A pre-selecting base kernel method in multiple kernel learning
The pre-defined base kernel greatly affects the performance of multiple kernel learning (MKL), but selecting the pre-defined base kernel still has no theoretical guidance. In practice, it is very difficult to select a set of appropriate base kernels without prior knowledge. In this paper, we propose...
Ausführliche Beschreibung
Autor*in: |
Wu, Peng [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
8 |
---|
Übergeordnetes Werk: |
Enthalten in: The TORC1 signaling pathway regulates respiration-induced mitophagy in yeast - Liu, Yang ELSEVIER, 2018, an international journal, Amsterdam |
---|---|
Übergeordnetes Werk: |
volume:165 ; year:2015 ; day:1 ; month:10 ; pages:46-53 ; extent:8 |
Links: |
---|
DOI / URN: |
10.1016/j.neucom.2014.06.094 |
---|
Katalog-ID: |
ELV013183532 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV013183532 | ||
003 | DE-627 | ||
005 | 20230625111709.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180602s2015 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.neucom.2014.06.094 |2 doi | |
028 | 5 | 2 | |a GBVA2015014000024.pica |
035 | |a (DE-627)ELV013183532 | ||
035 | |a (ELSEVIER)S0925-2312(15)00430-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 610 | |
082 | 0 | 4 | |a 610 |q DE-600 |
082 | 0 | 4 | |a 570 |q VZ |
084 | |a BIODIV |q DE-30 |2 fid | ||
084 | |a 35.70 |2 bkl | ||
084 | |a 42.12 |2 bkl | ||
100 | 1 | |a Wu, Peng |e verfasserin |4 aut | |
245 | 1 | 0 | |a A pre-selecting base kernel method in multiple kernel learning |
264 | 1 | |c 2015transfer abstract | |
300 | |a 8 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a The pre-defined base kernel greatly affects the performance of multiple kernel learning (MKL), but selecting the pre-defined base kernel still has no theoretical guidance. In practice, it is very difficult to select a set of appropriate base kernels without prior knowledge. In this paper, we propose a general strategy to pre-select a reasonable set of base kernels before the optimization process of MKL solvers. This strategy is based on the combination of minimal redundancy maximal relevance criteria and kernel target alignment (MRMRKA). First, we determine some candidate kernels while maintaining diversity of information; second, a set of base kernels with high discriminative ability and large diversity are selected using the MRMRKA method. These pre-selected base kernels will be used in the optimization process of the existing MKL solvers to generate better results. The experiments conducted on UCI and 15-scene datasets show that the performance of MKL is improved with the proposed pre-selected base kernel strategy. | ||
520 | |a The pre-defined base kernel greatly affects the performance of multiple kernel learning (MKL), but selecting the pre-defined base kernel still has no theoretical guidance. In practice, it is very difficult to select a set of appropriate base kernels without prior knowledge. In this paper, we propose a general strategy to pre-select a reasonable set of base kernels before the optimization process of MKL solvers. This strategy is based on the combination of minimal redundancy maximal relevance criteria and kernel target alignment (MRMRKA). First, we determine some candidate kernels while maintaining diversity of information; second, a set of base kernels with high discriminative ability and large diversity are selected using the MRMRKA method. These pre-selected base kernels will be used in the optimization process of the existing MKL solvers to generate better results. The experiments conducted on UCI and 15-scene datasets show that the performance of MKL is improved with the proposed pre-selected base kernel strategy. | ||
650 | 7 | |a Minimal redundancy maximal relevance |2 Elsevier | |
650 | 7 | |a Multiple kernel learning |2 Elsevier | |
650 | 7 | |a Kernel target alignment |2 Elsevier | |
650 | 7 | |a Kernel selection |2 Elsevier | |
700 | 1 | |a Duan, Fuqing |4 oth | |
700 | 1 | |a Guo, Ping |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Liu, Yang ELSEVIER |t The TORC1 signaling pathway regulates respiration-induced mitophagy in yeast |d 2018 |d an international journal |g Amsterdam |w (DE-627)ELV002603926 |
773 | 1 | 8 | |g volume:165 |g year:2015 |g day:1 |g month:10 |g pages:46-53 |g extent:8 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.neucom.2014.06.094 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 35.70 |j Biochemie: Allgemeines |q VZ |
936 | b | k | |a 42.12 |j Biophysik |q VZ |
951 | |a AR | ||
952 | |d 165 |j 2015 |b 1 |c 1001 |h 46-53 |g 8 | ||
953 | |2 045F |a 610 |
author_variant |
p w pw |
---|---|
matchkey_str |
wupengduanfuqingguoping:2015----:peeetnbskremtoimlil |
hierarchy_sort_str |
2015transfer abstract |
bklnumber |
35.70 42.12 |
publishDate |
2015 |
allfields |
