in carbonate based electrolyte. When directly used as flexible free-standing cathode material for Li–Se batteries in low cost carbonate-based electrolyte, the Se@CNFs-CNT electrode exhibits improved cyclability (517 mAh g−1 after 500 cycles at 0.5 A g−1) and rate capability (485 mAh g−1 at 1 A g−1). Moreover, when tested as sodium batteries, it maintains a reversible capacity of 410 mAh g−1 after 240 cycles at 0.5 A g−1. The superior electrochemical performance (especially at high rates) of Se@CNFs-CNT is attributed to synergistic effect of the additive of CNT, the well confine of Se in the CNFs-CNT matrix through chemical bonding and the 3D interconnected carbon nanofibers (CNFs). This simple yet efficient process thus provides a promising route towards fabrication of a variety of high performance flexible Li–Se and Na–Se batteries. Na–Se batteries Elsevier Flexible Elsevier Li–Se batteries Elsevier Selenium/carbon composites Elsevier Carbon nanofibers Elsevier Wei, Xiang oth Wang, Jiaqing oth Jiang, Yu oth Li, Weihan oth Yu, Yan oth Enthalten in Elsevier Xiao, Hong ELSEVIER Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method 2013 the international journal on the science and technology of electrochemical energy systems New York, NY [u.a.] (DE-627)ELV00098745X volume:281 year:2015 day:1 month:05 pages:461-469 extent:9 https://doi.org/10.1016/j.jpowsour.2015.02.029 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.92 Meerestechnik VZ AR 281 2015 1 0501 461-469 9 045F 620 |
language |
English |
source |
Enthalten in Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method New York, NY [u.a.] volume:281 year:2015 day:1 month:05 pages:461-469 extent:9 |
sourceStr |
Enthalten in Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method New York, NY [u.a.] volume:281 year:2015 day:1 month:05 pages:461-469 extent:9 |
format_phy_str_mv |
Article |
bklname |
Meerestechnik |
institution |
findex.gbv.de |
topic_facet |
Na–Se batteries Flexible Li–Se batteries Selenium/carbon composites Carbon nanofibers |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method |
authorswithroles_txt_mv |
Zeng, Linchao @@aut@@ Wei, Xiang @@oth@@ Wang, Jiaqing @@oth@@ Jiang, Yu @@oth@@ Li, Weihan @@oth@@ Yu, Yan @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
ELV00098745X |
dewey-sort |
3620 |
id |
ELV013128752 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV013128752</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625111619.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jpowsour.2015.02.029</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000192A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV013128752</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0378-7753(15)00252-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.92</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zeng, Linchao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Flexible one-dimensional carbon–selenium composite nanofibers with superior electrochemical performance for Li–Se/Na–Se batteries</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">9</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A facile strategy is developed to synthesis selenium/carbon composites (SeCNFs-CNT) by co-heating Se powder and electrospun Polyacrylonitrile (PAN)-CNT nanofibers at 600°Cin a sealed vessel. The Se molecules are chemically bonded and physical encapsulated by carbonized PAN-CNT composite (CNFs-CNT), which leads to prevent the dissolution of polyselenide intermediates in carbonate based electrolyte. When directly used as flexible free-standing cathode material for Li–Se batteries in low cost carbonate-based electrolyte, the Se@CNFs-CNT electrode exhibits improved cyclability (517 mAh g−1 after 500 cycles at 0.5 A g−1) and rate capability (485 mAh g−1 at 1 A g−1). Moreover, when tested as sodium batteries, it maintains a reversible capacity of 410 mAh g−1 after 240 cycles at 0.5 A g−1. The superior electrochemical performance (especially at high rates) of Se@CNFs-CNT is attributed to synergistic effect of the additive of CNT, the well confine of Se in the CNFs-CNT matrix through chemical bonding and the 3D interconnected carbon nanofibers (CNFs). This simple yet efficient process thus provides a promising route towards fabrication of a variety of high performance flexible Li–Se and Na–Se batteries.