Compressed sensing image reconstruction using intra prediction
Compressed sensing (CS) provides a general signal acquisition framework that enables the reconstruction of sparse signals from a small number of linear measurements. In this article we present a CS image reconstruction algorithm using intra prediction method based on block-based CS image framework....
Ausführliche Beschreibung
Autor*in: |
Song, Yun [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
9 |
---|
Übergeordnetes Werk: |
Enthalten in: The TORC1 signaling pathway regulates respiration-induced mitophagy in yeast - Liu, Yang ELSEVIER, 2018, an international journal, Amsterdam |
---|---|
Übergeordnetes Werk: |
volume:151 ; year:2015 ; day:3 ; month:03 ; pages:1171-1179 ; extent:9 |
Links: |
---|
DOI / URN: |
10.1016/j.neucom.2014.05.088 |
---|
Katalog-ID: |
ELV013181084 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV013181084 | ||
003 | DE-627 | ||
005 | 20230625111705.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180602s2015 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.neucom.2014.05.088 |2 doi | |
028 | 5 | 2 | |a GBVA2015014000024.pica |
035 | |a (DE-627)ELV013181084 | ||
035 | |a (ELSEVIER)S0925-2312(14)01353-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 610 | |
082 | 0 | 4 | |a 610 |q DE-600 |
082 | 0 | 4 | |a 570 |q VZ |
084 | |a BIODIV |q DE-30 |2 fid | ||
084 | |a 35.70 |2 bkl | ||
084 | |a 42.12 |2 bkl | ||
100 | 1 | |a Song, Yun |e verfasserin |4 aut | |
245 | 1 | 0 | |a Compressed sensing image reconstruction using intra prediction |
264 | 1 | |c 2015transfer abstract | |
300 | |a 9 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Compressed sensing (CS) provides a general signal acquisition framework that enables the reconstruction of sparse signals from a small number of linear measurements. In this article we present a CS image reconstruction algorithm using intra prediction method based on block-based CS image framework. The current reconstruction block is firstly predicted by its surrounding reconstructed pixels, and then its prediction residual will be reconstructed. Because the sparsity level of prediction residual is higher than its original image block, the performance of our proposed CS image reconstruction algorithm is significantly superior to the traditional CS reconstruction algorithm. Furthermore, total variation model is also used to suppress the blocking artifacts caused by intra prediction and measurement noise. Experimental results also show the competitive performance with respect to peak signal-to-noise ratio and subjective visual quality. | ||
520 | |a Compressed sensing (CS) provides a general signal acquisition framework that enables the reconstruction of sparse signals from a small number of linear measurements. In this article we present a CS image reconstruction algorithm using intra prediction method based on block-based CS image framework. The current reconstruction block is firstly predicted by its surrounding reconstructed pixels, and then its prediction residual will be reconstructed. Because the sparsity level of prediction residual is higher than its original image block, the performance of our proposed CS image reconstruction algorithm is significantly superior to the traditional CS reconstruction algorithm. Furthermore, total variation model is also used to suppress the blocking artifacts caused by intra prediction and measurement noise. Experimental results also show the competitive performance with respect to peak signal-to-noise ratio and subjective visual quality. | ||
650 | 7 | |a Intra prediction |2 Elsevier | |
650 | 7 | |a Postprocessing |2 Elsevier | |
650 | 7 | |a Total variation |2 Elsevier | |
650 | 7 | |a Compressed sensing |2 Elsevier | |
650 | 7 | |a Image reconstruction |2 Elsevier | |
700 | 1 | |a Cao, Wei |4 oth | |
700 | 1 | |a Shen, Yanfei |4 oth | |
700 | 1 | |a Yang, Gaobo |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Liu, Yang ELSEVIER |t The TORC1 signaling pathway regulates respiration-induced mitophagy in yeast |d 2018 |d an international journal |g Amsterdam |w (DE-627)ELV002603926 |
773 | 1 | 8 | |g volume:151 |g year:2015 |g day:3 |g month:03 |g pages:1171-1179 |g extent:9 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.neucom.2014.05.088 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 35.70 |j Biochemie: Allgemeines |q VZ |
936 | b | k | |a 42.12 |j Biophysik |q VZ |
951 | |a AR | ||
952 | |d 151 |j 2015 |b 3 |c 0303 |h 1171-1179 |g 9 | ||
953 | |2 045F |a 610 |
author_variant |
y s ys |
---|---|
matchkey_str |
songyuncaoweishenyanfeiyanggaobo:2015----:opesdesniaeeosrcinsni |
hierarchy_sort_str |
2015transfer abstract |
bklnumber |
35.70 42.12 |
publishDate |
2015 |
allfields |
