Flow boiling heat transfer and pressure drop characteristics in expanding silicon microgap heat sink
The present flow boiling experiments are performed for deionized water mass fluxes, G =400–1000kg/m2 s, imposed effective heat flux q eff ″ ranging from 0W/cm2 to 80W/cm2 for three different microgap configurations having same inlet depth 200μm and gradually increasing exit depth 200μm, 300μm and 46...
Ausführliche Beschreibung
Autor*in: |
Tamanna, Alam [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
15 |
---|
Übergeordnetes Werk: |
Enthalten in: Analytical and computational investigation on host-guest interaction of cyclohexyl based thiosemicarbazones: Construction of molecular logic gates using multi-ion detection - Basheer, Sabeel M. ELSEVIER, 2019, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:82 ; year:2015 ; pages:1-15 ; extent:15 |
Links: |
---|
DOI / URN: |
10.1016/j.ijheatmasstransfer.2014.11.047 |
---|
Katalog-ID: |
ELV013481215 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV013481215 | ||
003 | DE-627 | ||
005 | 20230625112027.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180602s2015 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ijheatmasstransfer.2014.11.047 |2 doi | |
028 | 5 | 2 | |a GBV00000000000197A.pica |
035 | |a (DE-627)ELV013481215 | ||
035 | |a (ELSEVIER)S0017-9310(14)01019-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 620 | |
082 | 0 | 4 | |a 620 |q DE-600 |
082 | 0 | 4 | |a 600 |q VZ |
084 | |a 51.79 |2 bkl | ||
084 | |a 51.45 |2 bkl | ||
100 | 1 | |a Tamanna, Alam |e verfasserin |4 aut | |
245 | 1 | 0 | |a Flow boiling heat transfer and pressure drop characteristics in expanding silicon microgap heat sink |
264 | 1 | |c 2015transfer abstract | |
300 | |a 15 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a The present flow boiling experiments are performed for deionized water mass fluxes, G =400–1000kg/m2 s, imposed effective heat flux q eff ″ ranging from 0W/cm2 to 80W/cm2 for three different microgap configurations having same inlet depth 200μm and gradually increasing exit depth 200μm, 300μm and 460μm to explore expanding microgap effect on heat transfer and pressure drop performances. High speed flow visualizations are conducted simultaneously along with experiments to explore the bubble behavior in expanding microgap heat sink. The results of this study show that expanding microgap maintains a more uniform wall temperature than straight microgap heat sink and also delays dryout phase. In addition, expanding microgap of exit depth 300μm performs best for both heat transfer and pressure drop performances among all configurations. | ||
520 | |a The present flow boiling experiments are performed for deionized water mass fluxes, G =400–1000kg/m2 s, imposed effective heat flux q eff ″ ranging from 0W/cm2 to 80W/cm2 for three different microgap configurations having same inlet depth 200μm and gradually increasing exit depth 200μm, 300μm and 460μm to explore expanding microgap effect on heat transfer and pressure drop performances. High speed flow visualizations are conducted simultaneously along with experiments to explore the bubble behavior in expanding microgap heat sink. The results of this study show that expanding microgap maintains a more uniform wall temperature than straight microgap heat sink and also delays dryout phase. In addition, expanding microgap of exit depth 300μm performs best for both heat transfer and pressure drop performances among all configurations. | ||
650 | 7 | |a Flow boiling |2 Elsevier | |
650 | 7 | |a Pressure drop |2 Elsevier | |
650 | 7 | |a Flow visualization |2 Elsevier | |
650 | 7 | |a Expanding microgap |2 Elsevier | |
650 | 7 | |a Heat transfer |2 Elsevier | |
700 | 1 | |a Lee, Poh Seng |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Basheer, Sabeel M. ELSEVIER |t Analytical and computational investigation on host-guest interaction of cyclohexyl based thiosemicarbazones: Construction of molecular logic gates using multi-ion detection |d 2019 |g Amsterdam [u.a.] |w (DE-627)ELV002904500 |
773 | 1 | 8 | |g volume:82 |g year:2015 |g pages:1-15 |g extent:15 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.047 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 51.79 |j Sonstige Werkstoffe |q VZ |
936 | b | k | |a 51.45 |j Werkstoffe mit besonderen Eigenschaften |q VZ |
951 | |a AR | ||
952 | |d 82 |j 2015 |h 1-15 |g 15 | ||
953 | |2 045F |a 620 |
author_variant |
a t at |
---|---|
matchkey_str |
tamannaalamleepohseng:2015----:lwolnhataseadrsuerphrceitciepni |
hierarchy_sort_str |
2015transfer abstract |
bklnumber |
51.79 51.45 |
publishDate |
2015 |
allfields |