10.1016/j.neucom.2014.06.094 doi GBVA2015014000024.pica (DE-627)ELV013183532 (ELSEVIER)S0925-2312(15)00430-0 DE-627 ger DE-627 rakwb eng 610 610 DE-600 570 VZ BIODIV DE-30 fid 35.70 bkl 42.12 bkl Wu, Peng verfasserin aut A pre-selecting base kernel method in multiple kernel learning 2015transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The pre-defined base kernel greatly affects the performance of multiple kernel learning (MKL), but selecting the pre-defined base kernel still has no theoretical guidance. In practice, it is very difficult to select a set of appropriate base kernels without prior knowledge. In this paper, we propose a general strategy to pre-select a reasonable set of base kernels before the optimization process of MKL solvers. This strategy is based on the combination of minimal redundancy maximal relevance criteria and kernel target alignment (MRMRKA). First, we determine some candidate kernels while maintaining diversity of information; second, a set of base kernels with high discriminative ability and large diversity are selected using the MRMRKA method. These pre-selected base kernels will be used in the optimization process of the existing MKL solvers to generate better results. The experiments conducted on UCI and 15-scene datasets show that the performance of MKL is improved with the proposed pre-selected base kernel strategy. The pre-defined base kernel greatly affects the performance of multiple kernel learning (MKL), but selecting the pre-defined base kernel still has no theoretical guidance. In practice, it is very difficult to select a set of appropriate base kernels without prior knowledge. In this paper, we propose a general strategy to pre-select a reasonable set of base kernels before the optimization process of MKL solvers. This strategy is based on the combination of minimal redundancy maximal relevance criteria and kernel target alignment (MRMRKA). First, we determine some candidate kernels while maintaining diversity of information; second, a set of base kernels with high discriminative ability and large diversity are selected using the MRMRKA method. These pre-selected base kernels will be used in the optimization process of the existing MKL solvers to generate better results. The experiments conducted on UCI and 15-scene datasets show that the performance of MKL is improved with the proposed pre-selected base kernel strategy. Minimal redundancy maximal relevance Elsevier Multiple kernel learning Elsevier Kernel target alignment Elsevier Kernel selection Elsevier Duan, Fuqing oth Guo, Ping oth Enthalten in Elsevier Liu, Yang ELSEVIER The TORC1 signaling pathway regulates respiration-induced mitophagy in yeast 2018 an international journal Amsterdam (DE-627)ELV002603926 volume:165 year:2015 day:1 month:10 pages:46-53 extent:8 https://doi.org/10.1016/j.neucom.2014.06.094 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 35.70 Biochemie: Allgemeines VZ 42.12 Biophysik VZ AR 165 2015 1 1001 46-53 8 045F 610 |
spelling |
10.1016/j.neucom.2014.06.094 doi GBVA2015014000024.pica (DE-627)ELV013183532 (ELSEVIER)S0925-2312(15)00430-0 DE-627 ger DE-627 rakwb eng 610 610 DE-600 570 VZ BIODIV DE-30 fid 35.70 bkl 42.12 bkl Wu, Peng verfasserin aut A pre-selecting base kernel method in multiple kernel learning 2015transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The pre-defined base kernel greatly affects the performance of multiple kernel learning (MKL), but selecting the pre-defined base kernel still has no theoretical guidance. In practice, it is very difficult to select a set of appropriate base kernels without prior knowledge. In this paper, we propose a general strategy to pre-select a reasonable set of base kernels before the optimization process of MKL solvers. This strategy is based on the combination of minimal redundancy maximal relevance criteria and kernel target alignment (MRMRKA). First, we determine some candidate kernels while maintaining diversity of information; second, a set of base kernels with high discriminative ability and large diversity are selected using the MRMRKA method. These pre-selected base kernels will be used in the optimization process of the existing MKL solvers to generate better results. The experiments conducted on UCI and 15-scene datasets show that the performance of MKL is improved with the proposed pre-selected base kernel strategy. The pre-defined base kernel greatly affects the performance of multiple kernel learning (MKL), but selecting the pre-defined base kernel still has no theoretical guidance. In practice, it is very difficult to select a set of appropriate base kernels without prior knowledge. In this paper, we propose a general strategy to pre-select a reasonable set of base kernels before the optimization process of MKL solvers. This strategy is based on the combination of minimal redundancy maximal relevance criteria and kernel target alignment (MRMRKA). First, we determine some candidate kernels while maintaining diversity of information; second, a set of base kernels with high discriminative ability and large diversity are selected using the MRMRKA method. These pre-selected base kernels will be used in the optimization process of the existing MKL solvers to generate better results. The experiments conducted on UCI and 15-scene datasets show that the performance of MKL is improved with the proposed pre-selected base kernel strategy. Minimal redundancy maximal relevance Elsevier Multiple kernel learning Elsevier Kernel target alignment Elsevier Kernel selection Elsevier Duan, Fuqing oth Guo, Ping oth Enthalten in Elsevier Liu, Yang ELSEVIER The TORC1 signaling pathway regulates respiration-induced mitophagy in yeast 2018 an international journal Amsterdam (DE-627)ELV002603926 volume:165 year:2015 day:1 month:10 pages:46-53 extent:8 https://doi.org/10.1016/j.neucom.2014.06.094 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 35.70 Biochemie: Allgemeines VZ 42.12 Biophysik VZ AR 165 2015 1 1001 46-53 8 045F 610 |