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A facile strategy is developed to synthesis selenium/carbon composites (SeCNFs-CNT) by co-heating Se powder and electrospun Polyacrylonitrile (PAN)-CNT nanofibers at 600°Cin a sealed vessel. The Se molecules are chemically bonded and physical encapsulated by carbonized PAN-CNT composite (CNFs-CNT), which leads to prevent the dissolution of polyselenide intermediates in carbonate based electrolyte. When directly used as flexible free-standing cathode material for Li–Se batteries in low cost carbonate-based electrolyte, the Se@CNFs-CNT electrode exhibits improved cyclability (517 mAh g−1 after 500 cycles at 0.5 A g−1) and rate capability (485 mAh g−1 at 1 A g−1). Moreover, when tested as sodium batteries, it maintains a reversible capacity of 410 mAh g−1 after 240 cycles at 0.5 A g−1. The superior electrochemical performance (especially at high rates) of Se@CNFs-CNT is attributed to synergistic effect of the additive of CNT, the well confine of Se in the CNFs-CNT matrix through chemical bonding and the 3D interconnected carbon nanofibers (CNFs). This simple yet efficient process thus provides a promising route towards fabrication of a variety of high performance flexible Li–Se and Na–Se batteries.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Na–Se batteries</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Flexible</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Li–Se batteries</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Selenium/carbon composites</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Carbon nanofibers</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wei, Xiang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jiaqing</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Yu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Weihan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Yan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Xiao, Hong ELSEVIER</subfield><subfield code="t">Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method</subfield><subfield code="d">2013</subfield><subfield code="d">the international journal on the science and technology of electrochemical energy systems</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV00098745X</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:281</subfield><subfield code="g">year:2015</subfield><subfield code="g">day:1</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:461-469</subfield><subfield code="g">extent:9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jpowsour.2015.02.029</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.92</subfield><subfield code="j">Meerestechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">281</subfield><subfield code="j">2015</subfield><subfield code="b">1</subfield><subfield code="c">0501</subfield><subfield code="h">461-469</subfield><subfield code="g">9</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">620</subfield></datafield></record></collection>
|
author |
Zeng, Linchao |
spellingShingle |
Zeng, Linchao ddc 620 ddc 690 bkl 50.92 Elsevier Na–Se batteries Elsevier Flexible Elsevier Li–Se batteries Elsevier Selenium/carbon composites Elsevier Carbon nanofibers Flexible one-dimensional carbon–selenium composite nanofibers with superior electrochemical performance for Li–Se/Na–Se batteries |
authorStr |
Zeng, Linchao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV00098745X |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations 690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
620 620 DE-600 690 VZ 50.92 bkl Flexible one-dimensional carbon–selenium composite nanofibers with superior electrochemical performance for Li–Se/Na–Se batteries Na–Se batteries Elsevier Flexible Elsevier Li–Se batteries Elsevier Selenium/carbon composites Elsevier Carbon nanofibers Elsevier |
topic |
ddc 620 ddc 690 bkl 50.92 Elsevier Na–Se batteries Elsevier Flexible Elsevier Li–Se batteries Elsevier Selenium/carbon composites Elsevier Carbon nanofibers |
topic_unstemmed |
ddc 620 ddc 690 bkl 50.92 Elsevier Na–Se batteries Elsevier Flexible Elsevier Li–Se batteries Elsevier Selenium/carbon composites Elsevier Carbon nanofibers |
topic_browse |
ddc 620 ddc 690 bkl 50.92 Elsevier Na–Se batteries Elsevier Flexible Elsevier Li–Se batteries Elsevier Selenium/carbon composites Elsevier Carbon nanofibers |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
x w xw j w jw y j yj w l wl y y yy |
hierarchy_parent_title |
Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method |
hierarchy_parent_id |
ELV00098745X |
dewey-tens |
620 - Engineering 690 - Building & construction |
hierarchy_top_title |
Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV00098745X |
title |
Flexible one-dimensional carbon–selenium composite nanofibers with superior electrochemical performance for Li–Se/Na–Se batteries |
ctrlnum |
(DE-627)ELV013128752 (ELSEVIER)S0378-7753(15)00252-9 |
title_full |
Flexible one-dimensional carbon–selenium composite nanofibers with superior electrochemical performance for Li–Se/Na–Se batteries |
author_sort |
Zeng, Linchao |
journal |
Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method |
journalStr |
Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
zzz |
container_start_page |
461 |
author_browse |
Zeng, Linchao |
container_volume |
281 |
physical |
9 |
class |
