Dielectric and electromagnetic wave absorption properties of reduced graphene oxide/barium aluminosilicate glass–ceramic composites
BaAl2Si2O8 (BAS) glass–ceramic powders were prepared by sol–gel method. Graphene oxide (GO)/BAS mixture powders were prepared by a simple mixing process of GO and BAS. Dense and uniform reduced graphene oxide (RGO)/BAS composites were fabricated by the hot-pressing of GO/BAS, which was accompanied b...
Ausführliche Beschreibung
Autor*in: |
Li, Mian [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
8 |
---|
Übergeordnetes Werk: |
Enthalten in: Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration - Rey, F. ELSEVIER, 2018, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:42 ; year:2016 ; number:6 ; day:1 ; month:05 ; pages:7099-7106 ; extent:8 |
Links: |
---|
DOI / URN: |
10.1016/j.ceramint.2016.01.098 |
---|
Katalog-ID: |
ELV013934821 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV013934821 | ||
003 | DE-627 | ||
005 | 20230625112656.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180602s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ceramint.2016.01.098 |2 doi | |
028 | 5 | 2 | |a GBVA2016008000005.pica |
035 | |a (DE-627)ELV013934821 | ||
035 | |a (ELSEVIER)S0272-8842(16)00129-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 670 | |
082 | 0 | 4 | |a 670 |q DE-600 |
082 | 0 | 4 | |a 333.7 |a 610 |q VZ |
084 | |a 43.12 |2 bkl | ||
084 | |a 43.13 |2 bkl | ||
084 | |a 44.13 |2 bkl | ||
100 | 1 | |a Li, Mian |e verfasserin |4 aut | |
245 | 1 | 0 | |a Dielectric and electromagnetic wave absorption properties of reduced graphene oxide/barium aluminosilicate glass–ceramic composites |
264 | 1 | |c 2016transfer abstract | |
300 | |a 8 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a BaAl2Si2O8 (BAS) glass–ceramic powders were prepared by sol–gel method. Graphene oxide (GO)/BAS mixture powders were prepared by a simple mixing process of GO and BAS. Dense and uniform reduced graphene oxide (RGO)/BAS composites were fabricated by the hot-pressing of GO/BAS, which was accompanied by the in-situ thermal reduction of GO. Microstructure, phase composition, dielectric and electromagnetic wave (EM) absorption properties of RGO/BAS were investigated. The results reveal that RGO can promote the hexacelsian-to-celsian phase transformation of BAS. In the frequency range from 8GHz to 12GHz, the complex permittivity of RGO/BAS increases with increasing RGO content. The composite with 1.5wt% of RGO shows good EM absorbing ability. When the sample thickness is 2.1mm, the minimum reflection coefficient (RC) reaches −33dB, and the effective absorption bandwidth is more than 3.1GHz. | ||
520 | |a BaAl2Si2O8 (BAS) glass–ceramic powders were prepared by sol–gel method. Graphene oxide (GO)/BAS mixture powders were prepared by a simple mixing process of GO and BAS. Dense and uniform reduced graphene oxide (RGO)/BAS composites were fabricated by the hot-pressing of GO/BAS, which was accompanied by the in-situ thermal reduction of GO. Microstructure, phase composition, dielectric and electromagnetic wave (EM) absorption properties of RGO/BAS were investigated. The results reveal that RGO can promote the hexacelsian-to-celsian phase transformation of BAS. In the frequency range from 8GHz to 12GHz, the complex permittivity of RGO/BAS increases with increasing RGO content. The composite with 1.5wt% of RGO shows good EM absorbing ability. When the sample thickness is 2.1mm, the minimum reflection coefficient (RC) reaches −33dB, and the effective absorption bandwidth is more than 3.1GHz. | ||
650 | 7 | |a Phase transformation |2 Elsevier | |
650 | 7 | |a D. Glass–ceramic |2 Elsevier | |
650 | 7 | |a Electromagnetic wave absorption |2 Elsevier | |
650 | 7 | |a C. Dielectric properties |2 Elsevier | |
700 | 1 | |a Yin, Xiaowei |4 oth | |
700 | 1 | |a Chen, Lingqi |4 oth | |
700 | 1 | |a Han, Meikang |4 oth | |
700 | 1 | |a Cheng, Laifei |4 oth | |
700 | 1 | |a Zhang, Litong |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Rey, F. ELSEVIER |t Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration |d 2018 |g Amsterdam [u.a.] |w (DE-627)ELV000899798 |
773 | 1 | 8 | |g volume:42 |g year:2016 |g number:6 |g day:1 |g month:05 |g pages:7099-7106 |g extent:8 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.ceramint.2016.01.098 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OPC-GGO | ||
