Constructing multimetric indices and testing ability of landscape metrics to assess condition of freshwater wetlands in the Northeastern US
• We built multimetric indices (MMIs) of wetland condition for vegetation, soil, water and algae. • We used data from the Environmental Protection Agency's National Wetland Condition Assessment. • Vegetation and soil were the best performing MMIs, and included many commonly cited indicators. •...
Ausführliche Beschreibung
Autor*in: |
Miller, Kathryn M. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
National Park Service Inventory and Monitoring Program |
---|
Umfang: |
10 |
---|
Übergeordnetes Werk: |
Enthalten in: The capacity for acute exercise to modulate emotional memories: A review of findings and mechanisms - Keyan, Dharani ELSEVIER, 2019, integrating monitoring, assessment and management, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:66 ; year:2016 ; pages:143-152 ; extent:10 |
Links: |
---|
DOI / URN: |
10.1016/j.ecolind.2016.01.017 |
---|
Katalog-ID: |
ELV013747797 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV013747797 | ||
003 | DE-627 | ||
005 | 20230623110818.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180602s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ecolind.2016.01.017 |2 doi | |
028 | 5 | 2 | |a GBV00000000000207A.pica |
035 | |a (DE-627)ELV013747797 | ||
035 | |a (ELSEVIER)S1470-160X(16)00021-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 570 |a 630 | |
082 | 0 | 4 | |a 570 |q DE-600 |
082 | 0 | 4 | |a 630 |q DE-600 |
082 | 0 | 4 | |a 150 |a 610 |q VZ |
084 | |a BIODIV |q DE-30 |2 fid | ||
084 | |a 77.50 |2 bkl | ||
084 | |a 44.90 |2 bkl | ||
100 | 1 | |a Miller, Kathryn M. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Constructing multimetric indices and testing ability of landscape metrics to assess condition of freshwater wetlands in the Northeastern US |
264 | 1 | |c 2016 | |
300 | |a 10 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a • We built multimetric indices (MMIs) of wetland condition for vegetation, soil, water and algae. • We used data from the Environmental Protection Agency's National Wetland Condition Assessment. • Vegetation and soil were the best performing MMIs, and included many commonly cited indicators. • Adjacent land use and vegetation were strong predictors of soil, water, and algae MMIs. • The wetland MMIs we constructed are applicable to a range of wetland types covering 11 eastern US states. | ||
650 | 7 | |a National Park Service Inventory and Monitoring Program |2 Elsevier | |
650 | 7 | |a Multimetric indices |2 Elsevier | |
650 | 7 | |a National Wetland Condition Assessment |2 Elsevier | |
650 | 7 | |a Landscape context |2 Elsevier | |
650 | 7 | |a Wetland ecological integrity |2 Elsevier | |
650 | 7 | |a Freshwater wetland condition |2 Elsevier | |
700 | 1 | |a Mitchell, Brian R. |4 oth | |
700 | 1 | |a McGill, Brian J. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Keyan, Dharani ELSEVIER |t The capacity for acute exercise to modulate emotional memories: A review of findings and mechanisms |d 2019 |d integrating monitoring, assessment and management |g Amsterdam [u.a.] |w (DE-627)ELV003175588 |
773 | 1 | 8 | |g volume:66 |g year:2016 |g pages:143-152 |g extent:10 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.ecolind.2016.01.017 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 77.50 |j Psychophysiologie |q VZ |
936 | b | k | |a 44.90 |j Neurologie |q VZ |
951 | |a AR | ||
952 | |d 66 |j 2016 |h 143-152 |g 10 | ||
953 | |2 045F |a 570 |
author_variant |
k m m km kmm |
---|---|
matchkey_str |
millerkathrynmmitchellbrianrmcgillbrianj:2016----:osrcigutmtiidcsntsigbltolnsaeerctasscniinfrsw |
hierarchy_sort_str |
2016 |
bklnumber |
77.50 44.90 |
publishDate |
2016 |
allfields |
10.1016/j.ecolind.2016.01.017 doi GBV00000000000207A.pica (DE-627)ELV013747797 (ELSEVIER)S1470-160X(16)00021-2 DE-627 ger DE-627 rakwb eng 570 630 570 DE-600 630 DE-600 150 610 VZ BIODIV DE-30 fid 77.50 bkl 44.90 bkl Miller, Kathryn M. verfasserin aut Constructing multimetric indices and testing ability of landscape metrics to assess condition of freshwater wetlands in the Northeastern US 2016 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • We built multimetric indices (MMIs) of wetland condition for vegetation, soil, water and algae. • We used data from the Environmental Protection Agency's National Wetland Condition Assessment. • Vegetation and soil were the best performing MMIs, and included many commonly cited indicators. • Adjacent land use and vegetation were strong predictors of soil, water, and algae MMIs. • The wetland MMIs we constructed are applicable to a range of wetland types covering 11 eastern US states. National Park Service Inventory and Monitoring Program Elsevier Multimetric indices Elsevier National Wetland Condition Assessment Elsevier Landscape context Elsevier Wetland ecological integrity Elsevier Freshwater wetland condition Elsevier Mitchell, Brian R. oth McGill, Brian J. oth Enthalten in Elsevier Science Keyan, Dharani ELSEVIER The capacity for acute exercise to modulate emotional memories: A review of findings and mechanisms 2019 integrating monitoring, assessment and management Amsterdam [u.a.] (DE-627)ELV003175588 volume:66 year:2016 pages:143-152 extent:10 https://doi.org/10.1016/j.ecolind.2016.01.017 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 77.50 Psychophysiologie VZ 44.90 Neurologie VZ AR 66 2016 143-152 10 045F 570 |