620 620 DE-600 690 VZ 50.92 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zeng, Linchao |
doi_str_mv |
10.1016/j.jpowsour.2015.02.029 |
dewey-full |
620 690 |
title_sort |
flexible one-dimensional carbon–selenium composite nanofibers with superior electrochemical performance for li–se/na–se batteries |
title_auth |
Flexible one-dimensional carbon–selenium composite nanofibers with superior electrochemical performance for Li–Se/Na–Se batteries |
abstract |
A facile strategy is developed to synthesis selenium/carbon composites (SeCNFs-CNT) by co-heating Se powder and electrospun Polyacrylonitrile (PAN)-CNT nanofibers at 600°Cin a sealed vessel. The Se molecules are chemically bonded and physical encapsulated by carbonized PAN-CNT composite (CNFs-CNT), which leads to prevent the dissolution of polyselenide intermediates in carbonate based electrolyte. When directly used as flexible free-standing cathode material for Li–Se batteries in low cost carbonate-based electrolyte, the Se@CNFs-CNT electrode exhibits improved cyclability (517 mAh g−1 after 500 cycles at 0.5 A g−1) and rate capability (485 mAh g−1 at 1 A g−1). Moreover, when tested as sodium batteries, it maintains a reversible capacity of 410 mAh g−1 after 240 cycles at 0.5 A g−1. The superior electrochemical performance (especially at high rates) of Se@CNFs-CNT is attributed to synergistic effect of the additive of CNT, the well confine of Se in the CNFs-CNT matrix through chemical bonding and the 3D interconnected carbon nanofibers (CNFs). This simple yet efficient process thus provides a promising route towards fabrication of a variety of high performance flexible Li–Se and Na–Se batteries. |
abstractGer |
A facile strategy is developed to synthesis selenium/carbon composites (SeCNFs-CNT) by co-heating Se powder and electrospun Polyacrylonitrile (PAN)-CNT nanofibers at 600°Cin a sealed vessel. The Se molecules are chemically bonded and physical encapsulated by carbonized PAN-CNT composite (CNFs-CNT), which leads to prevent the dissolution of polyselenide intermediates in carbonate based electrolyte. When directly used as flexible free-standing cathode material for Li–Se batteries in low cost carbonate-based electrolyte, the Se@CNFs-CNT electrode exhibits improved cyclability (517 mAh g−1 after 500 cycles at 0.5 A g−1) and rate capability (485 mAh g−1 at 1 A g−1). Moreover, when tested as sodium batteries, it maintains a reversible capacity of 410 mAh g−1 after 240 cycles at 0.5 A g−1. The superior electrochemical performance (especially at high rates) of Se@CNFs-CNT is attributed to synergistic effect of the additive of CNT, the well confine of Se in the CNFs-CNT matrix through chemical bonding and the 3D interconnected carbon nanofibers (CNFs). This simple yet efficient process thus provides a promising route towards fabrication of a variety of high performance flexible Li–Se and Na–Se batteries. |
abstract_unstemmed |
A facile strategy is developed to synthesis selenium/carbon composites (SeCNFs-CNT) by co-heating Se powder and electrospun Polyacrylonitrile (PAN)-CNT nanofibers at 600°Cin a sealed vessel. The Se molecules are chemically bonded and physical encapsulated by carbonized PAN-CNT composite (CNFs-CNT), which leads to prevent the dissolution of polyselenide intermediates in carbonate based electrolyte. When directly used as flexible free-standing cathode material for Li–Se batteries in low cost carbonate-based electrolyte, the Se@CNFs-CNT electrode exhibits improved cyclability (517 mAh g−1 after 500 cycles at 0.5 A g−1) and rate capability (485 mAh g−1 at 1 A g−1). Moreover, when tested as sodium batteries, it maintains a reversible capacity of 410 mAh g−1 after 240 cycles at 0.5 A g−1. The superior electrochemical performance (especially at high rates) of Se@CNFs-CNT is attributed to synergistic effect of the additive of CNT, the well confine of Se in the CNFs-CNT matrix through chemical bonding and the 3D interconnected carbon nanofibers (CNFs). This simple yet efficient process thus provides a promising route towards fabrication of a variety of high performance flexible Li–Se and Na–Se batteries. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
Flexible one-dimensional carbon–selenium composite nanofibers with superior electrochemical performance for Li–Se/Na–Se batteries |
url |
https://doi.org/10.1016/j.jpowsour.2015.02.029 |
remote_bool |
true |
author2 |
Wei, Xiang Wang, Jiaqing Jiang, Yu Li, Weihan Yu, Yan |
author2Str |
Wei, Xiang Wang, Jiaqing Jiang, Yu Li, Weihan Yu, Yan |
ppnlink |
ELV00098745X |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth |
doi_str |
10.1016/j.jpowsour.2015.02.029 |
up_date |
2024-07-06T18:06:04.284Z |
_version_ |
