A novel dehydrogenation style of NH3BH3 by catalyst of transition metal clusters
The dehydrogenation of ammonia-borane (NH3BH3, AB) by transition metal (TM) catalyst has been under intense scrutiny in experiments but a sound molecular level understanding has remained elusive. Herein, using the density functional theory (DFT) method, AB dehydrogenation mechanistic routes undersco...
Ausführliche Beschreibung
Autor*in: |
Zhou, Tingwei [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
15 |
---|
Übergeordnetes Werk: |
Enthalten in: External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs - Dedhia, Kavita ELSEVIER, 2018, official journal of the International Association for Hydrogen Energy, New York, NY [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:41 ; year:2016 ; number:27 ; day:20 ; month:07 ; pages:11746-11760 ; extent:15 |
Links: |
---|
DOI / URN: |
10.1016/j.ijhydene.2015.12.201 |
---|
Katalog-ID: |
ELV01412601X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV01412601X | ||
003 | DE-627 | ||
005 | 20230625112950.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180602s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ijhydene.2015.12.201 |2 doi | |
028 | 5 | 2 | |a GBVA2016012000025.pica |
035 | |a (DE-627)ELV01412601X | ||
035 | |a (ELSEVIER)S0360-3199(15)30948-4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 660 |a 620 | |
082 | 0 | 4 | |a 660 |q DE-600 |
082 | 0 | 4 | |a 620 |q DE-600 |
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.94 |2 bkl | ||
100 | 1 | |a Zhou, Tingwei |e verfasserin |4 aut | |
245 | 1 | 0 | |a A novel dehydrogenation style of NH3BH3 by catalyst of transition metal clusters |
264 | 1 | |c 2016transfer abstract | |
300 | |a 15 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a The dehydrogenation of ammonia-borane (NH3BH3, AB) by transition metal (TM) catalyst has been under intense scrutiny in experiments but a sound molecular level understanding has remained elusive. Herein, using the density functional theory (DFT) method, AB dehydrogenation mechanistic routes underscores the importance of formations of metal-dihydrogen intermediate in the presence of Cu2, Fe2, FeCu dimers and Fe12 Cu cluster. Its formation involves the stepwise or concerted transfer of H(B) and H(N) hydrogen atoms from AB to metal atom, which is different from the previously proposed dehydrogenation mechanism that one H(N) hydrogen atom is firstly transferred to B atom and then the polymerized H2 molecule is released from B atom. The metal-dihydride Cu2 H2 rather than the dissociated H2 is ultimately derived for the catalytic reaction between Cu2 and AB. Nevertheless, with respect to the dehydrogenation of pristine AB, the release of one equiv of H2 molecule per AB can be significantly promoted in a kinetically fast and thermodynamically favorable way by the catalysts of Fe2, FeCu, and Fe12 Cu. | ||
520 | |a The dehydrogenation of ammonia-borane (NH3BH3, AB) by transition metal (TM) catalyst has been under intense scrutiny in experiments but a sound molecular level understanding has remained elusive. Herein, using the density functional theory (DFT) method, AB dehydrogenation mechanistic routes underscores the importance of formations of metal-dihydrogen intermediate in the presence of Cu2, Fe2, FeCu dimers and Fe12 Cu cluster. Its formation involves the stepwise or concerted transfer of H(B) and H(N) hydrogen atoms from AB to metal atom, which is different from the previously proposed dehydrogenation mechanism that one H(N) hydrogen atom is firstly transferred to B atom and then the polymerized H2 molecule is released from B atom. The metal-dihydride Cu2 H2 rather than the dissociated H2 is ultimately derived for the catalytic reaction between Cu2 and AB. Nevertheless, with respect to the dehydrogenation of pristine AB, the release of one equiv of H2 molecule per AB can be significantly promoted in a kinetically fast and thermodynamically favorable way by the catalysts of Fe2, FeCu, and Fe12 Cu. | ||
650 | 7 | |a Metal-dihydrogen complexes |2 Elsevier | |