10.1016/j.ijheatmasstransfer.2014.11.047 doi GBV00000000000197A.pica (DE-627)ELV013481215 (ELSEVIER)S0017-9310(14)01019-9 DE-627 ger DE-627 rakwb eng 620 620 DE-600 600 VZ 51.79 bkl 51.45 bkl Tamanna, Alam verfasserin aut Flow boiling heat transfer and pressure drop characteristics in expanding silicon microgap heat sink 2015transfer abstract 15 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The present flow boiling experiments are performed for deionized water mass fluxes, G =400–1000kg/m2 s, imposed effective heat flux q eff ″ ranging from 0W/cm2 to 80W/cm2 for three different microgap configurations having same inlet depth 200μm and gradually increasing exit depth 200μm, 300μm and 460μm to explore expanding microgap effect on heat transfer and pressure drop performances. High speed flow visualizations are conducted simultaneously along with experiments to explore the bubble behavior in expanding microgap heat sink. The results of this study show that expanding microgap maintains a more uniform wall temperature than straight microgap heat sink and also delays dryout phase. In addition, expanding microgap of exit depth 300μm performs best for both heat transfer and pressure drop performances among all configurations. The present flow boiling experiments are performed for deionized water mass fluxes, G =400–1000kg/m2 s, imposed effective heat flux q eff ″ ranging from 0W/cm2 to 80W/cm2 for three different microgap configurations having same inlet depth 200μm and gradually increasing exit depth 200μm, 300μm and 460μm to explore expanding microgap effect on heat transfer and pressure drop performances. High speed flow visualizations are conducted simultaneously along with experiments to explore the bubble behavior in expanding microgap heat sink. The results of this study show that expanding microgap maintains a more uniform wall temperature than straight microgap heat sink and also delays dryout phase. In addition, expanding microgap of exit depth 300μm performs best for both heat transfer and pressure drop performances among all configurations. Flow boiling Elsevier Pressure drop Elsevier Flow visualization Elsevier Expanding microgap Elsevier Heat transfer Elsevier Lee, Poh Seng oth Enthalten in Elsevier Basheer, Sabeel M. ELSEVIER Analytical and computational investigation on host-guest interaction of cyclohexyl based thiosemicarbazones: Construction of molecular logic gates using multi-ion detection 2019 Amsterdam [u.a.] (DE-627)ELV002904500 volume:82 year:2015 pages:1-15 extent:15 https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.047 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 51.79 Sonstige Werkstoffe VZ 51.45 Werkstoffe mit besonderen Eigenschaften VZ AR 82 2015 1-15 15 045F 620 |
spelling |
10.1016/j.ijheatmasstransfer.2014.11.047 doi GBV00000000000197A.pica (DE-627)ELV013481215 (ELSEVIER)S0017-9310(14)01019-9 DE-627 ger DE-627 rakwb eng 620 620 DE-600 600 VZ 51.79 bkl 51.45 bkl Tamanna, Alam verfasserin aut Flow boiling heat transfer and pressure drop characteristics in expanding silicon microgap heat sink 2015transfer abstract 15 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The present flow boiling experiments are performed for deionized water mass fluxes, G =400–1000kg/m2 s, imposed effective heat flux q eff ″ ranging from 0W/cm2 to 80W/cm2 for three different microgap configurations having same inlet depth 200μm and gradually increasing exit depth 200μm, 300μm and 460μm to explore expanding microgap effect on heat transfer and pressure drop performances. High speed flow visualizations are conducted simultaneously along with experiments to explore the bubble behavior in expanding microgap heat sink. The results of this study show that expanding microgap maintains a more uniform wall temperature than straight microgap heat sink and also delays dryout phase. In addition, expanding microgap of exit depth 300μm performs best for both heat transfer and pressure drop performances among all configurations. The present flow boiling experiments are performed for deionized water mass fluxes, G =400–1000kg/m2 s, imposed effective heat flux q eff ″ ranging from 0W/cm2 to 80W/cm2 for three different microgap configurations having same inlet depth 200μm and gradually increasing exit depth 200μm, 300μm and 460μm to explore expanding microgap effect on heat transfer and pressure drop performances. High speed flow visualizations are conducted simultaneously along with experiments to explore the bubble behavior in expanding microgap heat sink. The results of this study show that expanding microgap maintains a more uniform wall temperature than straight microgap heat sink and also delays dryout phase. In addition, expanding microgap of exit depth 300μm performs best for both heat transfer and pressure drop performances among all configurations. Flow boiling Elsevier Pressure drop Elsevier Flow visualization Elsevier Expanding microgap Elsevier Heat transfer Elsevier Lee, Poh Seng oth Enthalten in Elsevier Basheer, Sabeel M. ELSEVIER Analytical and computational investigation on host-guest interaction of cyclohexyl based thiosemicarbazones: Construction of molecular logic gates using multi-ion detection 2019 Amsterdam [u.a.] (DE-627)ELV002904500 volume:82 year:2015 pages:1-15 extent:15 https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.047 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 51.79 Sonstige Werkstoffe VZ 51.45 Werkstoffe mit besonderen Eigenschaften VZ AR 82 2015 1-15 15 045F 620 |