936 | b | k | |a 43.12 |j Umweltchemie |q VZ |
936 | b | k | |a 43.13 |j Umwelttoxikologie |q VZ |
936 | b | k | |a 44.13 |j Medizinische Ökologie |q VZ |
951 | |a AR | ||
952 | |d 42 |j 2016 |e 6 |b 1 |c 0501 |h 7099-7106 |g 8 | ||
953 | |2 045F |a 670 |
author_variant |
m l ml |
---|---|
matchkey_str |
limianyinxiaoweichenlingqihanmeikangchen:2016----:ilcrcneetoantcaebopinrprisfeuegahnoieaimlmn |
hierarchy_sort_str |
2016transfer abstract |
bklnumber |
43.12 43.13 44.13 |
publishDate |
2016 |
allfields |
10.1016/j.ceramint.2016.01.098 doi GBVA2016008000005.pica (DE-627)ELV013934821 (ELSEVIER)S0272-8842(16)00129-2 DE-627 ger DE-627 rakwb eng 670 670 DE-600 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Li, Mian verfasserin aut Dielectric and electromagnetic wave absorption properties of reduced graphene oxide/barium aluminosilicate glass–ceramic composites 2016transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier BaAl2Si2O8 (BAS) glass–ceramic powders were prepared by sol–gel method. Graphene oxide (GO)/BAS mixture powders were prepared by a simple mixing process of GO and BAS. Dense and uniform reduced graphene oxide (RGO)/BAS composites were fabricated by the hot-pressing of GO/BAS, which was accompanied by the in-situ thermal reduction of GO. Microstructure, phase composition, dielectric and electromagnetic wave (EM) absorption properties of RGO/BAS were investigated. The results reveal that RGO can promote the hexacelsian-to-celsian phase transformation of BAS. In the frequency range from 8GHz to 12GHz, the complex permittivity of RGO/BAS increases with increasing RGO content. The composite with 1.5wt% of RGO shows good EM absorbing ability. When the sample thickness is 2.1mm, the minimum reflection coefficient (RC) reaches −33dB, and the effective absorption bandwidth is more than 3.1GHz. BaAl2Si2O8 (BAS) glass–ceramic powders were prepared by sol–gel method. Graphene oxide (GO)/BAS mixture powders were prepared by a simple mixing process of GO and BAS. Dense and uniform reduced graphene oxide (RGO)/BAS composites were fabricated by the hot-pressing of GO/BAS, which was accompanied by the in-situ thermal reduction of GO. Microstructure, phase composition, dielectric and electromagnetic wave (EM) absorption properties of RGO/BAS were investigated. The results reveal that RGO can promote the hexacelsian-to-celsian phase transformation of BAS. In the frequency range from 8GHz to 12GHz, the complex permittivity of RGO/BAS increases with increasing RGO content. The composite with 1.5wt% of RGO shows good EM absorbing ability. When the sample thickness is 2.1mm, the minimum reflection coefficient (RC) reaches −33dB, and the effective absorption bandwidth is more than 3.1GHz. Phase transformation Elsevier D. Glass–ceramic Elsevier Electromagnetic wave absorption Elsevier C. Dielectric properties Elsevier Yin, Xiaowei oth Chen, Lingqi oth Han, Meikang oth Cheng, Laifei oth Zhang, Litong oth Enthalten in Elsevier Science Rey, F. ELSEVIER Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration 2018 Amsterdam [u.a.] (DE-627)ELV000899798 volume:42 year:2016 number:6 day:1 month:05 pages:7099-7106 extent:8 https://doi.org/10.1016/j.ceramint.2016.01.098 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 42 2016 6 1 0501 7099-7106 8 045F 670 |
spelling |
10.1016/j.ceramint.2016.01.098 doi GBVA2016008000005.pica (DE-627)ELV013934821 (ELSEVIER)S0272-8842(16)00129-2 DE-627 ger DE-627 rakwb eng 670 670 DE-600 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Li, Mian verfasserin aut Dielectric and electromagnetic wave absorption properties of reduced graphene oxide/barium aluminosilicate glass–ceramic composites 2016transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier BaAl2Si2O8 (BAS) glass–ceramic powders were prepared by sol–gel method. Graphene oxide (GO)/BAS mixture powders were prepared by a simple mixing process of GO and BAS. Dense and uniform reduced graphene oxide (RGO)/BAS composites were fabricated by the hot-pressing of GO/BAS, which was accompanied by the in-situ thermal reduction of GO. Microstructure, phase composition, dielectric and electromagnetic wave (EM) absorption properties of RGO/BAS were investigated. The results reveal that RGO can promote the hexacelsian-to-celsian phase transformation of BAS. In the frequency range from 8GHz to 12GHz, the complex permittivity of RGO/BAS increases with increasing RGO content. The