650 | 7 | |a Dehydrogenation |2 Elsevier | |
650 | 7 | |a Ammonia borane |2 Elsevier | |
650 | 7 | |a Density functional theory |2 Elsevier | |
650 | 7 | |a Transition metal |2 Elsevier | |
700 | 1 | |a Wang, Guanqi |4 oth | |
700 | 1 | |a Cui, Hong |4 oth | |
700 | 1 | |a Yuan, Hongkuan |4 oth | |
700 | 1 | |a Kuang, Anlong |4 oth | |
700 | 1 | |a Tian, Chunling |4 oth | |
700 | 1 | |a Wang, Junzhong |4 oth | |
700 | 1 | |a Chen, Hong |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Dedhia, Kavita ELSEVIER |t External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs |d 2018 |d official journal of the International Association for Hydrogen Energy |g New York, NY [u.a.] |w (DE-627)ELV000127019 |
773 | 1 | 8 | |g volume:41 |g year:2016 |g number:27 |g day:20 |g month:07 |g pages:11746-11760 |g extent:15 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.ijhydene.2015.12.201 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 44.94 |j Hals-Nasen-Ohrenheilkunde |q VZ |
951 | |a AR | ||
952 | |d 41 |j 2016 |e 27 |b 20 |c 0720 |h 11746-11760 |g 15 | ||
953 | |2 045F |a 660 |
author_variant |
t z tz |
---|---|
matchkey_str |
zhoutingweiwangguanqicuihongyuanhongkuan:2016----:nvleyrgntosyefhb3yaaytfrn |
hierarchy_sort_str |
2016transfer abstract |
bklnumber |
44.94 |
publishDate |
2016 |
allfields |
10.1016/j.ijhydene.2015.12.201 doi GBVA2016012000025.pica (DE-627)ELV01412601X (ELSEVIER)S0360-3199(15)30948-4 DE-627 ger DE-627 rakwb eng 660 620 660 DE-600 620 DE-600 610 VZ 44.94 bkl Zhou, Tingwei verfasserin aut A novel dehydrogenation style of NH3BH3 by catalyst of transition metal clusters 2016transfer abstract 15 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The dehydrogenation of ammonia-borane (NH3BH3, AB) by transition metal (TM) catalyst has been under intense scrutiny in experiments but a sound molecular level understanding has remained elusive. Herein, using the density functional theory (DFT) method, AB dehydrogenation mechanistic routes underscores the importance of formations of metal-dihydrogen intermediate in the presence of Cu2, Fe2, FeCu dimers and Fe12 Cu cluster. Its formation involves the stepwise or concerted transfer of H(B) and H(N) hydrogen atoms from AB to metal atom, which is different from the previously proposed dehydrogenation mechanism that one H(N) hydrogen atom is firstly transferred to B atom and then the polymerized H2 molecule is released from B atom. The metal-dihydride Cu2 H2 rather than the dissociated H2 is ultimately derived for the catalytic reaction between Cu2 and AB. Nevertheless, with respect to the dehydrogenation of pristine AB, the release of one equiv of H2 molecule per AB can be significantly promoted in a kinetically fast and thermodynamically favorable way by the catalysts of Fe2, FeCu, and Fe12 Cu. The dehydrogenation of ammonia-borane (NH3BH3, AB) by transition metal (TM) catalyst has been under intense scrutiny in experiments but a sound molecular level understanding has remained elusive. Herein, using the density functional theory (DFT) method, AB dehydrogenation mechanistic routes underscores the importance of formations of metal-dihydrogen intermediate in the presence of Cu2, Fe2, FeCu dimers and Fe12 Cu cluster. Its formation involves the stepwise or concerted transfer of H(B) and H(N) hydrogen atoms from AB to metal atom, which is different from the previously proposed dehydrogenation mechanism that one H(N) hydrogen atom is firstly transferred to B atom and then the polymerized H2 molecule is released from B atom. The metal-dihydride Cu2 H2 rather than the dissociated H2 is ultimately derived for the catalytic reaction between Cu2 and AB. Nevertheless, with respect to the dehydrogenation of pristine AB, the release of one equiv of H2 molecule per AB can be significantly promoted in a kinetically fast and thermodynamically favorable way by the catalysts of Fe2, FeCu, and Fe12 Cu. Metal-dihydrogen complexes Elsevier Dehydrogenation Elsevier Ammonia borane Elsevier Density functional theory Elsevier Transition metal Elsevier Wang, Guanqi oth Cui, Hong oth Yuan, Hongkuan oth Kuang, Anlong oth Tian, Chunling oth Wang, Junzhong oth Chen, Hong oth Enthalten in Elsevier Dedhia, Kavita ELSEVIER External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs 2018 official journal of the International Association for Hydrogen Energy New York, NY [u.a.] (DE-627)ELV000127019 volume:41 year:2016 number:27 day:20 month:07 pages:11746-11760 extent:15 https://doi.org/10.1016/j.ijhydene.2015.12.201 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 41 2016 27 20 0720 11746-11760 15 045F 660 |