10.1016/j.neucom.2014.05.088 doi GBVA2015014000024.pica (DE-627)ELV013181084 (ELSEVIER)S0925-2312(14)01353-8 DE-627 ger DE-627 rakwb eng 610 610 DE-600 570 VZ BIODIV DE-30 fid 35.70 bkl 42.12 bkl Song, Yun verfasserin aut Compressed sensing image reconstruction using intra prediction 2015transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Compressed sensing (CS) provides a general signal acquisition framework that enables the reconstruction of sparse signals from a small number of linear measurements. In this article we present a CS image reconstruction algorithm using intra prediction method based on block-based CS image framework. The current reconstruction block is firstly predicted by its surrounding reconstructed pixels, and then its prediction residual will be reconstructed. Because the sparsity level of prediction residual is higher than its original image block, the performance of our proposed CS image reconstruction algorithm is significantly superior to the traditional CS reconstruction algorithm. Furthermore, total variation model is also used to suppress the blocking artifacts caused by intra prediction and measurement noise. Experimental results also show the competitive performance with respect to peak signal-to-noise ratio and subjective visual quality. Compressed sensing (CS) provides a general signal acquisition framework that enables the reconstruction of sparse signals from a small number of linear measurements. In this article we present a CS image reconstruction algorithm using intra prediction method based on block-based CS image framework. The current reconstruction block is firstly predicted by its surrounding reconstructed pixels, and then its prediction residual will be reconstructed. Because the sparsity level of prediction residual is higher than its original image block, the performance of our proposed CS image reconstruction algorithm is significantly superior to the traditional CS reconstruction algorithm. Furthermore, total variation model is also used to suppress the blocking artifacts caused by intra prediction and measurement noise. Experimental results also show the competitive performance with respect to peak signal-to-noise ratio and subjective visual quality. Intra prediction Elsevier Postprocessing Elsevier Total variation Elsevier Compressed sensing Elsevier Image reconstruction Elsevier Cao, Wei oth Shen, Yanfei oth Yang, Gaobo oth Enthalten in Elsevier Liu, Yang ELSEVIER The TORC1 signaling pathway regulates respiration-induced mitophagy in yeast 2018 an international journal Amsterdam (DE-627)ELV002603926 volume:151 year:2015 day:3 month:03 pages:1171-1179 extent:9 https://doi.org/10.1016/j.neucom.2014.05.088 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 35.70 Biochemie: Allgemeines VZ 42.12 Biophysik VZ AR 151 2015 3 0303 1171-1179 9 045F 610 |
spelling |
10.1016/j.neucom.2014.05.088 doi GBVA2015014000024.pica (DE-627)ELV013181084 (ELSEVIER)S0925-2312(14)01353-8 DE-627 ger DE-627 rakwb eng 610 610 DE-600 570 VZ BIODIV DE-30 fid 35.70 bkl 42.12 bkl Song, Yun verfasserin aut Compressed sensing image reconstruction using intra prediction 2015transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Compressed sensing (CS) provides a general signal acquisition framework that enables the reconstruction of sparse signals from a small number of linear measurements. In this article we present a CS image reconstruction algorithm using intra prediction method based on block-based CS image framework. The current reconstruction block is firstly predicted by its surrounding reconstructed pixels, and then its prediction residual will be reconstructed. Because the sparsity level of prediction residual is higher than its original image block, the performance of our proposed CS image reconstruction algorithm is significantly superior to the traditional CS reconstruction algorithm. Furthermore, total variation model is also used to suppress the blocking artifacts caused by intra prediction and measurement noise. Experimental results also show the competitive performance with respect to peak signal-to-noise ratio and subjective visual quality. Compressed sensing (CS) provides a general signal acquisition framework that enables the reconstruction of sparse signals from a small number of linear measurements. In this article we present a CS image reconstruction algorithm using intra prediction method based on block-based CS image framework. The current reconstruction block is firstly predicted by its surrounding reconstructed pixels, and then its prediction residual will be reconstructed. Because the sparsity level of prediction residual is higher than its original image block, the performance of our proposed CS image reconstruction algorithm is significantly superior to the traditional CS reconstruction algorithm. Furthermore, total variation model is also used to suppress the blocking artifacts caused by intra prediction and measurement noise. Experimental results also show the competitive performance with respect to peak signal-to-noise ratio and subjective visual quality. Intra prediction Elsevier Postprocessing Elsevier Total variation Elsevier Compressed sensing Elsevier Image reconstruction Elsevier Cao, Wei oth Shen, Yanfei oth Yang, Gaobo oth Enthalten in Elsevier Liu, Yang ELSEVIER The TORC1 signaling pathway regulates respiration-induced mitophagy in yeast 2018 an international journal Amsterdam (DE-627)ELV002603926 volume:151 year:2015 day:3 month:03 pages:1171-1179 extent:9 https://doi.org/10.1016/j.neucom.2014.05.088 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 35.70 Biochemie: Allgemeines VZ 42.12 Biophysik VZ AR 151 2015 3 0303 1171-1179 9 045F 610 |