spelling |
10.1016/j.ecolind.2016.01.017 doi GBV00000000000207A.pica (DE-627)ELV013747797 (ELSEVIER)S1470-160X(16)00021-2 DE-627 ger DE-627 rakwb eng 570 630 570 DE-600 630 DE-600 150 610 VZ BIODIV DE-30 fid 77.50 bkl 44.90 bkl Miller, Kathryn M. verfasserin aut Constructing multimetric indices and testing ability of landscape metrics to assess condition of freshwater wetlands in the Northeastern US 2016 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • We built multimetric indices (MMIs) of wetland condition for vegetation, soil, water and algae. • We used data from the Environmental Protection Agency's National Wetland Condition Assessment. • Vegetation and soil were the best performing MMIs, and included many commonly cited indicators. • Adjacent land use and vegetation were strong predictors of soil, water, and algae MMIs. • The wetland MMIs we constructed are applicable to a range of wetland types covering 11 eastern US states. National Park Service Inventory and Monitoring Program Elsevier Multimetric indices Elsevier National Wetland Condition Assessment Elsevier Landscape context Elsevier Wetland ecological integrity Elsevier Freshwater wetland condition Elsevier Mitchell, Brian R. oth McGill, Brian J. oth Enthalten in Elsevier Science Keyan, Dharani ELSEVIER The capacity for acute exercise to modulate emotional memories: A review of findings and mechanisms 2019 integrating monitoring, assessment and management Amsterdam [u.a.] (DE-627)ELV003175588 volume:66 year:2016 pages:143-152 extent:10 https://doi.org/10.1016/j.ecolind.2016.01.017 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 77.50 Psychophysiologie VZ 44.90 Neurologie VZ AR 66 2016 143-152 10 045F 570 |
allfields_unstemmed |
10.1016/j.ecolind.2016.01.017 doi GBV00000000000207A.pica (DE-627)ELV013747797 (ELSEVIER)S1470-160X(16)00021-2 DE-627 ger DE-627 rakwb eng 570 630 570 DE-600 630 DE-600 150 610 VZ BIODIV DE-30 fid 77.50 bkl 44.90 bkl Miller, Kathryn M. verfasserin aut Constructing multimetric indices and testing ability of landscape metrics to assess condition of freshwater wetlands in the Northeastern US 2016 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • We built multimetric indices (MMIs) of wetland condition for vegetation, soil, water and algae. • We used data from the Environmental Protection Agency's National Wetland Condition Assessment. • Vegetation and soil were the best performing MMIs, and included many commonly cited indicators. • Adjacent land use and vegetation were strong predictors of soil, water, and algae MMIs. • The wetland MMIs we constructed are applicable to a range of wetland types covering 11 eastern US states. National Park Service Inventory and Monitoring Program Elsevier Multimetric indices Elsevier National Wetland Condition Assessment Elsevier Landscape context Elsevier Wetland ecological integrity Elsevier Freshwater wetland condition Elsevier Mitchell, Brian R. oth McGill, Brian J. oth Enthalten in Elsevier Science Keyan, Dharani ELSEVIER The capacity for acute exercise to modulate emotional memories: A review of findings and mechanisms 2019 integrating monitoring, assessment and management Amsterdam [u.a.] (DE-627)ELV003175588 volume:66 year:2016 pages:143-152 extent:10 https://doi.org/10.1016/j.ecolind.2016.01.017 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 77.50 Psychophysiologie VZ 44.90 Neurologie VZ AR 66 2016 143-152 10 045F 570 |
allfieldsGer |
10.1016/j.ecolind.2016.01.017 doi GBV00000000000207A.pica (DE-627)ELV013747797 (ELSEVIER)S1470-160X(16)00021-2 DE-627 ger DE-627 rakwb eng 570 630 570 DE-600 630 DE-600 150 610 VZ BIODIV DE-30 fid 77.50 bkl 44.90 bkl Miller, Kathryn M. verfasserin aut Constructing multimetric indices and testing ability of landscape metrics to assess condition of freshwater wetlands in the Northeastern US 2016 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • We built multimetric indices (MMIs) of wetland condition for vegetation, soil, water and algae. • We used data from the Environmental Protection Agency's National Wetland Condition Assessment. • Vegetation and soil were the best performing MMIs, and included many commonly cited indicators. • Adjacent land use and vegetation were strong predictors of soil, water, and algae MMIs. • The wetland MMIs we constructed are applicable to a range of wetland types covering 11 eastern US states. National Park Service Inventory and Monitoring Program Elsevier Multimetric indices Elsevier National Wetland Condition Assessment Elsevier Landscape context Elsevier Wetland ecological integrity Elsevier Freshwater wetland condition Elsevier Mitchell, Brian R. oth McGill, Brian J. oth Enthalten in Elsevier Science Keyan, Dharani ELSEVIER The capacity for acute exercise to modulate emotional memories: A review of findings and mechanisms 2019 integrating monitoring, assessment and management Amsterdam [u.a.] (DE-627)ELV003175588 volume:66 year:2016 pages:143-152 extent:10 https://doi.org/10.1016/j.ecolind.2016.01.017 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 77.50 Psychophysiologie VZ 44.90 Neurologie VZ AR 66 2016 143-152 10 045F 570 |