allfields_unstemmed |
10.1016/j.ijheatmasstransfer.2014.11.047 doi GBV00000000000197A.pica (DE-627)ELV013481215 (ELSEVIER)S0017-9310(14)01019-9 DE-627 ger DE-627 rakwb eng 620 620 DE-600 600 VZ 51.79 bkl 51.45 bkl Tamanna, Alam verfasserin aut Flow boiling heat transfer and pressure drop characteristics in expanding silicon microgap heat sink 2015transfer abstract 15 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The present flow boiling experiments are performed for deionized water mass fluxes, G =400–1000kg/m2 s, imposed effective heat flux q eff ″ ranging from 0W/cm2 to 80W/cm2 for three different microgap configurations having same inlet depth 200μm and gradually increasing exit depth 200μm, 300μm and 460μm to explore expanding microgap effect on heat transfer and pressure drop performances. High speed flow visualizations are conducted simultaneously along with experiments to explore the bubble behavior in expanding microgap heat sink. The results of this study show that expanding microgap maintains a more uniform wall temperature than straight microgap heat sink and also delays dryout phase. In addition, expanding microgap of exit depth 300μm performs best for both heat transfer and pressure drop performances among all configurations. The present flow boiling experiments are performed for deionized water mass fluxes, G =400–1000kg/m2 s, imposed effective heat flux q eff ″ ranging from 0W/cm2 to 80W/cm2 for three different microgap configurations having same inlet depth 200μm and gradually increasing exit depth 200μm, 300μm and 460μm to explore expanding microgap effect on heat transfer and pressure drop performances. High speed flow visualizations are conducted simultaneously along with experiments to explore the bubble behavior in expanding microgap heat sink. The results of this study show that expanding microgap maintains a more uniform wall temperature than straight microgap heat sink and also delays dryout phase. In addition, expanding microgap of exit depth 300μm performs best for both heat transfer and pressure drop performances among all configurations. Flow boiling Elsevier Pressure drop Elsevier Flow visualization Elsevier Expanding microgap Elsevier Heat transfer Elsevier Lee, Poh Seng oth Enthalten in Elsevier Basheer, Sabeel M. ELSEVIER Analytical and computational investigation on host-guest interaction of cyclohexyl based thiosemicarbazones: Construction of molecular logic gates using multi-ion detection 2019 Amsterdam [u.a.] (DE-627)ELV002904500 volume:82 year:2015 pages:1-15 extent:15 https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.047 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 51.79 Sonstige Werkstoffe VZ 51.45 Werkstoffe mit besonderen Eigenschaften VZ AR 82 2015 1-15 15 045F 620 |
allfieldsGer |
10.1016/j.ijheatmasstransfer.2014.11.047 doi GBV00000000000197A.pica (DE-627)ELV013481215 (ELSEVIER)S0017-9310(14)01019-9 DE-627 ger DE-627 rakwb eng 620 620 DE-600 600 VZ 51.79 bkl 51.45 bkl Tamanna, Alam verfasserin aut Flow boiling heat transfer and pressure drop characteristics in expanding silicon microgap heat sink 2015transfer abstract 15 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The present flow boiling experiments are performed for deionized water mass fluxes, G =400–1000kg/m2 s, imposed effective heat flux q eff ″ ranging from 0W/cm2 to 80W/cm2 for three different microgap configurations having same inlet depth 200μm and gradually increasing exit depth 200μm, 300μm and 460μm to explore expanding microgap effect on heat transfer and pressure drop performances. High speed flow visualizations are conducted simultaneously along with experiments to explore the bubble behavior in expanding microgap heat sink. The results of this study show that expanding microgap maintains a more uniform wall temperature than straight microgap heat sink and also delays dryout phase. In addition, expanding microgap of exit depth 300μm performs best for both heat transfer and pressure drop performances among all configurations. The present flow boiling experiments are performed for deionized water mass fluxes, G =400–1000kg/m2 s, imposed effective heat flux q eff ″ ranging from 0W/cm2 to 80W/cm2 for three different microgap configurations having same inlet depth 200μm and gradually increasing exit depth 200μm, 300μm and 460μm to explore expanding microgap effect on heat transfer and pressure drop performances. High speed flow visualizations are conducted simultaneously