allfields_unstemmed |
10.1016/j.neucom.2014.06.094 doi GBVA2015014000024.pica (DE-627)ELV013183532 (ELSEVIER)S0925-2312(15)00430-0 DE-627 ger DE-627 rakwb eng 610 610 DE-600 570 VZ BIODIV DE-30 fid 35.70 bkl 42.12 bkl Wu, Peng verfasserin aut A pre-selecting base kernel method in multiple kernel learning 2015transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The pre-defined base kernel greatly affects the performance of multiple kernel learning (MKL), but selecting the pre-defined base kernel still has no theoretical guidance. In practice, it is very difficult to select a set of appropriate base kernels without prior knowledge. In this paper, we propose a general strategy to pre-select a reasonable set of base kernels before the optimization process of MKL solvers. This strategy is based on the combination of minimal redundancy maximal relevance criteria and kernel target alignment (MRMRKA). First, we determine some candidate kernels while maintaining diversity of information; second, a set of base kernels with high discriminative ability and large diversity are selected using the MRMRKA method. These pre-selected base kernels will be used in the optimization process of the existing MKL solvers to generate better results. The experiments conducted on UCI and 15-scene datasets show that the performance of MKL is improved with the proposed pre-selected base kernel strategy. The pre-defined base kernel greatly affects the performance of multiple kernel learning (MKL), but selecting the pre-defined base kernel still has no theoretical guidance. In practice, it is very difficult to select a set of appropriate base kernels without prior knowledge. In this paper, we propose a general strategy to pre-select a reasonable set of base kernels before the optimization process of MKL solvers. This strategy is based on the combination of minimal redundancy maximal relevance criteria and kernel target alignment (MRMRKA). First, we determine some candidate kernels while maintaining diversity of information; second, a set of base kernels with high discriminative ability and large diversity are selected using the MRMRKA method. These pre-selected base kernels will be used in the optimization process of the existing MKL solvers to generate better results. The experiments conducted on UCI and 15-scene datasets show that the performance of MKL is improved with the proposed pre-selected base kernel strategy. Minimal redundancy maximal relevance Elsevier Multiple kernel learning Elsevier Kernel target alignment Elsevier Kernel selection Elsevier Duan, Fuqing oth Guo, Ping oth Enthalten in Elsevier Liu, Yang ELSEVIER The TORC1 signaling pathway regulates respiration-induced mitophagy in yeast 2018 an international journal Amsterdam (DE-627)ELV002603926 volume:165 year:2015 day:1 month:10 pages:46-53 extent:8 https://doi.org/10.1016/j.neucom.2014.06.094 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 35.70 Biochemie: Allgemeines VZ 42.12 Biophysik VZ AR 165 2015 1 1001 46-53 8 045F 610 |
allfieldsGer |
10.1016/j.neucom.2014.06.094 doi GBVA2015014000024.pica (DE-627)ELV013183532 (ELSEVIER)S0925-2312(15)00430-0 DE-627 ger DE-627 rakwb eng 610 610 DE-600 570 VZ BIODIV DE-30 fid 35.70 bkl 42.12 bkl Wu, Peng verfasserin aut A pre-selecting base kernel method in multiple kernel learning 2015transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The pre-defined base kernel greatly affects the performance of multiple kernel learning (MKL), but selecting the pre-defined base kernel still has no theoretical guidance. In practice, it is very difficult to select a set of appropriate base kernels without prior knowledge. In this paper, we propose a general strategy to pre-select a reasonable set of base kernels before the optimization process of MKL solvers. This strategy is based on the combination of minimal redundancy maximal relevance criteria and kernel target alignment (MRMRKA). First, we determine some candidate kernels while maintaining diversity of information; second, a set of base kernels with high discriminative ability and large diversity are selected using the MRMRKA method. These pre-selected base kernels will be used in the optimization process of the existing MKL solvers to generate better results. The experiments conducted on UCI and 15-scene datasets show that the performance of MKL is improved with the proposed pre-selected base kernel strategy. The pre-defined base kernel greatly affects the performance of multiple kernel learning (MKL), but selecting the pre-defined base kernel still has no