spelling |
10.1016/j.ijhydene.2015.12.201 doi GBVA2016012000025.pica (DE-627)ELV01412601X (ELSEVIER)S0360-3199(15)30948-4 DE-627 ger DE-627 rakwb eng 660 620 660 DE-600 620 DE-600 610 VZ 44.94 bkl Zhou, Tingwei verfasserin aut A novel dehydrogenation style of NH3BH3 by catalyst of transition metal clusters 2016transfer abstract 15 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The dehydrogenation of ammonia-borane (NH3BH3, AB) by transition metal (TM) catalyst has been under intense scrutiny in experiments but a sound molecular level understanding has remained elusive. Herein, using the density functional theory (DFT) method, AB dehydrogenation mechanistic routes underscores the importance of formations of metal-dihydrogen intermediate in the presence of Cu2, Fe2, FeCu dimers and Fe12 Cu cluster. Its formation involves the stepwise or concerted transfer of H(B) and H(N) hydrogen atoms from AB to metal atom, which is different from the previously proposed dehydrogenation mechanism that one H(N) hydrogen atom is firstly transferred to B atom and then the polymerized H2 molecule is released from B atom. The metal-dihydride Cu2 H2 rather than the dissociated H2 is ultimately derived for the catalytic reaction between Cu2 and AB. Nevertheless, with respect to the dehydrogenation of pristine AB, the release of one equiv of H2 molecule per AB can be significantly promoted in a kinetically fast and thermodynamically favorable way by the catalysts of Fe2, FeCu, and Fe12 Cu. The dehydrogenation of ammonia-borane (NH3BH3, AB) by transition metal (TM) catalyst has been under intense scrutiny in experiments but a sound molecular level understanding has remained elusive. Herein, using the density functional theory (DFT) method, AB dehydrogenation mechanistic routes underscores the importance of formations of metal-dihydrogen intermediate in the presence of Cu2, Fe2, FeCu dimers and Fe12 Cu cluster. Its formation involves the stepwise or concerted transfer of H(B) and H(N) hydrogen atoms from AB to metal atom, which is different from the previously proposed dehydrogenation mechanism that one H(N) hydrogen atom is firstly transferred to B atom and then the polymerized H2 molecule is released from B atom. The metal-dihydride Cu2 H2 rather than the dissociated H2 is ultimately derived for the catalytic reaction between Cu2 and AB. Nevertheless, with respect to the dehydrogenation of pristine AB, the release of one equiv of H2 molecule per AB can be significantly promoted in a kinetically fast and thermodynamically favorable way by the catalysts of Fe2, FeCu, and Fe12 Cu. Metal-dihydrogen complexes Elsevier Dehydrogenation Elsevier Ammonia borane Elsevier Density functional theory Elsevier Transition metal Elsevier Wang, Guanqi oth Cui, Hong oth Yuan, Hongkuan oth Kuang, Anlong oth Tian, Chunling oth Wang, Junzhong oth Chen, Hong oth Enthalten in Elsevier Dedhia, Kavita ELSEVIER External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs 2018 official journal of the International Association for Hydrogen Energy New York, NY [u.a.] (DE-627)ELV000127019 volume:41 year:2016 number:27 day:20 month:07 pages:11746-11760 extent:15 https://doi.org/10.1016/j.ijhydene.2015.12.201 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 41 2016 27 20 0720 11746-11760 15 045F 660 |
allfields_unstemmed |