allfields_unstemmed |
10.1016/j.neucom.2014.05.088 doi GBVA2015014000024.pica (DE-627)ELV013181084 (ELSEVIER)S0925-2312(14)01353-8 DE-627 ger DE-627 rakwb eng 610 610 DE-600 570 VZ BIODIV DE-30 fid 35.70 bkl 42.12 bkl Song, Yun verfasserin aut Compressed sensing image reconstruction using intra prediction 2015transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Compressed sensing (CS) provides a general signal acquisition framework that enables the reconstruction of sparse signals from a small number of linear measurements. In this article we present a CS image reconstruction algorithm using intra prediction method based on block-based CS image framework. The current reconstruction block is firstly predicted by its surrounding reconstructed pixels, and then its prediction residual will be reconstructed. Because the sparsity level of prediction residual is higher than its original image block, the performance of our proposed CS image reconstruction algorithm is significantly superior to the traditional CS reconstruction algorithm. Furthermore, total variation model is also used to suppress the blocking artifacts caused by intra prediction and measurement noise. Experimental results also show the competitive performance with respect to peak signal-to-noise ratio and subjective visual quality. Compressed sensing (CS) provides a general signal acquisition framework that enables the reconstruction of sparse signals from a small number of linear measurements. In this article we present a CS image reconstruction algorithm using intra prediction method based on block-based CS image framework. The current reconstruction block is firstly predicted by its surrounding reconstructed pixels, and then its prediction residual will be reconstructed. Because the sparsity level of prediction residual is higher than its original image block, the performance of our proposed CS image reconstruction algorithm is significantly superior to the traditional CS reconstruction algorithm. Furthermore, total variation model is also used to suppress the blocking artifacts caused by intra prediction and measurement noise. Experimental results also show the competitive performance with respect to peak signal-to-noise ratio and subjective visual quality. Intra prediction Elsevier Postprocessing Elsevier Total variation Elsevier Compressed sensing Elsevier Image reconstruction Elsevier Cao, Wei oth Shen, Yanfei oth Yang, Gaobo oth Enthalten in Elsevier Liu, Yang ELSEVIER The TORC1 signaling pathway regulates respiration-induced mitophagy in yeast 2018 an international journal Amsterdam (DE-627)ELV002603926 volume:151 year:2015 day:3 month:03 pages:1171-1179 extent:9 https://doi.org/10.1016/j.neucom.2014.05.088 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 35.70 Biochemie: Allgemeines VZ 42.12 Biophysik VZ AR 151 2015 3 0303 1171-1179 9 045F 610 |
allfieldsGer |
10.1016/j.neucom.2014.05.088 doi GBVA2015014000024.pica (DE-627)ELV013181084 (ELSEVIER)S0925-2312(14)01353-8 DE-627 ger DE-627 rakwb eng 610 610 DE-600 570 VZ BIODIV DE-30 fid 35.70 bkl 42.12 bkl Song, Yun verfasserin aut Compressed sensing image reconstruction using intra prediction 2015transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Compressed sensing (CS) provides a general signal acquisition framework that enables the reconstruction of sparse signals from a small number of linear measurements. In this article we present a CS image reconstruction algorithm using intra prediction method based on block-based CS image framework. The current reconstruction block is firstly predicted by its surrounding reconstructed pixels, and then its prediction residual will be reconstructed. Because the sparsity level of prediction residual is higher than its original image block, the performance of our proposed CS image reconstruction algorithm is significantly superior to the traditional CS reconstruction algorithm. Furthermore, total variation model is also used to suppress the blocking artifacts caused by intra prediction and measurement noise. Experimental results also show the competitive performance with respect to peak signal-to-noise ratio and subjective visual quality. Compressed sensing (CS) provides a general signal acquisition framework that enables the reconstruction of sparse signals from a small number of linear measurements. In this article we present a CS image reconstruction algorithm using intra prediction method based on block-based CS image framework. The current reconstruction