theoretical guidance. In practice, it is very difficult to select a set of appropriate base kernels without prior knowledge. In this paper, we propose a general strategy to pre-select a reasonable set of base kernels before the optimization process of MKL solvers. This strategy is based on the combination of minimal redundancy maximal relevance criteria and kernel target alignment (MRMRKA). First, we determine some candidate kernels while maintaining diversity of information; second, a set of base kernels with high discriminative ability and large diversity are selected using the MRMRKA method. These pre-selected base kernels will be used in the optimization process of the existing MKL solvers to generate better results. The experiments conducted on UCI and 15-scene datasets show that the performance of MKL is improved with the proposed pre-selected base kernel strategy. Minimal redundancy maximal relevance Elsevier Multiple kernel learning Elsevier Kernel target alignment Elsevier Kernel selection Elsevier Duan, Fuqing oth Guo, Ping oth Enthalten in Elsevier Liu, Yang ELSEVIER The TORC1 signaling pathway regulates respiration-induced mitophagy in yeast 2018 an international journal Amsterdam (DE-627)ELV002603926 volume:165 year:2015 day:1 month:10 pages:46-53 extent:8 https://doi.org/10.1016/j.neucom.2014.06.094 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 35.70 Biochemie: Allgemeines VZ 42.12 Biophysik VZ AR 165 2015 1 1001 46-53 8 045F 610 |
allfieldsSound |
10.1016/j.neucom.2014.06.094 doi GBVA2015014000024.pica (DE-627)ELV013183532 (ELSEVIER)S0925-2312(15)00430-0 DE-627 ger DE-627 rakwb eng 610 610 DE-600 570 VZ BIODIV DE-30 fid 35.70 bkl 42.12 bkl Wu, Peng verfasserin aut A pre-selecting base kernel method in multiple kernel learning 2015transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The pre-defined base kernel greatly affects the performance of multiple kernel learning (MKL), but selecting the pre-defined base kernel still has no theoretical guidance. In practice, it is very difficult to select a set of appropriate base kernels without prior knowledge. In this paper, we propose a general strategy to pre-select a reasonable set of base kernels before the optimization process of MKL solvers. This strategy is based on the combination of minimal redundancy maximal relevance criteria and kernel target alignment (MRMRKA). First, we determine some candidate kernels while maintaining diversity of information; second, a set of base kernels with high discriminative ability and large diversity are selected using the MRMRKA method. These pre-selected base kernels will be used in the optimization process of the existing MKL solvers to generate better results. The experiments conducted on UCI and 15-scene datasets show that the performance of MKL is improved with the proposed pre-selected base kernel strategy. The pre-defined base kernel greatly affects the performance of multiple kernel learning (MKL), but selecting the pre-defined base kernel still has no theoretical guidance. In practice, it is very difficult to select a set of appropriate base kernels without prior knowledge. In this paper, we propose a general strategy to pre-select a reasonable set of base kernels before the optimization process of MKL solvers. This strategy is based on the combination of minimal redundancy maximal relevance criteria and kernel target alignment (MRMRKA). First, we determine some candidate kernels while maintaining diversity of information; second, a set of base kernels with high discriminative ability and large diversity are selected using the MRMRKA method. These pre-selected base kernels will be used in the optimization process of the existing MKL solvers to generate better results. The experiments conducted on UCI and 15-scene datasets show that the performance of MKL is improved with the proposed pre-selected base kernel strategy. Minimal redundancy maximal relevance Elsevier Multiple kernel learning Elsevier Kernel target alignment Elsevier Kernel selection Elsevier Duan, Fuqing oth Guo, Ping oth Enthalten in Elsevier Liu, Yang ELSEVIER The TORC1 signaling pathway regulates respiration-induced mitophagy in yeast 2018 an international journal Amsterdam (DE-627)ELV002603926 volume:165 year:2015 day:1 month:10 pages:46-53 extent:8 https://doi.org/10.1016/j.neucom.2014.06.094 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 35.70 Biochemie: Allgemeines VZ 42.12 Biophysik VZ AR 165 2015 1 1001 46-53 8 045F 610 |
language |
English |
source |
Enthalten in The TORC1 signaling pathway regulates respiration-induced mitophagy in yeast Amsterdam volume:165 year:2015 day:1 month:10 pages:46-53 extent:8 |
sourceStr |
Enthalten in The TORC1 signaling pathway regulates respiration-induced mitophagy in yeast Amsterdam volume:165 year:2015 day:1 month:10 pages:46-53 extent:8 |
format_phy_str_mv |
Article |
bklname |
Biochemie: Allgemeines Biophysik |
institution |
findex.gbv.de |
topic_facet |
Minimal redundancy maximal relevance Multiple kernel learning Kernel target alignment Kernel selection |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