allfieldsSound |
10.1016/j.ecolind.2016.01.017 doi GBV00000000000207A.pica (DE-627)ELV013747797 (ELSEVIER)S1470-160X(16)00021-2 DE-627 ger DE-627 rakwb eng 570 630 570 DE-600 630 DE-600 150 610 VZ BIODIV DE-30 fid 77.50 bkl 44.90 bkl Miller, Kathryn M. verfasserin aut Constructing multimetric indices and testing ability of landscape metrics to assess condition of freshwater wetlands in the Northeastern US 2016 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • We built multimetric indices (MMIs) of wetland condition for vegetation, soil, water and algae. • We used data from the Environmental Protection Agency's National Wetland Condition Assessment. • Vegetation and soil were the best performing MMIs, and included many commonly cited indicators. • Adjacent land use and vegetation were strong predictors of soil, water, and algae MMIs. • The wetland MMIs we constructed are applicable to a range of wetland types covering 11 eastern US states. National Park Service Inventory and Monitoring Program Elsevier Multimetric indices Elsevier National Wetland Condition Assessment Elsevier Landscape context Elsevier Wetland ecological integrity Elsevier Freshwater wetland condition Elsevier Mitchell, Brian R. oth McGill, Brian J. oth Enthalten in Elsevier Science Keyan, Dharani ELSEVIER The capacity for acute exercise to modulate emotional memories: A review of findings and mechanisms 2019 integrating monitoring, assessment and management Amsterdam [u.a.] (DE-627)ELV003175588 volume:66 year:2016 pages:143-152 extent:10 https://doi.org/10.1016/j.ecolind.2016.01.017 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 77.50 Psychophysiologie VZ 44.90 Neurologie VZ AR 66 2016 143-152 10 045F 570 |
language |
English |
source |
Enthalten in The capacity for acute exercise to modulate emotional memories: A review of findings and mechanisms Amsterdam [u.a.] volume:66 year:2016 pages:143-152 extent:10 |
sourceStr |
Enthalten in The capacity for acute exercise to modulate emotional memories: A review of findings and mechanisms Amsterdam [u.a.] volume:66 year:2016 pages:143-152 extent:10 |
format_phy_str_mv |
Article |
bklname |
Psychophysiologie Neurologie |
institution |
findex.gbv.de |
topic_facet |
National Park Service Inventory and Monitoring Program Multimetric indices National Wetland Condition Assessment Landscape context Wetland ecological integrity Freshwater wetland condition |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
The capacity for acute exercise to modulate emotional memories: A review of findings and mechanisms |
authorswithroles_txt_mv |
Miller, Kathryn M. @@aut@@ Mitchell, Brian R. @@oth@@ McGill, Brian J. @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
ELV003175588 |
dewey-sort |
3570 |
id |
ELV013747797 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV013747797</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230623110818.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ecolind.2016.01.017</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000207A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV013747797</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1470-160X(16)00021-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">570</subfield><subfield code="a">630</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">150</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">77.50</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.90</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Miller, Kathryn M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Constructing multimetric indices and testing ability of landscape metrics to assess condition of freshwater wetlands in the Northeastern US</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• We built multimetric indices (MMIs) of wetland condition for vegetation, soil, water and algae. • We used data from the Environmental Protection Agency's National Wetland Condition Assessment. • Vegetation and soil were the best performing MMIs, and included many commonly cited indicators. • Adjacent land use and vegetation were strong predictors of soil, water, and algae MMIs. • The wetland MMIs we constructed are applicable to a range of wetland types covering 11 eastern US states.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">National Park Service Inventory and Monitoring Program</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Multimetric indices</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">National Wetland Condition Assessment</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Landscape context</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Wetland ecological integrity</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Freshwater wetland condition</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mitchell, Brian R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">McGill, Brian J.