along with experiments to explore the bubble behavior in expanding microgap heat sink. The results of this study show that expanding microgap maintains a more uniform wall temperature than straight microgap heat sink and also delays dryout phase. In addition, expanding microgap of exit depth 300μm performs best for both heat transfer and pressure drop performances among all configurations. Flow boiling Elsevier Pressure drop Elsevier Flow visualization Elsevier Expanding microgap Elsevier Heat transfer Elsevier Lee, Poh Seng oth Enthalten in Elsevier Basheer, Sabeel M. ELSEVIER Analytical and computational investigation on host-guest interaction of cyclohexyl based thiosemicarbazones: Construction of molecular logic gates using multi-ion detection 2019 Amsterdam [u.a.] (DE-627)ELV002904500 volume:82 year:2015 pages:1-15 extent:15 https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.047 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 51.79 Sonstige Werkstoffe VZ 51.45 Werkstoffe mit besonderen Eigenschaften VZ AR 82 2015 1-15 15 045F 620 |
allfieldsSound |
10.1016/j.ijheatmasstransfer.2014.11.047 doi GBV00000000000197A.pica (DE-627)ELV013481215 (ELSEVIER)S0017-9310(14)01019-9 DE-627 ger DE-627 rakwb eng 620 620 DE-600 600 VZ 51.79 bkl 51.45 bkl Tamanna, Alam verfasserin aut Flow boiling heat transfer and pressure drop characteristics in expanding silicon microgap heat sink 2015transfer abstract 15 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The present flow boiling experiments are performed for deionized water mass fluxes, G =400–1000kg/m2 s, imposed effective heat flux q eff ″ ranging from 0W/cm2 to 80W/cm2 for three different microgap configurations having same inlet depth 200μm and gradually increasing exit depth 200μm, 300μm and 460μm to explore expanding microgap effect on heat transfer and pressure drop performances. High speed flow visualizations are conducted simultaneously along with experiments to explore the bubble behavior in expanding microgap heat sink. The results of this study show that expanding microgap maintains a more uniform wall temperature than straight microgap heat sink and also delays dryout phase. In addition, expanding microgap of exit depth 300μm performs best for both heat transfer and pressure drop performances among all configurations. The present flow boiling experiments are performed for deionized water mass fluxes, G =400–1000kg/m2 s, imposed effective heat flux q eff ″ ranging from 0W/cm2 to 80W/cm2 for three different microgap configurations having same inlet depth 200μm and gradually increasing exit depth 200μm, 300μm and 460μm to explore expanding microgap effect on heat transfer and pressure drop performances. High speed flow visualizations are conducted simultaneously along with experiments to explore the bubble behavior in expanding microgap heat sink. The results of this study show that expanding microgap maintains a more uniform wall temperature than straight microgap heat sink and also delays dryout phase. In addition, expanding microgap of exit depth 300μm performs best for both heat transfer and pressure drop performances among all configurations. Flow boiling Elsevier Pressure drop Elsevier Flow visualization Elsevier Expanding microgap Elsevier Heat transfer Elsevier Lee, Poh Seng oth Enthalten in Elsevier Basheer, Sabeel M. ELSEVIER Analytical and computational investigation on host-guest interaction of cyclohexyl based thiosemicarbazones: Construction of molecular logic gates using multi-ion detection 2019 Amsterdam [u.a.] (DE-627)ELV002904500 volume:82 year:2015 pages:1-15 extent:15 https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.047 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 51.79 Sonstige Werkstoffe VZ 51.45 Werkstoffe mit besonderen Eigenschaften VZ AR 82 2015 1-15 15 045F 620 |
language |
English |
source |
Enthalten in Analytical and computational investigation on host-guest interaction of cyclohexyl based thiosemicarbazones: Construction of molecular logic gates using multi-ion detection Amsterdam [u.a.] volume:82 year:2015 pages:1-15 extent:15 |
sourceStr |
Enthalten in Analytical and computational investigation on host-guest interaction of cyclohexyl based thiosemicarbazones: Construction of molecular logic gates using multi-ion detection Amsterdam [u.a.] volume:82 year:2015 pages:1-15 extent:15 |
format_phy_str_mv |
Article |
bklname |
Sonstige Werkstoffe Werkstoffe mit besonderen Eigenschaften |
institution |
findex.gbv.de |
topic_facet |
Flow boiling Pressure drop Flow visualization Expanding microgap Heat transfer |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Analytical and computational investigation on host-guest interaction of cyclohexyl based thiosemicarbazones: Construction of molecular logic gates using multi-ion detection |
authorswithroles_txt_mv |