The TORC1 signaling pathway regulates respiration-induced mitophagy in yeast |
authorswithroles_txt_mv |
Wu, Peng @@aut@@ Duan, Fuqing @@oth@@ Guo, Ping @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
ELV002603926 |
dewey-sort |
3610 |
id |
ELV013183532 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV013183532</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625111709.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.neucom.2014.06.094</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2015014000024.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV013183532</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0925-2312(15)00430-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">610</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wu, Peng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A pre-selecting base kernel method in multiple kernel learning</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The pre-defined base kernel greatly affects the performance of multiple kernel learning (MKL), but selecting the pre-defined base kernel still has no theoretical guidance. In practice, it is very difficult to select a set of appropriate base kernels without prior knowledge. In this paper, we propose a general strategy to pre-select a reasonable set of base kernels before the optimization process of MKL solvers. This strategy is based on the combination of minimal redundancy maximal relevance criteria and kernel target alignment (MRMRKA). First, we determine some candidate kernels while maintaining diversity of information; second, a set of base kernels with high discriminative ability and large diversity are selected using the MRMRKA method. These pre-selected base kernels will be used in the optimization process of the existing MKL solvers to generate better results. The experiments conducted on UCI and 15-scene datasets show that the performance of MKL is improved with the proposed pre-selected base kernel strategy.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The pre-defined base kernel greatly affects the performance of multiple kernel learning (MKL), but selecting the pre-defined base kernel still has no theoretical guidance. In practice, it is very difficult to select a set of appropriate base kernels without prior knowledge. In this paper, we propose a general strategy to pre-select a reasonable set of base kernels before the optimization process of MKL solvers. This strategy is based on the combination of minimal redundancy maximal relevance criteria and kernel target alignment (MRMRKA). First, we determine some candidate kernels while maintaining diversity of information; second, a set of base kernels with high discriminative ability and large diversity are selected using the MRMRKA method. These pre-selected base kernels will be used in the optimization process of the existing MKL solvers to generate better results. The experiments conducted on UCI and 15-scene datasets show that the performance of MKL is improved with the proposed pre-selected base kernel strategy.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Minimal redundancy maximal relevance</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Multiple kernel learning</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Kernel target alignment</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Kernel selection</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Duan, Fuqing</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Ping</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Liu, Yang ELSEVIER</subfield><subfield code="t">The TORC1 signaling pathway regulates respiration-induced mitophagy in yeast</subfield><subfield code="d">2018</subfield><subfield code="d">an international journal</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV002603926</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:165</subfield><subfield code="g">year:2015</subfield><subfield code="g">day:1</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:46-53</subfield><subfield code="g">extent:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.neucom.2014.06.094</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.70</subfield><subfield code="j">Biochemie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.12</subfield><subfield code="j">Biophysik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">165</subfield><subfield code="j">2015</subfield><subfield code="b">1</subfield><subfield code="c">1001</subfield><subfield code="h">46-53</subfield><subfield code="g">8</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">610</subfield></datafield></record></collection>
|
author |
Wu, Peng |
spellingShingle |
Wu, Peng ddc 610 ddc 570 fid BIODIV bkl 35.70 bkl 42.12 Elsevier Minimal redundancy maximal relevance Elsevier Multiple kernel learning Elsevier Kernel target alignment Elsevier Kernel selection A pre-selecting base kernel method in multiple kernel learning |
authorStr |
Wu, Peng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV002603926 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health 570 - Life sciences; biology |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