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Keyan, Dharani ELSEVIER</subfield><subfield code="t">The capacity for acute exercise to modulate emotional memories: A review of findings and mechanisms</subfield><subfield code="d">2019</subfield><subfield code="d">integrating monitoring, assessment and management</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV003175588</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:66</subfield><subfield code="g">year:2016</subfield><subfield code="g">pages:143-152</subfield><subfield code="g">extent:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ecolind.2016.01.017</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">77.50</subfield><subfield code="j">Psychophysiologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.90</subfield><subfield code="j">Neurologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">66</subfield><subfield code="j">2016</subfield><subfield code="h">143-152</subfield><subfield code="g">10</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">570</subfield></datafield></record></collection>
|
author |
Miller, Kathryn M. |
spellingShingle |
Miller, Kathryn M. ddc 570 ddc 630 ddc 150 fid BIODIV bkl 77.50 bkl 44.90 Elsevier National Park Service Inventory and Monitoring Program Elsevier Multimetric indices Elsevier National Wetland Condition Assessment Elsevier Landscape context Elsevier Wetland ecological integrity Elsevier Freshwater wetland condition Constructing multimetric indices and testing ability of landscape metrics to assess condition of freshwater wetlands in the Northeastern US |
authorStr |
Miller, Kathryn M. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV003175588 |
format |
electronic Article |
dewey-ones |
570 - Life sciences; biology 630 - Agriculture & related technologies 150 - Psychology 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
570 630 570 DE-600 630 DE-600 150 610 VZ BIODIV DE-30 fid 77.50 bkl 44.90 bkl Constructing multimetric indices and testing ability of landscape metrics to assess condition of freshwater wetlands in the Northeastern US National Park Service Inventory and Monitoring Program Elsevier Multimetric indices Elsevier National Wetland Condition Assessment Elsevier Landscape context Elsevier Wetland ecological integrity Elsevier Freshwater wetland condition Elsevier |
topic |
ddc 570 ddc 630 ddc 150 fid BIODIV bkl 77.50 bkl 44.90 Elsevier National Park Service Inventory and Monitoring Program Elsevier Multimetric indices Elsevier National Wetland Condition Assessment Elsevier Landscape context Elsevier Wetland ecological integrity Elsevier Freshwater wetland condition |
topic_unstemmed |
ddc 570 ddc 630 ddc 150 fid BIODIV bkl 77.50 bkl 44.90 Elsevier National Park Service Inventory and Monitoring Program Elsevier Multimetric indices Elsevier National Wetland Condition Assessment Elsevier Landscape context Elsevier Wetland ecological integrity Elsevier Freshwater wetland condition |
topic_browse |
ddc 570 ddc 630 ddc 150 fid BIODIV bkl 77.50 bkl 44.90 Elsevier National Park Service Inventory and Monitoring Program Elsevier Multimetric indices Elsevier National Wetland Condition Assessment Elsevier Landscape context Elsevier Wetland ecological integrity Elsevier Freshwater wetland condition |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
b r m br brm b j m bj bjm |
hierarchy_parent_title |
The capacity for acute exercise to modulate emotional memories: A review of findings and mechanisms |
hierarchy_parent_id |
ELV003175588 |
dewey-tens |
570 - Life sciences; biology 630 - Agriculture 150 - Psychology 610 - Medicine & health |
hierarchy_top_title |
The capacity for acute exercise to modulate emotional memories: A review of findings and mechanisms |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV003175588 |
title |
Constructing multimetric indices and testing ability of landscape metrics to assess condition of freshwater wetlands in the Northeastern US |
ctrlnum |
(DE-627)ELV013747797 (ELSEVIER)S1470-160X(16)00021-2 |
title_full |
Constructing multimetric indices and testing ability of landscape metrics to assess condition of freshwater wetlands in the Northeastern US |
author_sort |
Miller, Kathryn M. |
journal |
The capacity for acute exercise to modulate emotional memories: A review of findings and mechanisms |
journalStr |
The capacity for acute exercise to modulate emotional memories: A review of findings and mechanisms |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology 100 - Philosophy & psychology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
zzz |
container_start_page |
143 |
author_browse |
Miller, Kathryn M. |
container_volume |
66 |
physical |
10 |
class |
570 630 570 DE-600 630 DE-600 150 610 VZ BIODIV DE-30 fid 77.50 bkl 44.90 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Miller, Kathryn M. |
doi_str_mv |
10.1016/j.ecolind.2016.01.017 |
dewey-full |
570 630 150 610 |
title_sort |
constructing multimetric indices and testing ability of landscape metrics to assess condition of freshwater wetlands in the northeastern us |
title_auth |
Constructing multimetric indices and testing ability of landscape metrics to assess condition of freshwater wetlands in the Northeastern US |
abstract |