composite with 1.5wt% of RGO shows good EM absorbing ability. When the sample thickness is 2.1mm, the minimum reflection coefficient (RC) reaches −33dB, and the effective absorption bandwidth is more than 3.1GHz. BaAl2Si2O8 (BAS) glass–ceramic powders were prepared by sol–gel method. Graphene oxide (GO)/BAS mixture powders were prepared by a simple mixing process of GO and BAS. Dense and uniform reduced graphene oxide (RGO)/BAS composites were fabricated by the hot-pressing of GO/BAS, which was accompanied by the in-situ thermal reduction of GO. Microstructure, phase composition, dielectric and electromagnetic wave (EM) absorption properties of RGO/BAS were investigated. The results reveal that RGO can promote the hexacelsian-to-celsian phase transformation of BAS. In the frequency range from 8GHz to 12GHz, the complex permittivity of RGO/BAS increases with increasing RGO content. The composite with 1.5wt% of RGO shows good EM absorbing ability. When the sample thickness is 2.1mm, the minimum reflection coefficient (RC) reaches −33dB, and the effective absorption bandwidth is more than 3.1GHz. Phase transformation Elsevier D. Glass–ceramic Elsevier Electromagnetic wave absorption Elsevier C. Dielectric properties Elsevier Yin, Xiaowei oth Chen, Lingqi oth Han, Meikang oth Cheng, Laifei oth Zhang, Litong oth Enthalten in Elsevier Science Rey, F. ELSEVIER Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration 2018 Amsterdam [u.a.] (DE-627)ELV000899798 volume:42 year:2016 number:6 day:1 month:05 pages:7099-7106 extent:8 https://doi.org/10.1016/j.ceramint.2016.01.098 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 42 2016 6 1 0501 7099-7106 8 045F 670 |
allfields_unstemmed |
10.1016/j.ceramint.2016.01.098 doi GBVA2016008000005.pica (DE-627)ELV013934821 (ELSEVIER)S0272-8842(16)00129-2 DE-627 ger DE-627 rakwb eng 670 670 DE-600 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Li, Mian verfasserin aut Dielectric and electromagnetic wave absorption properties of reduced graphene oxide/barium aluminosilicate glass–ceramic composites 2016transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier BaAl2Si2O8 (BAS) glass–ceramic powders were prepared by sol–gel method. Graphene oxide (GO)/BAS mixture powders were prepared by a simple mixing process of GO and BAS. Dense and uniform reduced graphene oxide (RGO)/BAS composites were fabricated by the hot-pressing of GO/BAS, which was accompanied by the in-situ thermal reduction of GO. Microstructure, phase composition, dielectric and electromagnetic wave (EM) absorption properties of RGO/BAS were investigated. The results reveal that RGO can promote the hexacelsian-to-celsian phase transformation of BAS. In the frequency range from 8GHz to 12GHz, the complex permittivity of RGO/BAS increases with increasing RGO content. The composite with 1.5wt% of RGO shows good EM absorbing ability. When the sample thickness is 2.1mm, the minimum reflection coefficient (RC) reaches −33dB, and the effective absorption bandwidth is more than 3.1GHz. BaAl2Si2O8 (BAS) glass–ceramic powders were prepared by sol–gel method. Graphene oxide (GO)/BAS mixture powders were prepared by a simple mixing process of GO and BAS. Dense and uniform reduced graphene oxide (RGO)/BAS composites were fabricated by the hot-pressing of GO/BAS, which was accompanied by the in-situ thermal reduction of GO. Microstructure, phase composition, dielectric and electromagnetic wave (EM) absorption properties of RGO/BAS were investigated. The results reveal that RGO can promote the hexacelsian-to-celsian phase transformation of BAS. In the frequency range from 8GHz to 12GHz, the complex permittivity of RGO/BAS increases with increasing RGO content. The composite with 1.5wt% of RGO shows good EM absorbing ability. When the sample thickness is 2.1mm, the minimum reflection coefficient (RC) reaches −33dB, and the effective absorption bandwidth is more than 3.1GHz. Phase transformation Elsevier D. Glass–ceramic Elsevier Electromagnetic wave absorption Elsevier C. Dielectric properties Elsevier Yin, Xiaowei oth Chen, Lingqi oth Han, Meikang oth Cheng, Laifei oth Zhang, Litong oth Enthalten in Elsevier Science Rey, F. ELSEVIER Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration 2018 Amsterdam [u.a.] (DE-627)ELV000899798 volume:42 year:2016 number:6 day:1 month:05 pages:7099-7106 extent:8 https://doi.org/10.1016/j.ceramint.2016.01.098 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 42 2016 6 1 0501 7099-7106 8 045F 670 |