10.1016/j.ijhydene.2015.12.201 doi GBVA2016012000025.pica (DE-627)ELV01412601X (ELSEVIER)S0360-3199(15)30948-4 DE-627 ger DE-627 rakwb eng 660 620 660 DE-600 620 DE-600 610 VZ 44.94 bkl Zhou, Tingwei verfasserin aut A novel dehydrogenation style of NH3BH3 by catalyst of transition metal clusters 2016transfer abstract 15 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The dehydrogenation of ammonia-borane (NH3BH3, AB) by transition metal (TM) catalyst has been under intense scrutiny in experiments but a sound molecular level understanding has remained elusive. Herein, using the density functional theory (DFT) method, AB dehydrogenation mechanistic routes underscores the importance of formations of metal-dihydrogen intermediate in the presence of Cu2, Fe2, FeCu dimers and Fe12 Cu cluster. Its formation involves the stepwise or concerted transfer of H(B) and H(N) hydrogen atoms from AB to metal atom, which is different from the previously proposed dehydrogenation mechanism that one H(N) hydrogen atom is firstly transferred to B atom and then the polymerized H2 molecule is released from B atom. The metal-dihydride Cu2 H2 rather than the dissociated H2 is ultimately derived for the catalytic reaction between Cu2 and AB. Nevertheless, with respect to the dehydrogenation of pristine AB, the release of one equiv of H2 molecule per AB can be significantly promoted in a kinetically fast and thermodynamically favorable way by the catalysts of Fe2, FeCu, and Fe12 Cu. The dehydrogenation of ammonia-borane (NH3BH3, AB) by transition metal (TM) catalyst has been under intense scrutiny in experiments but a sound molecular level understanding has remained elusive. Herein, using the density functional theory (DFT) method, AB dehydrogenation mechanistic routes underscores the importance of formations of metal-dihydrogen intermediate in the presence of Cu2, Fe2, FeCu dimers and Fe12 Cu cluster. Its formation involves the stepwise or concerted transfer of H(B) and H(N) hydrogen atoms from AB to metal atom, which is different from the previously proposed dehydrogenation mechanism that one H(N) hydrogen atom is firstly transferred to B atom and then the polymerized H2 molecule is released from B atom. The metal-dihydride Cu2 H2 rather than the dissociated H2 is ultimately derived for the catalytic reaction between Cu2 and AB. Nevertheless, with respect to the dehydrogenation of pristine AB, the release of one equiv of H2 molecule per AB can be significantly promoted in a kinetically fast and thermodynamically favorable way by the catalysts of Fe2, FeCu, and Fe12 Cu. Metal-dihydrogen complexes Elsevier Dehydrogenation Elsevier Ammonia borane Elsevier Density functional theory Elsevier Transition metal Elsevier Wang, Guanqi oth Cui, Hong oth Yuan, Hongkuan oth Kuang, Anlong oth Tian, Chunling oth Wang, Junzhong oth Chen, Hong oth Enthalten in Elsevier Dedhia, Kavita ELSEVIER External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs 2018 official journal of the International Association for Hydrogen Energy New York, NY [u.a.] (DE-627)ELV000127019 volume:41 year:2016 number:27 day:20 month:07 pages:11746-11760 extent:15 https://doi.org/10.1016/j.ijhydene.2015.12.201 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 41 2016 27 20 0720 11746-11760 15 045F 660 |
allfieldsGer |
10.1016/j.ijhydene.2015.12.201 doi GBVA2016012000025.pica (DE-627)ELV01412601X (ELSEVIER)S0360-3199(15)30948-4 DE-627 ger DE-627 rakwb eng 660 620 660 DE-600 620 DE-600 610 VZ 44.94 bkl Zhou, Tingwei verfasserin aut A novel dehydrogenation style of NH3BH3 by catalyst of transition metal clusters 2016transfer abstract 15 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The dehydrogenation of ammonia-borane (NH3BH3, AB) by transition metal (TM) catalyst has been under intense scrutiny in experiments but a sound molecular level understanding has remained elusive. Herein, using the density functional theory (DFT) method, AB dehydrogenation mechanistic routes underscores the importance of formations of metal-dihydrogen intermediate in the presence of Cu2, Fe2, FeCu dimers and Fe12 Cu cluster. Its formation involves the stepwise or concerted transfer of H(B) and H(N) hydrogen atoms from AB to metal atom, which