• We built multimetric indices (MMIs) of wetland condition for vegetation, soil, water and algae. • We used data from the Environmental Protection Agency's National Wetland Condition Assessment. • Vegetation and soil were the best performing MMIs, and included many commonly cited indicators. • Adjacent land use and vegetation were strong predictors of soil, water, and algae MMIs. • The wetland MMIs we constructed are applicable to a range of wetland types covering 11 eastern US states. |
abstractGer |
• We built multimetric indices (MMIs) of wetland condition for vegetation, soil, water and algae. • We used data from the Environmental Protection Agency's National Wetland Condition Assessment. • Vegetation and soil were the best performing MMIs, and included many commonly cited indicators. • Adjacent land use and vegetation were strong predictors of soil, water, and algae MMIs. • The wetland MMIs we constructed are applicable to a range of wetland types covering 11 eastern US states. |
abstract_unstemmed |
• We built multimetric indices (MMIs) of wetland condition for vegetation, soil, water and algae. • We used data from the Environmental Protection Agency's National Wetland Condition Assessment. • Vegetation and soil were the best performing MMIs, and included many commonly cited indicators. • Adjacent land use and vegetation were strong predictors of soil, water, and algae MMIs. • The wetland MMIs we constructed are applicable to a range of wetland types covering 11 eastern US states. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA |
title_short |
Constructing multimetric indices and testing ability of landscape metrics to assess condition of freshwater wetlands in the Northeastern US |
url |
https://doi.org/10.1016/j.ecolind.2016.01.017 |
remote_bool |
true |
author2 |
Mitchell, Brian R. McGill, Brian J. |
author2Str |
Mitchell, Brian R. McGill, Brian J. |
ppnlink |
ELV003175588 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1016/j.ecolind.2016.01.017 |
up_date |
2024-07-06T19:42:48.123Z |
_version_ |
1803860016497688576 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV013747797</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230623110818.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ecolind.2016.01.017</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000207A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV013747797</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1470-160X(16)00021-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">570</subfield><subfield code="a">630</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">150</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">77.50</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.90</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Miller, Kathryn M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Constructing multimetric indices and testing ability of landscape metrics to assess condition of freshwater wetlands in the Northeastern US</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• We built multimetric indices (MMIs) of wetland condition for vegetation, soil, water and algae. • We used data from the Environmental Protection Agency's National Wetland Condition Assessment. • Vegetation and soil were the best performing MMIs, and included many commonly cited indicators. • Adjacent land use and vegetation were strong predictors of soil, water, and algae MMIs. • The wetland MMIs we constructed are applicable to a range of wetland types covering 11 eastern US states.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">National Park Service Inventory and Monitoring Program</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Multimetric indices</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">National Wetland Condition Assessment</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Landscape context</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Wetland ecological integrity</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Freshwater wetland condition</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mitchell, Brian R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">McGill, Brian J.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Keyan, Dharani ELSEVIER</subfield><subfield code="t">The capacity for acute exercise to modulate emotional memories: A review of findings and mechanisms</subfield><subfield code="d">2019</subfield><subfield code="d">integrating monitoring, assessment and management</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV003175588</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:66</subfield><subfield code="g">year:2016</subfield><subfield code="g">pages:143-152</subfield><subfield code="g">extent:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ecolind.2016.01.017</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">77.50</subfield><subfield code="j">Psychophysiologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.90</subfield><subfield code="j">Neurologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">66</subfield><subfield code="j">2016</subfield><subfield code="h">143-152</subfield><subfield code="g">10</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">570</subfield></datafield></record></collection>
|
score |
7.401187 |