allfieldsGer |
10.1016/j.ceramint.2016.01.098 doi GBVA2016008000005.pica (DE-627)ELV013934821 (ELSEVIER)S0272-8842(16)00129-2 DE-627 ger DE-627 rakwb eng 670 670 DE-600 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Li, Mian verfasserin aut Dielectric and electromagnetic wave absorption properties of reduced graphene oxide/barium aluminosilicate glass–ceramic composites 2016transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier BaAl2Si2O8 (BAS) glass–ceramic powders were prepared by sol–gel method. Graphene oxide (GO)/BAS mixture powders were prepared by a simple mixing process of GO and BAS. Dense and uniform reduced graphene oxide (RGO)/BAS composites were fabricated by the hot-pressing of GO/BAS, which was accompanied by the in-situ thermal reduction of GO. Microstructure, phase composition, dielectric and electromagnetic wave (EM) absorption properties of RGO/BAS were investigated. The results reveal that RGO can promote the hexacelsian-to-celsian phase transformation of BAS. In the frequency range from 8GHz to 12GHz, the complex permittivity of RGO/BAS increases with increasing RGO content. The composite with 1.5wt% of RGO shows good EM absorbing ability. When the sample thickness is 2.1mm, the minimum reflection coefficient (RC) reaches −33dB, and the effective absorption bandwidth is more than 3.1GHz. BaAl2Si2O8 (BAS) glass–ceramic powders were prepared by sol–gel method. Graphene oxide (GO)/BAS mixture powders were prepared by a simple mixing process of GO and BAS. Dense and uniform reduced graphene oxide (RGO)/BAS composites were fabricated by the hot-pressing of GO/BAS, which was accompanied by the in-situ thermal reduction of GO. Microstructure, phase composition, dielectric and electromagnetic wave (EM) absorption properties of RGO/BAS were investigated. The results reveal that RGO can promote the hexacelsian-to-celsian phase transformation of BAS. In the frequency range from 8GHz to 12GHz, the complex permittivity of RGO/BAS increases with increasing RGO content. The composite with 1.5wt% of RGO shows good EM absorbing ability. When the sample thickness is 2.1mm, the minimum reflection coefficient (RC) reaches −33dB, and the effective absorption bandwidth is more than 3.1GHz. Phase transformation Elsevier D. Glass–ceramic Elsevier Electromagnetic wave absorption Elsevier C. Dielectric properties Elsevier Yin, Xiaowei oth Chen, Lingqi oth Han, Meikang oth Cheng, Laifei oth Zhang, Litong oth Enthalten in Elsevier Science Rey, F. ELSEVIER Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration 2018 Amsterdam [u.a.] (DE-627)ELV000899798 volume:42 year:2016 number:6 day:1 month:05 pages:7099-7106 extent:8 https://doi.org/10.1016/j.ceramint.2016.01.098 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 42 2016 6 1 0501 7099-7106 8 045F 670 |
allfieldsSound |
10.1016/j.ceramint.2016.01.098 doi GBVA2016008000005.pica (DE-627)ELV013934821 (ELSEVIER)S0272-8842(16)00129-2 DE-627 ger DE-627 rakwb eng 670 670 DE-600 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Li, Mian verfasserin aut Dielectric and electromagnetic wave absorption properties of reduced graphene oxide/barium aluminosilicate glass–ceramic composites 2016transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier BaAl2Si2O8 (BAS) glass–ceramic powders were prepared by sol–gel method. Graphene oxide (GO)/BAS mixture powders were prepared by a simple mixing process of GO and BAS. Dense and uniform reduced graphene oxide (RGO)/BAS composites were fabricated by the hot-pressing of GO/BAS, which was accompanied by the in-situ thermal reduction of GO. Microstructure, phase composition, dielectric and electromagnetic wave (EM) absorption properties of RGO/BAS were investigated. The results reveal that RGO can promote the hexacelsian-to-celsian phase transformation of BAS. In the frequency range from 8GHz to 12GHz, the complex permittivity of RGO/BAS increases with increasing RGO content. The composite with 1.5wt% of RGO shows good EM absorbing ability. When the sample thickness is 2.1mm, the minimum reflection coefficient (RC) reaches −33dB, and the effective absorption bandwidth is more than 3.1GHz. BaAl2Si2O8 (BAS) glass–ceramic powders were prepared by sol–gel method. Graphene oxide (GO)/BAS mixture powders were prepared by a simple mixing process of GO and BAS. Dense