is different from the previously proposed dehydrogenation mechanism that one H(N) hydrogen atom is firstly transferred to B atom and then the polymerized H2 molecule is released from B atom. The metal-dihydride Cu2 H2 rather than the dissociated H2 is ultimately derived for the catalytic reaction between Cu2 and AB. Nevertheless, with respect to the dehydrogenation of pristine AB, the release of one equiv of H2 molecule per AB can be significantly promoted in a kinetically fast and thermodynamically favorable way by the catalysts of Fe2, FeCu, and Fe12 Cu. The dehydrogenation of ammonia-borane (NH3BH3, AB) by transition metal (TM) catalyst has been under intense scrutiny in experiments but a sound molecular level understanding has remained elusive. Herein, using the density functional theory (DFT) method, AB dehydrogenation mechanistic routes underscores the importance of formations of metal-dihydrogen intermediate in the presence of Cu2, Fe2, FeCu dimers and Fe12 Cu cluster. Its formation involves the stepwise or concerted transfer of H(B) and H(N) hydrogen atoms from AB to metal atom, which is different from the previously proposed dehydrogenation mechanism that one H(N) hydrogen atom is firstly transferred to B atom and then the polymerized H2 molecule is released from B atom. The metal-dihydride Cu2 H2 rather than the dissociated H2 is ultimately derived for the catalytic reaction between Cu2 and AB. Nevertheless, with respect to the dehydrogenation of pristine AB, the release of one equiv of H2 molecule per AB can be significantly promoted in a kinetically fast and thermodynamically favorable way by the catalysts of Fe2, FeCu, and Fe12 Cu. Metal-dihydrogen complexes Elsevier Dehydrogenation Elsevier Ammonia borane Elsevier Density functional theory Elsevier Transition metal Elsevier Wang, Guanqi oth Cui, Hong oth Yuan, Hongkuan oth Kuang, Anlong oth Tian, Chunling oth Wang, Junzhong oth Chen, Hong oth Enthalten in Elsevier Dedhia, Kavita ELSEVIER External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs 2018 official journal of the International Association for Hydrogen Energy New York, NY [u.a.] (DE-627)ELV000127019 volume:41 year:2016 number:27 day:20 month:07 pages:11746-11760 extent:15 https://doi.org/10.1016/j.ijhydene.2015.12.201 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 41 2016 27 20 0720 11746-11760 15 045F 660 |
allfieldsSound |
10.1016/j.ijhydene.2015.12.201 doi GBVA2016012000025.pica (DE-627)ELV01412601X (ELSEVIER)S0360-3199(15)30948-4 DE-627 ger DE-627 rakwb eng 660 620 660 DE-600 620 DE-600 610 VZ 44.94 bkl Zhou, Tingwei verfasserin aut A novel dehydrogenation style of NH3BH3 by catalyst of transition metal clusters 2016transfer abstract 15 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The dehydrogenation of ammonia-borane (NH3BH3, AB) by transition metal (TM) catalyst has been under intense scrutiny in experiments but a sound molecular level understanding has remained elusive. Herein, using the density functional theory (DFT) method, AB dehydrogenation mechanistic routes underscores the importance of formations of metal-dihydrogen intermediate in the presence of Cu2, Fe2, FeCu dimers and Fe12 Cu cluster. Its formation involves the stepwise or concerted transfer of H(B) and H(N) hydrogen atoms from AB to metal atom, which is different from the previously proposed dehydrogenation mechanism that one H(N) hydrogen atom is firstly transferred to B atom and then the polymerized H2 molecule is released from B atom. The metal-dihydride Cu2 H2 rather than the dissociated H2 is ultimately derived for the catalytic reaction between Cu2 and AB. Nevertheless, with respect to the dehydrogenation of pristine AB, the release of one equiv of H2 molecule per AB can be significantly promoted in a kinetically fast and thermodynamically favorable way by the catalysts of Fe2, FeCu, and Fe12 Cu. The dehydrogenation of ammonia-borane (NH3BH3, AB) by transition metal (TM) catalyst has been under intense scrutiny in experiments but a sound molecular level understanding has remained