block is firstly predicted by its surrounding reconstructed pixels, and then its prediction residual will be reconstructed. Because the sparsity level of prediction residual is higher than its original image block, the performance of our proposed CS image reconstruction algorithm is significantly superior to the traditional CS reconstruction algorithm. Furthermore, total variation model is also used to suppress the blocking artifacts caused by intra prediction and measurement noise. Experimental results also show the competitive performance with respect to peak signal-to-noise ratio and subjective visual quality. Intra prediction Elsevier Postprocessing Elsevier Total variation Elsevier Compressed sensing Elsevier Image reconstruction Elsevier Cao, Wei oth Shen, Yanfei oth Yang, Gaobo oth Enthalten in Elsevier Liu, Yang ELSEVIER The TORC1 signaling pathway regulates respiration-induced mitophagy in yeast 2018 an international journal Amsterdam (DE-627)ELV002603926 volume:151 year:2015 day:3 month:03 pages:1171-1179 extent:9 https://doi.org/10.1016/j.neucom.2014.05.088 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 35.70 Biochemie: Allgemeines VZ 42.12 Biophysik VZ AR 151 2015 3 0303 1171-1179 9 045F 610 |
allfieldsSound |
10.1016/j.neucom.2014.05.088 doi GBVA2015014000024.pica (DE-627)ELV013181084 (ELSEVIER)S0925-2312(14)01353-8 DE-627 ger DE-627 rakwb eng 610 610 DE-600 570 VZ BIODIV DE-30 fid 35.70 bkl 42.12 bkl Song, Yun verfasserin aut Compressed sensing image reconstruction using intra prediction 2015transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Compressed sensing (CS) provides a general signal acquisition framework that enables the reconstruction of sparse signals from a small number of linear measurements. In this article we present a CS image reconstruction algorithm using intra prediction method based on block-based CS image framework. The current reconstruction block is firstly predicted by its surrounding reconstructed pixels, and then its prediction residual will be reconstructed. Because the sparsity level of prediction residual is higher than its original image block, the performance of our proposed CS image reconstruction algorithm is significantly superior to the traditional CS reconstruction algorithm. Furthermore, total variation model is also used to suppress the blocking artifacts caused by intra prediction and measurement noise. Experimental results also show the competitive performance with respect to peak signal-to-noise ratio and subjective visual quality. Compressed sensing (CS) provides a general signal acquisition framework that enables the reconstruction of sparse signals from a small number of linear measurements. In this article we present a CS image reconstruction algorithm using intra prediction method based on block-based CS image framework. The current reconstruction block is firstly predicted by its surrounding reconstructed pixels, and then its prediction residual will be reconstructed. Because the sparsity level of prediction residual is higher than its original image block, the performance of our proposed CS image reconstruction algorithm is significantly superior to the traditional CS reconstruction algorithm. Furthermore, total variation model is also used to suppress the blocking artifacts caused by intra prediction and measurement noise. Experimental results also show the competitive performance with respect to peak signal-to-noise ratio and subjective visual quality. Intra prediction Elsevier Postprocessing Elsevier Total variation Elsevier Compressed sensing Elsevier Image reconstruction Elsevier Cao, Wei oth Shen, Yanfei oth Yang, Gaobo oth Enthalten in Elsevier Liu, Yang ELSEVIER The TORC1 signaling pathway regulates respiration-induced mitophagy in yeast 2018 an international journal Amsterdam (DE-627)ELV002603926 volume:151 year:2015 day:3 month:03 pages:1171-1179 extent:9 https://doi.org/10.1016/j.neucom.2014.05.088 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 35.70 Biochemie: Allgemeines VZ 42.12 Biophysik VZ AR 151 2015 3 0303 1171-1179 9 045F 610 |
language |
English |
source |
Enthalten in The TORC1 signaling pathway regulates respiration-induced mitophagy in yeast Amsterdam volume:151 year:2015 day:3 month:03 pages:1171-1179 extent:9 |
sourceStr |
Enthalten in The TORC1 signaling pathway regulates respiration-induced mitophagy in yeast Amsterdam volume:151 year:2015 day:3 month:03 pages:1171-1179 extent:9 |
format_phy_str_mv |
Article |
bklname |
Biochemie: Allgemeines Biophysik |
institution |
findex.gbv.de |
topic_facet |
Intra prediction Postprocessing Total variation Compressed sensing Image reconstruction |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
The TORC1 signaling pathway regulates respiration-induced mitophagy in yeast |
authorswithroles_txt_mv |
Song, Yun @@aut@@ Cao, Wei @@oth@@ Shen, Yanfei @@oth@@ Yang, Gaobo @@oth@@ |
publishDateDaySort_date |
2015-01-03T00:00:00Z |
hierarchy_top_id |
ELV002603926 |