Tamanna, Alam @@aut@@ Lee, Poh Seng @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
ELV002904500 |
dewey-sort |
3620 |
id |
ELV013481215 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV013481215</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625112027.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijheatmasstransfer.2014.11.047</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000197A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV013481215</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0017-9310(14)01019-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.79</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.45</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tamanna, Alam</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Flow boiling heat transfer and pressure drop characteristics in expanding silicon microgap heat sink</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">15</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The present flow boiling experiments are performed for deionized water mass fluxes, G =400–1000kg/m2 s, imposed effective heat flux q eff ″ ranging from 0W/cm2 to 80W/cm2 for three different microgap configurations having same inlet depth 200μm and gradually increasing exit depth 200μm, 300μm and 460μm to explore expanding microgap effect on heat transfer and pressure drop performances. High speed flow visualizations are conducted simultaneously along with experiments to explore the bubble behavior in expanding microgap heat sink. The results of this study show that expanding microgap maintains a more uniform wall temperature than straight microgap heat sink and also delays dryout phase. In addition, expanding microgap of exit depth 300μm performs best for both heat transfer and pressure drop performances among all configurations.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The present flow boiling experiments are performed for deionized water mass fluxes, G =400–1000kg/m2 s, imposed effective heat flux q eff ″ ranging from 0W/cm2 to 80W/cm2 for three different microgap configurations having same inlet depth 200μm and gradually increasing exit depth 200μm, 300μm and 460μm to explore expanding microgap effect on heat transfer and pressure drop performances. High speed flow visualizations are conducted simultaneously along with experiments to explore the bubble behavior in expanding microgap heat sink. The results of this study show that expanding microgap maintains a more uniform wall temperature than straight microgap heat sink and also delays dryout phase. In addition, expanding microgap of exit depth 300μm performs best for both heat transfer and pressure drop performances among all configurations.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Flow boiling</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Pressure drop</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Flow visualization</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Expanding microgap</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Heat transfer</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lee, Poh Seng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Basheer, Sabeel M. ELSEVIER</subfield><subfield code="t">Analytical and computational investigation on host-guest interaction of cyclohexyl based thiosemicarbazones: Construction of molecular logic gates using multi-ion detection</subfield><subfield code="d">2019</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV002904500</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:82</subfield><subfield code="g">year:2015</subfield><subfield code="g">pages:1-15</subfield><subfield code="g">extent:15</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.047</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.79</subfield><subfield code="j">Sonstige Werkstoffe</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.45</subfield><subfield code="j">Werkstoffe mit besonderen Eigenschaften</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">82</subfield><subfield code="j">2015</subfield><subfield code="h">1-15</subfield><subfield code="g">15</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">620</subfield></datafield></record></collection>
|
author |
Tamanna, Alam |
spellingShingle |
Tamanna, Alam ddc 620 ddc 600 bkl 51.79 bkl 51.45 Elsevier Flow boiling Elsevier Pressure drop Elsevier Flow visualization Elsevier Expanding microgap Elsevier Heat transfer Flow boiling heat transfer and pressure drop characteristics in expanding silicon microgap heat sink |
authorStr |
Tamanna, Alam |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV002904500 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations 600 - Technology |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