610 610 DE-600 570 VZ BIODIV DE-30 fid 35.70 bkl 42.12 bkl A pre-selecting base kernel method in multiple kernel learning Minimal redundancy maximal relevance Elsevier Multiple kernel learning Elsevier Kernel target alignment Elsevier Kernel selection Elsevier |
topic |
ddc 610 ddc 570 fid BIODIV bkl 35.70 bkl 42.12 Elsevier Minimal redundancy maximal relevance Elsevier Multiple kernel learning Elsevier Kernel target alignment Elsevier Kernel selection |
topic_unstemmed |
ddc 610 ddc 570 fid BIODIV bkl 35.70 bkl 42.12 Elsevier Minimal redundancy maximal relevance Elsevier Multiple kernel learning Elsevier Kernel target alignment Elsevier Kernel selection |
topic_browse |
ddc 610 ddc 570 fid BIODIV bkl 35.70 bkl 42.12 Elsevier Minimal redundancy maximal relevance Elsevier Multiple kernel learning Elsevier Kernel target alignment Elsevier Kernel selection |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
f d fd p g pg |
hierarchy_parent_title |
The TORC1 signaling pathway regulates respiration-induced mitophagy in yeast |
hierarchy_parent_id |
ELV002603926 |
dewey-tens |
610 - Medicine & health 570 - Life sciences; biology |
hierarchy_top_title |
The TORC1 signaling pathway regulates respiration-induced mitophagy in yeast |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV002603926 |
title |
A pre-selecting base kernel method in multiple kernel learning |
ctrlnum |
(DE-627)ELV013183532 (ELSEVIER)S0925-2312(15)00430-0 |
title_full |
A pre-selecting base kernel method in multiple kernel learning |
author_sort |
Wu, Peng |
journal |
The TORC1 signaling pathway regulates respiration-induced mitophagy in yeast |
journalStr |
The TORC1 signaling pathway regulates respiration-induced mitophagy in yeast |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
zzz |
container_start_page |
46 |
author_browse |
Wu, Peng |
container_volume |
165 |
physical |
8 |
class |
610 610 DE-600 570 VZ BIODIV DE-30 fid 35.70 bkl 42.12 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Wu, Peng |
doi_str_mv |
10.1016/j.neucom.2014.06.094 |
dewey-full |
610 570 |
title_sort |
a pre-selecting base kernel method in multiple kernel learning |
title_auth |
A pre-selecting base kernel method in multiple kernel learning |
abstract |
The pre-defined base kernel greatly affects the performance of multiple kernel learning (MKL), but selecting the pre-defined base kernel still has no theoretical guidance. In practice, it is very difficult to select a set of appropriate base kernels without prior knowledge. In this paper, we propose a general strategy to pre-select a reasonable set of base kernels before the optimization process of MKL solvers. This strategy is based on the combination of minimal redundancy maximal relevance criteria and kernel target alignment (MRMRKA). First, we determine some candidate kernels while maintaining diversity of information; second, a set of base kernels with high discriminative ability and large diversity are selected using the MRMRKA method. These pre-selected base kernels will be used in the optimization process of the existing MKL solvers to generate better results. The experiments conducted on UCI and 15-scene datasets show that the performance of MKL is improved with the proposed pre-selected base kernel strategy. |
abstractGer |
The pre-defined base kernel greatly affects the performance of multiple kernel learning (MKL), but selecting the pre-defined base kernel still has no theoretical guidance. In practice, it is very difficult to select a set of appropriate base kernels without prior knowledge. In this paper, we propose a general strategy to pre-select a reasonable set of base kernels before the optimization process of MKL solvers. This strategy is based on the combination of minimal redundancy maximal relevance criteria and kernel target alignment (MRMRKA). First, we determine some candidate kernels while maintaining diversity of information; second, a set of base kernels with high discriminative ability and large diversity are selected using the MRMRKA method. These pre-selected base kernels will be used in the optimization process of the existing MKL solvers to generate better results. The experiments conducted on UCI and 15-scene datasets show that the performance of MKL is improved with the proposed pre-selected base kernel strategy. |
abstract_unstemmed |
The pre-defined base kernel greatly affects the performance of multiple kernel learning (MKL), but selecting the pre-defined base kernel still has no theoretical guidance. In practice, it is very difficult to select a set of appropriate base kernels without prior knowledge. In this paper, we propose a general strategy to pre-select a reasonable set of base kernels before the optimization process of MKL solvers. This strategy is based on the combination of minimal redundancy maximal relevance criteria and kernel target alignment (MRMRKA). First, we determine some candidate kernels while maintaining diversity of information; second, a set of base kernels with high discriminative ability and large diversity are selected using the MRMRKA method. These pre-selected base kernels will be used in the optimization process of the existing MKL solvers to generate better results. The experiments conducted on UCI and 15-scene datasets show that the performance of MKL is improved with the proposed pre-selected base kernel strategy. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA |
title_short |
A pre-selecting base kernel method in multiple kernel learning |
url |
https://doi.org/10.1016/j.neucom.2014.06.094 |
remote_bool |
true |
author2 |
Duan, Fuqing Guo, Ping |
author2Str |
Duan, Fuqing Guo, Ping |
ppnlink |
ELV002603926 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1016/j.neucom.2014.06.094 |
up_date |
2024-07-06T18:14:27.831Z |
_version_ |
1803854458737655808 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV013183532</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625111709.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.neucom.2014.06.094</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2015014000024.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV013183532</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0925-2312(15)00430-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">610</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wu, Peng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A pre-selecting base kernel method in multiple kernel learning</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The pre-defined base kernel greatly affects the performance of multiple kernel learning (MKL), but selecting the pre-defined base kernel still has no theoretical guidance. In practice, it is very difficult to select a set of appropriate base kernels without prior knowledge. In this paper, we propose a general strategy to pre-select a reasonable set of base kernels before the optimization process of MKL solvers. This strategy is based on the combination of minimal redundancy maximal relevance criteria and kernel target alignment (MRMRKA). First, we determine some candidate kernels while maintaining diversity of information; second, a set of base kernels with high discriminative ability and large diversity are selected using the MRMRKA method. These pre-selected base kernels will be used in the optimization process of the existing MKL solvers to generate better results. The experiments conducted on UCI and 15-scene datasets show that the performance of MKL is improved with the proposed pre-selected base kernel strategy.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The pre-defined base kernel greatly affects the performance of multiple kernel learning (MKL), but selecting the pre-defined base kernel still has no theoretical guidance. In practice, it is very difficult to select a set of appropriate base kernels without prior knowledge. In this paper, we propose a general strategy to pre-select a reasonable set of base kernels before the optimization process of MKL solvers. This strategy is based on the combination of minimal redundancy maximal relevance criteria and kernel target alignment (MRMRKA). First, we determine some candidate kernels while maintaining diversity of information; second, a set of base kernels with high discriminative ability and large diversity are selected using the MRMRKA method. These pre-selected base kernels will be used in the optimization process of the existing MKL solvers to generate better results. The experiments conducted on UCI and 15-scene datasets show that the performance of MKL is improved with the proposed pre-selected base kernel strategy.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Minimal redundancy maximal relevance</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Multiple kernel learning</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Kernel target alignment</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Kernel selection</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Duan, Fuqing</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Ping</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Liu, Yang ELSEVIER</subfield><subfield code="t">The TORC1 signaling pathway regulates respiration-induced mitophagy in yeast</subfield><subfield code="d">2018</subfield><subfield code="d">an international journal</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV002603926</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:165</subfield><subfield code="g">year:2015</subfield><subfield code="g">day:1</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:46-53</subfield><subfield code="g">extent:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.neucom.2014.06.094</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.70</subfield><subfield code="j">Biochemie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.12</subfield><subfield code="j">Biophysik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">165</subfield><subfield code="j">2015</subfield><subfield code="b">1</subfield><subfield code="c">1001</subfield><subfield code="h">46-53</subfield><subfield code="g">8</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">610</subfield></datafield></record></collection>
|
score |
7.4005537 |