dewey-sort |
3610 |
id |
ELV013181084 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV013181084</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625111705.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.neucom.2014.05.088</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2015014000024.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV013181084</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0925-2312(14)01353-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">610</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Song, Yun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Compressed sensing image reconstruction using intra prediction</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">9</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Compressed sensing (CS) provides a general signal acquisition framework that enables the reconstruction of sparse signals from a small number of linear measurements. In this article we present a CS image reconstruction algorithm using intra prediction method based on block-based CS image framework. The current reconstruction block is firstly predicted by its surrounding reconstructed pixels, and then its prediction residual will be reconstructed. Because the sparsity level of prediction residual is higher than its original image block, the performance of our proposed CS image reconstruction algorithm is significantly superior to the traditional CS reconstruction algorithm. Furthermore, total variation model is also used to suppress the blocking artifacts caused by intra prediction and measurement noise. Experimental results also show the competitive performance with respect to peak signal-to-noise ratio and subjective visual quality.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Compressed sensing (CS) provides a general signal acquisition framework that enables the reconstruction of sparse signals from a small number of linear measurements. In this article we present a CS image reconstruction algorithm using intra prediction method based on block-based CS image framework. The current reconstruction block is firstly predicted by its surrounding reconstructed pixels, and then its prediction residual will be reconstructed. Because the sparsity level of prediction residual is higher than its original image block, the performance of our proposed CS image reconstruction algorithm is significantly superior to the traditional CS reconstruction algorithm. Furthermore, total variation model is also used to suppress the blocking artifacts caused by intra prediction and measurement noise. Experimental results also show the competitive performance with respect to peak signal-to-noise ratio and subjective visual quality.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Intra prediction</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Postprocessing</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Total variation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Compressed sensing</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Image reconstruction</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cao, Wei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shen, Yanfei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Gaobo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Liu, Yang ELSEVIER</subfield><subfield code="t">The TORC1 signaling pathway regulates respiration-induced mitophagy in yeast</subfield><subfield code="d">2018</subfield><subfield code="d">an international journal</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV002603926</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:151</subfield><subfield code="g">year:2015</subfield><subfield code="g">day:3</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:1171-1179</subfield><subfield code="g">extent:9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.neucom.2014.05.088</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.70</subfield><subfield code="j">Biochemie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.12</subfield><subfield code="j">Biophysik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">151</subfield><subfield code="j">2015</subfield><subfield code="b">3</subfield><subfield code="c">0303</subfield><subfield code="h">1171-1179</subfield><subfield code="g">9</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">610</subfield></datafield></record></collection>
|
author |
Song, Yun |
spellingShingle |
Song, Yun ddc 610 ddc 570 fid BIODIV bkl 35.70 bkl 42.12 Elsevier Intra prediction Elsevier Postprocessing Elsevier Total variation Elsevier Compressed sensing Elsevier Image reconstruction Compressed sensing image reconstruction using intra prediction |
authorStr |
Song, Yun |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV002603926 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health 570 - Life sciences; biology |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