620 620 DE-600 600 VZ 51.79 bkl 51.45 bkl Flow boiling heat transfer and pressure drop characteristics in expanding silicon microgap heat sink Flow boiling Elsevier Pressure drop Elsevier Flow visualization Elsevier Expanding microgap Elsevier Heat transfer Elsevier |
topic |
ddc 620 ddc 600 bkl 51.79 bkl 51.45 Elsevier Flow boiling Elsevier Pressure drop Elsevier Flow visualization Elsevier Expanding microgap Elsevier Heat transfer |
topic_unstemmed |
ddc 620 ddc 600 bkl 51.79 bkl 51.45 Elsevier Flow boiling Elsevier Pressure drop Elsevier Flow visualization Elsevier Expanding microgap Elsevier Heat transfer |
topic_browse |
ddc 620 ddc 600 bkl 51.79 bkl 51.45 Elsevier Flow boiling Elsevier Pressure drop Elsevier Flow visualization Elsevier Expanding microgap Elsevier Heat transfer |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
p s l ps psl |
hierarchy_parent_title |
Analytical and computational investigation on host-guest interaction of cyclohexyl based thiosemicarbazones: Construction of molecular logic gates using multi-ion detection |
hierarchy_parent_id |
ELV002904500 |
dewey-tens |
620 - Engineering 600 - Technology |
hierarchy_top_title |
Analytical and computational investigation on host-guest interaction of cyclohexyl based thiosemicarbazones: Construction of molecular logic gates using multi-ion detection |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV002904500 |
title |
Flow boiling heat transfer and pressure drop characteristics in expanding silicon microgap heat sink |
ctrlnum |
(DE-627)ELV013481215 (ELSEVIER)S0017-9310(14)01019-9 |
title_full |
Flow boiling heat transfer and pressure drop characteristics in expanding silicon microgap heat sink |
author_sort |
Tamanna, Alam |
journal |
Analytical and computational investigation on host-guest interaction of cyclohexyl based thiosemicarbazones: Construction of molecular logic gates using multi-ion detection |
journalStr |
Analytical and computational investigation on host-guest interaction of cyclohexyl based thiosemicarbazones: Construction of molecular logic gates using multi-ion detection |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
zzz |
container_start_page |
1 |
author_browse |
Tamanna, Alam |
container_volume |
82 |
physical |
15 |
class |
620 620 DE-600 600 VZ 51.79 bkl 51.45 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Tamanna, Alam |
doi_str_mv |
10.1016/j.ijheatmasstransfer.2014.11.047 |
dewey-full |
620 600 |
title_sort |
flow boiling heat transfer and pressure drop characteristics in expanding silicon microgap heat sink |
title_auth |
Flow boiling heat transfer and pressure drop characteristics in expanding silicon microgap heat sink |
abstract |
The present flow boiling experiments are performed for deionized water mass fluxes, G =400–1000kg/m2 s, imposed effective heat flux q eff ″ ranging from 0W/cm2 to 80W/cm2 for three different microgap configurations having same inlet depth 200μm and gradually increasing exit depth 200μm, 300μm and 460μm to explore expanding microgap effect on heat transfer and pressure drop performances. High speed flow visualizations are conducted simultaneously along with experiments to explore the bubble behavior in expanding microgap heat sink. The results of this study show that expanding microgap maintains a more uniform wall temperature than straight microgap heat sink and also delays dryout phase. In addition, expanding microgap of exit depth 300μm performs best for both heat transfer and pressure drop performances among all configurations. |
abstractGer |
The present flow boiling experiments are performed for deionized water mass fluxes, G =400–1000kg/m2 s, imposed effective heat flux q eff ″ ranging from 0W/cm2 to 80W/cm2 for three different microgap configurations having same inlet depth 200μm and gradually increasing exit depth 200μm, 300μm and 460μm to explore expanding microgap effect on heat transfer and pressure drop performances. High speed flow visualizations are conducted simultaneously along with experiments to explore the bubble behavior in expanding microgap heat sink. The results of this study show that expanding microgap maintains a more uniform wall temperature than straight microgap heat sink and also delays dryout phase. In addition, expanding microgap of exit depth 300μm performs best for both heat transfer and pressure drop performances among all configurations. |
abstract_unstemmed |
The present flow boiling experiments are performed for deionized water mass fluxes, G =400–1000kg/m2 s, imposed effective heat flux q eff ″ ranging from 0W/cm2 to 80W/cm2 for three different microgap configurations having same inlet depth 200μm and gradually increasing exit depth 200μm, 300μm and 460μm to explore expanding microgap effect on heat transfer and pressure drop performances. High speed flow visualizations are conducted simultaneously along with experiments to explore the bubble behavior in expanding microgap heat sink. The results of this study show that expanding microgap maintains a more uniform wall temperature than straight microgap heat sink and also delays dryout phase. In addition, expanding microgap of exit depth 300μm performs best for both heat transfer and pressure drop performances among all configurations. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