and uniform reduced graphene oxide (RGO)/BAS composites were fabricated by the hot-pressing of GO/BAS, which was accompanied by the in-situ thermal reduction of GO. Microstructure, phase composition, dielectric and electromagnetic wave (EM) absorption properties of RGO/BAS were investigated. The results reveal that RGO can promote the hexacelsian-to-celsian phase transformation of BAS. In the frequency range from 8GHz to 12GHz, the complex permittivity of RGO/BAS increases with increasing RGO content. The composite with 1.5wt% of RGO shows good EM absorbing ability. When the sample thickness is 2.1mm, the minimum reflection coefficient (RC) reaches −33dB, and the effective absorption bandwidth is more than 3.1GHz. Phase transformation Elsevier D. Glass–ceramic Elsevier Electromagnetic wave absorption Elsevier C. Dielectric properties Elsevier Yin, Xiaowei oth Chen, Lingqi oth Han, Meikang oth Cheng, Laifei oth Zhang, Litong oth Enthalten in Elsevier Science Rey, F. ELSEVIER Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration 2018 Amsterdam [u.a.] (DE-627)ELV000899798 volume:42 year:2016 number:6 day:1 month:05 pages:7099-7106 extent:8 https://doi.org/10.1016/j.ceramint.2016.01.098 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 42 2016 6 1 0501 7099-7106 8 045F 670 |
language |
English |
source |
Enthalten in Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration Amsterdam [u.a.] volume:42 year:2016 number:6 day:1 month:05 pages:7099-7106 extent:8 |
sourceStr |
Enthalten in Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration Amsterdam [u.a.] volume:42 year:2016 number:6 day:1 month:05 pages:7099-7106 extent:8 |
format_phy_str_mv |
Article |
bklname |
Umweltchemie Umwelttoxikologie Medizinische Ökologie |
institution |
findex.gbv.de |
topic_facet |
Phase transformation D. Glass–ceramic Electromagnetic wave absorption C. Dielectric properties |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration |
authorswithroles_txt_mv |
Li, Mian @@aut@@ Yin, Xiaowei @@oth@@ Chen, Lingqi @@oth@@ Han, Meikang @@oth@@ Cheng, Laifei @@oth@@ Zhang, Litong @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
ELV000899798 |
dewey-sort |
3670 |
id |
ELV013934821 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV013934821</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625112656.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ceramint.2016.01.098</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2016008000005.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV013934821</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0272-8842(16)00129-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">670</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Mian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dielectric and electromagnetic wave absorption properties of reduced graphene oxide/barium aluminosilicate glass–ceramic composites</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">BaAl2Si2O8 (BAS) glass–ceramic powders were prepared by sol–gel method. Graphene oxide (GO)/BAS mixture powders were prepared by a simple mixing process of GO and BAS. Dense and uniform reduced graphene oxide (RGO)/BAS composites were fabricated by the hot-pressing of GO/BAS, which was accompanied by the in-situ thermal reduction of GO. Microstructure, phase composition, dielectric and electromagnetic wave (EM) absorption properties of RGO/BAS were investigated. The results reveal that RGO can promote the hexacelsian-to-celsian phase transformation of BAS. In the frequency range from 8GHz to 12GHz, the complex permittivity of RGO/BAS increases with increasing RGO content. The composite with 1.5wt% of RGO shows good EM absorbing ability. When the sample thickness is 2.1mm, the minimum reflection coefficient (RC) reaches −33dB, and the effective absorption bandwidth is more than 3.1GHz.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">BaAl2Si2O8 (BAS) glass–ceramic powders were prepared by sol–gel method. Graphene oxide (GO)/BAS mixture powders were prepared by a simple mixing process of GO and BAS. Dense and uniform reduced graphene oxide (RGO)/BAS composites were fabricated by the hot-pressing of GO/BAS, which was accompanied by the in-situ thermal reduction of GO. Microstructure, phase composition, dielectric and electromagnetic wave (EM) absorption properties of RGO/BAS were investigated. The results reveal that RGO can promote the hexacelsian-to-celsian phase transformation of BAS. In the frequency range from 8GHz to 12GHz, the complex permittivity of RGO/BAS increases with increasing RGO content. The composite with 1.5wt% of RGO shows good EM absorbing ability. When the sample thickness is 2.1mm, the minimum reflection coefficient (RC) reaches −33dB, and the effective absorption bandwidth is more than 3.1GHz.