elusive. Herein, using the density functional theory (DFT) method, AB dehydrogenation mechanistic routes underscores the importance of formations of metal-dihydrogen intermediate in the presence of Cu2, Fe2, FeCu dimers and Fe12 Cu cluster. Its formation involves the stepwise or concerted transfer of H(B) and H(N) hydrogen atoms from AB to metal atom, which is different from the previously proposed dehydrogenation mechanism that one H(N) hydrogen atom is firstly transferred to B atom and then the polymerized H2 molecule is released from B atom. The metal-dihydride Cu2 H2 rather than the dissociated H2 is ultimately derived for the catalytic reaction between Cu2 and AB. Nevertheless, with respect to the dehydrogenation of pristine AB, the release of one equiv of H2 molecule per AB can be significantly promoted in a kinetically fast and thermodynamically favorable way by the catalysts of Fe2, FeCu, and Fe12 Cu. Metal-dihydrogen complexes Elsevier Dehydrogenation Elsevier Ammonia borane Elsevier Density functional theory Elsevier Transition metal Elsevier Wang, Guanqi oth Cui, Hong oth Yuan, Hongkuan oth Kuang, Anlong oth Tian, Chunling oth Wang, Junzhong oth Chen, Hong oth Enthalten in Elsevier Dedhia, Kavita ELSEVIER External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs 2018 official journal of the International Association for Hydrogen Energy New York, NY [u.a.] (DE-627)ELV000127019 volume:41 year:2016 number:27 day:20 month:07 pages:11746-11760 extent:15 https://doi.org/10.1016/j.ijhydene.2015.12.201 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 41 2016 27 20 0720 11746-11760 15 045F 660 |
language |
English |
source |
Enthalten in External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs New York, NY [u.a.] volume:41 year:2016 number:27 day:20 month:07 pages:11746-11760 extent:15 |
sourceStr |
Enthalten in External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs New York, NY [u.a.] volume:41 year:2016 number:27 day:20 month:07 pages:11746-11760 extent:15 |
format_phy_str_mv |
Article |
bklname |
Hals-Nasen-Ohrenheilkunde |
institution |
findex.gbv.de |
topic_facet |
Metal-dihydrogen complexes Dehydrogenation Ammonia borane Density functional theory Transition metal |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs |
authorswithroles_txt_mv |
Zhou, Tingwei @@aut@@ Wang, Guanqi @@oth@@ Cui, Hong @@oth@@ Yuan, Hongkuan @@oth@@ Kuang, Anlong @@oth@@ Tian, Chunling @@oth@@ Wang, Junzhong @@oth@@ Chen, Hong @@oth@@ |
publishDateDaySort_date |
2016-01-20T00:00:00Z |
hierarchy_top_id |
ELV000127019 |
dewey-sort |
3660 |
id |
ELV01412601X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV01412601X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625112950.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijhydene.2015.12.201</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2016012000025.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV01412601X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-3199(15)30948-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">660</subfield><subfield code="a">620</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.94</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhou, Tingwei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A novel dehydrogenation style of NH3BH3 by catalyst of transition metal clusters</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">15</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The dehydrogenation of ammonia-borane (NH3BH3, AB) by transition metal (TM) catalyst has been under intense scrutiny in experiments but a sound molecular level understanding has remained elusive. Herein, using the density functional theory (DFT) method, AB dehydrogenation mechanistic routes underscores the importance of formations of metal-dihydrogen intermediate in the presence of Cu2, Fe2, FeCu dimers and Fe12 Cu cluster. Its formation involves the stepwise or concerted transfer of H(B) and H(N) hydrogen atoms from AB to metal atom, which is different from the previously proposed dehydrogenation mechanism that one H(N) hydrogen atom is firstly transferred to B atom and then the polymerized H2 molecule is released from B atom. The metal-dihydride Cu2 H2 rather than the dissociated H2 is ultimately derived for the catalytic reaction between Cu2 and AB. Nevertheless, with respect to the dehydrogenation of pristine AB, the release of one equiv of H2 molecule per AB can be significantly promoted in a kinetically fast and thermodynamically favorable way by the catalysts of Fe2, FeCu, and Fe12 Cu.