610 610 DE-600 570 VZ BIODIV DE-30 fid 35.70 bkl 42.12 bkl Compressed sensing image reconstruction using intra prediction Intra prediction Elsevier Postprocessing Elsevier Total variation Elsevier Compressed sensing Elsevier Image reconstruction Elsevier |
topic |
ddc 610 ddc 570 fid BIODIV bkl 35.70 bkl 42.12 Elsevier Intra prediction Elsevier Postprocessing Elsevier Total variation Elsevier Compressed sensing Elsevier Image reconstruction |
topic_unstemmed |
ddc 610 ddc 570 fid BIODIV bkl 35.70 bkl 42.12 Elsevier Intra prediction Elsevier Postprocessing Elsevier Total variation Elsevier Compressed sensing Elsevier Image reconstruction |
topic_browse |
ddc 610 ddc 570 fid BIODIV bkl 35.70 bkl 42.12 Elsevier Intra prediction Elsevier Postprocessing Elsevier Total variation Elsevier Compressed sensing Elsevier Image reconstruction |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
w c wc y s ys g y gy |
hierarchy_parent_title |
The TORC1 signaling pathway regulates respiration-induced mitophagy in yeast |
hierarchy_parent_id |
ELV002603926 |
dewey-tens |
610 - Medicine & health 570 - Life sciences; biology |
hierarchy_top_title |
The TORC1 signaling pathway regulates respiration-induced mitophagy in yeast |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV002603926 |
title |
Compressed sensing image reconstruction using intra prediction |
ctrlnum |
(DE-627)ELV013181084 (ELSEVIER)S0925-2312(14)01353-8 |
title_full |
Compressed sensing image reconstruction using intra prediction |
author_sort |
Song, Yun |
journal |
The TORC1 signaling pathway regulates respiration-induced mitophagy in yeast |
journalStr |
The TORC1 signaling pathway regulates respiration-induced mitophagy in yeast |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
zzz |
container_start_page |
1171 |
author_browse |
Song, Yun |
container_volume |
151 |
physical |
9 |
class |
610 610 DE-600 570 VZ BIODIV DE-30 fid 35.70 bkl 42.12 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Song, Yun |
doi_str_mv |
10.1016/j.neucom.2014.05.088 |
dewey-full |
610 570 |
title_sort |
compressed sensing image reconstruction using intra prediction |
title_auth |
Compressed sensing image reconstruction using intra prediction |
abstract |
Compressed sensing (CS) provides a general signal acquisition framework that enables the reconstruction of sparse signals from a small number of linear measurements. In this article we present a CS image reconstruction algorithm using intra prediction method based on block-based CS image framework. The current reconstruction block is firstly predicted by its surrounding reconstructed pixels, and then its prediction residual will be reconstructed. Because the sparsity level of prediction residual is higher than its original image block, the performance of our proposed CS image reconstruction algorithm is significantly superior to the traditional CS reconstruction algorithm. Furthermore, total variation model is also used to suppress the blocking artifacts caused by intra prediction and measurement noise. Experimental results also show the competitive performance with respect to peak signal-to-noise ratio and subjective visual quality. |
abstractGer |
Compressed sensing (CS) provides a general signal acquisition framework that enables the reconstruction of sparse signals from a small number of linear measurements. In this article we present a CS image reconstruction algorithm using intra prediction method based on block-based CS image framework. The current reconstruction block is firstly predicted by its surrounding reconstructed pixels, and then its prediction residual will be reconstructed. Because the sparsity level of prediction residual is higher than its original image block, the performance of our proposed CS image reconstruction algorithm is significantly superior to the traditional CS reconstruction algorithm. Furthermore, total variation model is also used to suppress the blocking artifacts caused by intra prediction and measurement noise. Experimental results also show the competitive performance with respect to peak signal-to-noise ratio and subjective visual quality. |
abstract_unstemmed |
Compressed sensing (CS) provides a general signal acquisition framework that enables the reconstruction of sparse signals from a small number of linear measurements. In this article we present a CS image reconstruction algorithm using intra prediction method based on block-based CS image framework. The current reconstruction block is firstly predicted by its surrounding reconstructed pixels, and then its prediction residual will be reconstructed. Because the sparsity level of prediction residual is higher than its original image block, the performance of our proposed CS image reconstruction algorithm is significantly superior to the traditional CS reconstruction algorithm. Furthermore, total variation model is also used to suppress the blocking artifacts caused by intra prediction and measurement noise. Experimental results also show the competitive performance with respect to peak signal-to-noise ratio and subjective visual quality. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA |
title_short |
Compressed sensing image reconstruction using intra prediction |
url |
https://doi.org/10.1016/j.neucom.2014.05.088 |
remote_bool |
true |
author2 |
Cao, Wei Shen, Yanfei Yang, Gaobo |
author2Str |
Cao, Wei Shen, Yanfei Yang, Gaobo |
ppnlink |
ELV002603926 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1016/j.neucom.2014.05.088 |
up_date |
2024-07-06T18:14:02.413Z |
_version_ |
1803854432082853888 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV013181084</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625111705.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.neucom.2014.05.088</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2015014000024.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV013181084</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0925-2312(14)01353-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">610</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Song, Yun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Compressed sensing image reconstruction using intra prediction</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">9</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Compressed sensing (CS) provides a general signal acquisition framework that enables the reconstruction of sparse signals from a small number of linear measurements. In this article we present a CS image reconstruction algorithm using intra prediction method based on block-based CS image framework. The current reconstruction block is firstly predicted by its surrounding reconstructed pixels, and then its prediction residual will be reconstructed. Because the sparsity level of prediction residual is higher than its original image block, the performance of our proposed CS image reconstruction algorithm is significantly superior to the traditional CS reconstruction algorithm. Furthermore, total variation model is also used to suppress the blocking artifacts caused by intra prediction and measurement noise. Experimental results also show the competitive performance with respect to peak signal-to-noise ratio and subjective visual quality.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Compressed sensing (CS) provides a general signal acquisition framework that enables the reconstruction of sparse signals from a small number of linear measurements. In this article we present a CS image reconstruction algorithm using intra prediction method based on block-based CS image framework. The current reconstruction block is firstly predicted by its surrounding reconstructed pixels, and then its prediction residual will be reconstructed. Because the sparsity level of prediction residual is higher than its original image block, the performance of our proposed CS image reconstruction algorithm is significantly superior to the traditional CS reconstruction algorithm. Furthermore, total variation model is also used to suppress the blocking artifacts caused by intra prediction and measurement noise. Experimental results also show the competitive performance with respect to peak signal-to-noise ratio and subjective visual quality.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Intra prediction</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Postprocessing</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Total variation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Compressed sensing</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Image reconstruction</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cao, Wei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shen, Yanfei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Gaobo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Liu, Yang ELSEVIER</subfield><subfield code="t">The TORC1 signaling pathway regulates respiration-induced mitophagy in yeast</subfield><subfield code="d">2018</subfield><subfield code="d">an international journal</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV002603926</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:151</subfield><subfield code="g">year:2015</subfield><subfield code="g">day:3</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:1171-1179</subfield><subfield code="g">extent:9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.neucom.2014.05.088</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.70</subfield><subfield code="j">Biochemie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.12</subfield><subfield code="j">Biophysik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">151</subfield><subfield code="j">2015</subfield><subfield code="b">3</subfield><subfield code="c">0303</subfield><subfield code="h">1171-1179</subfield><subfield code="g">9</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">610</subfield></datafield></record></collection>
|
score |
7.402337 |