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Phase transformation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">D. Glass–ceramic</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Electromagnetic wave absorption</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">C. Dielectric properties</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yin, Xiaowei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Lingqi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Han, Meikang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cheng, Laifei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Litong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Rey, F. ELSEVIER</subfield><subfield code="t">Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration</subfield><subfield code="d">2018</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV000899798</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:42</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:6</subfield><subfield code="g">day:1</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:7099-7106</subfield><subfield code="g">extent:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ceramint.2016.01.098</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.12</subfield><subfield code="j">Umweltchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.13</subfield><subfield code="j">Umwelttoxikologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.13</subfield><subfield code="j">Medizinische Ökologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">42</subfield><subfield code="j">2016</subfield><subfield code="e">6</subfield><subfield code="b">1</subfield><subfield code="c">0501</subfield><subfield code="h">7099-7106</subfield><subfield code="g">8</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">670</subfield></datafield></record></collection>
|
author |
Li, Mian |
spellingShingle |
Li, Mian ddc 670 ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Elsevier Phase transformation Elsevier D. Glass–ceramic Elsevier Electromagnetic wave absorption Elsevier C. Dielectric properties Dielectric and electromagnetic wave absorption properties of reduced graphene oxide/barium aluminosilicate glass–ceramic composites |
authorStr |
Li, Mian |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV000899798 |
format |
electronic Article |
dewey-ones |
670 - Manufacturing 333 - Economics of land & energy 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
670 670 DE-600 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Dielectric and electromagnetic wave absorption properties of reduced graphene oxide/barium aluminosilicate glass–ceramic composites Phase transformation Elsevier D. Glass–ceramic Elsevier Electromagnetic wave absorption Elsevier C. Dielectric properties Elsevier |
topic |
ddc 670 ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Elsevier Phase transformation Elsevier D. Glass–ceramic Elsevier Electromagnetic wave absorption Elsevier C. Dielectric properties |
topic_unstemmed |
ddc 670 ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Elsevier Phase transformation Elsevier D. Glass–ceramic Elsevier Electromagnetic wave absorption Elsevier C. Dielectric properties |
topic_browse |
ddc 670 ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Elsevier Phase transformation Elsevier D. Glass–ceramic Elsevier Electromagnetic wave absorption Elsevier C. Dielectric properties |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
x y xy l c lc m h mh l c lc l z lz |
hierarchy_parent_title |
Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration |
hierarchy_parent_id |
ELV000899798 |
dewey-tens |
670 - Manufacturing 330 - Economics 610 - Medicine & health |
hierarchy_top_title |
Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV000899798 |
title |
Dielectric and electromagnetic wave absorption properties of reduced graphene oxide/barium aluminosilicate glass–ceramic composites |
ctrlnum |
(DE-627)ELV013934821 (ELSEVIER)S0272-8842(16)00129-2 |