Flow boiling heat transfer and pressure drop characteristics in expanding silicon microgap heat sink |
url |
https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.047 |
remote_bool |
true |
author2 |
Lee, Poh Seng |
author2Str |
Lee, Poh Seng |
ppnlink |
ELV002904500 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1016/j.ijheatmasstransfer.2014.11.047 |
up_date |
2024-07-06T18:59:52.282Z |
_version_ |
1803857315530539008 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV013481215</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625112027.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijheatmasstransfer.2014.11.047</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000197A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV013481215</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0017-9310(14)01019-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.79</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.45</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tamanna, Alam</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Flow boiling heat transfer and pressure drop characteristics in expanding silicon microgap heat sink</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">15</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The present flow boiling experiments are performed for deionized water mass fluxes, G =400–1000kg/m2 s, imposed effective heat flux q eff ″ ranging from 0W/cm2 to 80W/cm2 for three different microgap configurations having same inlet depth 200μm and gradually increasing exit depth 200μm, 300μm and 460μm to explore expanding microgap effect on heat transfer and pressure drop performances. High speed flow visualizations are conducted simultaneously along with experiments to explore the bubble behavior in expanding microgap heat sink. The results of this study show that expanding microgap maintains a more uniform wall temperature than straight microgap heat sink and also delays dryout phase. In addition, expanding microgap of exit depth 300μm performs best for both heat transfer and pressure drop performances among all configurations.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The present flow boiling experiments are performed for deionized water mass fluxes, G =400–1000kg/m2 s, imposed effective heat flux q eff ″ ranging from 0W/cm2 to 80W/cm2 for three different microgap configurations having same inlet depth 200μm and gradually increasing exit depth 200μm, 300μm and 460μm to explore expanding microgap effect on heat transfer and pressure drop performances. High speed flow visualizations are conducted simultaneously along with experiments to explore the bubble behavior in expanding microgap heat sink. The results of this study show that expanding microgap maintains a more uniform wall temperature than straight microgap heat sink and also delays dryout phase. In addition, expanding microgap of exit depth 300μm performs best for both heat transfer and pressure drop performances among all configurations.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Flow boiling</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Pressure drop</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Flow visualization</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Expanding microgap</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Heat transfer</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lee, Poh Seng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Basheer, Sabeel M. ELSEVIER</subfield><subfield code="t">Analytical and computational investigation on host-guest interaction of cyclohexyl based thiosemicarbazones: Construction of molecular logic gates using multi-ion detection</subfield><subfield code="d">2019</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV002904500</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:82</subfield><subfield code="g">year:2015</subfield><subfield code="g">pages:1-15</subfield><subfield code="g">extent:15</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.047</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.79</subfield><subfield code="j">Sonstige Werkstoffe</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.45</subfield><subfield code="j">Werkstoffe mit besonderen Eigenschaften</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">82</subfield><subfield code="j">2015</subfield><subfield code="h">1-15</subfield><subfield code="g">15</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">620</subfield></datafield></record></collection>
|
score |
7.4010506 |