1803853930730356736 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV013128752</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625111619.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jpowsour.2015.02.029</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000192A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV013128752</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0378-7753(15)00252-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.92</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zeng, Linchao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Flexible one-dimensional carbon–selenium composite nanofibers with superior electrochemical performance for Li–Se/Na–Se batteries</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">9</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A facile strategy is developed to synthesis selenium/carbon composites (SeCNFs-CNT) by co-heating Se powder and electrospun Polyacrylonitrile (PAN)-CNT nanofibers at 600°Cin a sealed vessel. The Se molecules are chemically bonded and physical encapsulated by carbonized PAN-CNT composite (CNFs-CNT), which leads to prevent the dissolution of polyselenide intermediates in carbonate based electrolyte. When directly used as flexible free-standing cathode material for Li–Se batteries in low cost carbonate-based electrolyte, the Se@CNFs-CNT electrode exhibits improved cyclability (517 mAh g−1 after 500 cycles at 0.5 A g−1) and rate capability (485 mAh g−1 at 1 A g−1). Moreover, when tested as sodium batteries, it maintains a reversible capacity of 410 mAh g−1 after 240 cycles at 0.5 A g−1. The superior electrochemical performance (especially at high rates) of Se@CNFs-CNT is attributed to synergistic effect of the additive of CNT, the well confine of Se in the CNFs-CNT matrix through chemical bonding and the 3D interconnected carbon nanofibers (CNFs). This simple yet efficient process thus provides a promising route towards fabrication of a variety of high performance flexible Li–Se and Na–Se batteries.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A facile strategy is developed to synthesis selenium/carbon composites (SeCNFs-CNT) by co-heating Se powder and electrospun Polyacrylonitrile (PAN)-CNT nanofibers at 600°Cin a sealed vessel. The Se molecules are chemically bonded and physical encapsulated by carbonized PAN-CNT composite (CNFs-CNT), which leads to prevent the dissolution of polyselenide intermediates in carbonate based electrolyte. When directly used as flexible free-standing cathode material for Li–Se batteries in low cost carbonate-based electrolyte, the Se@CNFs-CNT electrode exhibits improved cyclability (517 mAh g−1 after 500 cycles at 0.5 A g−1) and rate capability (485 mAh g−1 at 1 A g−1). Moreover, when tested as sodium batteries, it maintains a reversible capacity of 410 mAh g−1 after 240 cycles at 0.5 A g−1. The superior electrochemical performance (especially at high rates) of Se@CNFs-CNT is attributed to synergistic effect of the additive of CNT, the well confine of Se in the CNFs-CNT matrix through chemical bonding and the 3D interconnected carbon nanofibers (CNFs). This simple yet efficient process thus provides a promising route towards fabrication of a variety of high performance flexible Li–Se and Na–Se batteries.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Na–Se batteries</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Flexible</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Li–Se batteries</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Selenium/carbon composites</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Carbon nanofibers</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wei, Xiang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jiaqing</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Yu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Weihan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Yan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Xiao, Hong ELSEVIER</subfield><subfield code="t">Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method</subfield><subfield code="d">2013</subfield><subfield code="d">the international journal on the science and technology of electrochemical energy systems</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV00098745X</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:281</subfield><subfield code="g">year:2015</subfield><subfield code="g">day:1</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:461-469</subfield><subfield code="g">extent:9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jpowsour.2015.02.029</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.92</subfield><subfield code="j">Meerestechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">281</subfield><subfield code="j">2015</subfield><subfield code="b">1</subfield><subfield code="c">0501</subfield><subfield code="h">461-469</subfield><subfield code="g">9</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">620</subfield></datafield></record></collection>
|
score |
7.401602 |