title_full |
Dielectric and electromagnetic wave absorption properties of reduced graphene oxide/barium aluminosilicate glass–ceramic composites |
author_sort |
Li, Mian |
journal |
Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration |
journalStr |
Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 300 - Social sciences |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
zzz |
container_start_page |
7099 |
author_browse |
Li, Mian |
container_volume |
42 |
physical |
8 |
class |
670 670 DE-600 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Li, Mian |
doi_str_mv |
10.1016/j.ceramint.2016.01.098 |
dewey-full |
670 333.7 610 |
title_sort |
dielectric and electromagnetic wave absorption properties of reduced graphene oxide/barium aluminosilicate glass–ceramic composites |
title_auth |
Dielectric and electromagnetic wave absorption properties of reduced graphene oxide/barium aluminosilicate glass–ceramic composites |
abstract |
BaAl2Si2O8 (BAS) glass–ceramic powders were prepared by sol–gel method. Graphene oxide (GO)/BAS mixture powders were prepared by a simple mixing process of GO and BAS. Dense and uniform reduced graphene oxide (RGO)/BAS composites were fabricated by the hot-pressing of GO/BAS, which was accompanied by the in-situ thermal reduction of GO. Microstructure, phase composition, dielectric and electromagnetic wave (EM) absorption properties of RGO/BAS were investigated. The results reveal that RGO can promote the hexacelsian-to-celsian phase transformation of BAS. In the frequency range from 8GHz to 12GHz, the complex permittivity of RGO/BAS increases with increasing RGO content. The composite with 1.5wt% of RGO shows good EM absorbing ability. When the sample thickness is 2.1mm, the minimum reflection coefficient (RC) reaches −33dB, and the effective absorption bandwidth is more than 3.1GHz. |
abstractGer |
BaAl2Si2O8 (BAS) glass–ceramic powders were prepared by sol–gel method. Graphene oxide (GO)/BAS mixture powders were prepared by a simple mixing process of GO and BAS. Dense and uniform reduced graphene oxide (RGO)/BAS composites were fabricated by the hot-pressing of GO/BAS, which was accompanied by the in-situ thermal reduction of GO. Microstructure, phase composition, dielectric and electromagnetic wave (EM) absorption properties of RGO/BAS were investigated. The results reveal that RGO can promote the hexacelsian-to-celsian phase transformation of BAS. In the frequency range from 8GHz to 12GHz, the complex permittivity of RGO/BAS increases with increasing RGO content. The composite with 1.5wt% of RGO shows good EM absorbing ability. When the sample thickness is 2.1mm, the minimum reflection coefficient (RC) reaches −33dB, and the effective absorption bandwidth is more than 3.1GHz. |
abstract_unstemmed |
BaAl2Si2O8 (BAS) glass–ceramic powders were prepared by sol–gel method. Graphene oxide (GO)/BAS mixture powders were prepared by a simple mixing process of GO and BAS. Dense and uniform reduced graphene oxide (RGO)/BAS composites were fabricated by the hot-pressing of GO/BAS, which was accompanied by the in-situ thermal reduction of GO. Microstructure, phase composition, dielectric and electromagnetic wave (EM) absorption properties of RGO/BAS were investigated. The results reveal that RGO can promote the hexacelsian-to-celsian phase transformation of BAS. In the frequency range from 8GHz to 12GHz, the complex permittivity of RGO/BAS increases with increasing RGO content. The composite with 1.5wt% of RGO shows good EM absorbing ability. When the sample thickness is 2.1mm, the minimum reflection coefficient (RC) reaches −33dB, and the effective absorption bandwidth is more than 3.1GHz. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO |
container_issue |
6 |
title_short |
Dielectric and electromagnetic wave absorption properties of reduced graphene oxide/barium aluminosilicate glass–ceramic composites |
url |
https://doi.org/10.1016/j.ceramint.2016.01.098 |
remote_bool |
true |
author2 |
Yin, Xiaowei Chen, Lingqi Han, Meikang Cheng, Laifei Zhang, Litong |
author2Str |
Yin, Xiaowei Chen, Lingqi Han, Meikang Cheng, Laifei Zhang, Litong |
ppnlink |
ELV000899798 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth |
doi_str |
10.1016/j.ceramint.2016.01.098 |
up_date |
2024-07-06T20:09:56.713Z |
_version_ |
1803861724197027840 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV013934821</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625112656.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ceramint.2016.01.098</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2016008000005.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV013934821</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0272-8842(16)00129-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">670</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Mian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dielectric and electromagnetic wave absorption properties of reduced graphene oxide/barium aluminosilicate glass–ceramic composites</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">BaAl2Si2O8 (BAS) glass–ceramic powders were prepared by sol–gel method. Graphene oxide (GO)/BAS mixture powders were prepared by a simple mixing process of GO and BAS. Dense and uniform reduced graphene oxide (RGO)/BAS composites were fabricated by the hot-pressing of GO/BAS, which was accompanied by the in-situ thermal reduction of GO. Microstructure, phase composition, dielectric and electromagnetic wave (EM) absorption properties of RGO/BAS were investigated. The results reveal that RGO can promote the hexacelsian-to-celsian phase transformation of BAS. In the frequency range from 8GHz to 12GHz, the complex permittivity of RGO/BAS increases with increasing RGO content. The composite with 1.5wt% of RGO shows good EM absorbing ability. When the sample thickness is 2.1mm, the minimum reflection coefficient (RC) reaches −33dB, and the effective absorption bandwidth is more than 3.1GHz.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">BaAl2Si2O8 (BAS) glass–ceramic powders were prepared by sol–gel method. Graphene oxide (GO)/BAS mixture powders were prepared by a simple mixing process of GO and BAS. Dense and uniform reduced graphene oxide (RGO)/BAS composites were fabricated by the hot-pressing of GO/BAS, which was accompanied by the in-situ thermal reduction of GO. Microstructure, phase composition, dielectric and electromagnetic wave (EM) absorption properties of RGO/BAS were investigated. The results reveal that RGO can promote the hexacelsian-to-celsian phase transformation of BAS. In the frequency range from 8GHz to 12GHz, the complex permittivity of RGO/BAS increases with increasing RGO content. The composite with 1.5wt% of RGO shows good EM absorbing ability. When the sample thickness is 2.1mm, the minimum reflection coefficient (RC) reaches −33dB, and the effective absorption bandwidth is more than 3.1GHz.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Phase transformation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">D. Glass–ceramic</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Electromagnetic wave absorption</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">C. Dielectric properties</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yin, Xiaowei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Lingqi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Han, Meikang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cheng, Laifei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Litong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Rey, F. ELSEVIER</subfield><subfield code="t">Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration</subfield><subfield code="d">2018</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV000899798</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:42</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:6</subfield><subfield code="g">day:1</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:7099-7106</subfield><subfield code="g">extent:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ceramint.2016.01.098</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.12</subfield><subfield code="j">Umweltchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.13</subfield><subfield code="j">Umwelttoxikologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.13</subfield><subfield code="j">Medizinische Ökologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">42</subfield><subfield code="j">2016</subfield><subfield code="e">6</subfield><subfield code="b">1</subfield><subfield code="c">0501</subfield><subfield code="h">7099-7106</subfield><subfield code="g">8</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">670</subfield></datafield></record></collection>
|
score |
7.4024553 |