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The dehydrogenation of ammonia-borane (NH3BH3, AB) by transition metal (TM) catalyst has been under intense scrutiny in experiments but a sound molecular level understanding has remained elusive. Herein, using the density functional theory (DFT) method, AB dehydrogenation mechanistic routes underscores the importance of formations of metal-dihydrogen intermediate in the presence of Cu2, Fe2, FeCu dimers and Fe12 Cu cluster. Its formation involves the stepwise or concerted transfer of H(B) and H(N) hydrogen atoms from AB to metal atom, which is different from the previously proposed dehydrogenation mechanism that one H(N) hydrogen atom is firstly transferred to B atom and then the polymerized H2 molecule is released from B atom. The metal-dihydride Cu2 H2 rather than the dissociated H2 is ultimately derived for the catalytic reaction between Cu2 and AB. Nevertheless, with respect to the dehydrogenation of pristine AB, the release of one equiv of H2 molecule per AB can be significantly promoted in a kinetically fast and thermodynamically favorable way by the catalysts of Fe2, FeCu, and Fe12 Cu.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Metal-dihydrogen complexes</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Dehydrogenation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ammonia borane</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Density functional theory</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Transition metal</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Guanqi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cui, Hong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yuan, Hongkuan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kuang, Anlong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tian, Chunling</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Junzhong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Hong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Dedhia, Kavita ELSEVIER</subfield><subfield code="t">External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs</subfield><subfield code="d">2018</subfield><subfield code="d">official journal of the International Association for Hydrogen Energy</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV000127019</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:41</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:27</subfield><subfield code="g">day:20</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:11746-11760</subfield><subfield code="g">extent:15</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ijhydene.2015.12.201</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.94</subfield><subfield code="j">Hals-Nasen-Ohrenheilkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">41</subfield><subfield code="j">2016</subfield><subfield code="e">27</subfield><subfield code="b">20</subfield><subfield code="c">0720</subfield><subfield code="h">11746-11760</subfield><subfield code="g">15</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">660</subfield></datafield></record></collection>
|
author |
Zhou, Tingwei |
spellingShingle |
Zhou, Tingwei ddc 660 ddc 620 ddc 610 bkl 44.94 Elsevier Metal-dihydrogen complexes Elsevier Dehydrogenation Elsevier Ammonia borane Elsevier Density functional theory Elsevier Transition metal A novel dehydrogenation style of NH3BH3 by catalyst of transition metal clusters |
authorStr |
Zhou, Tingwei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV000127019 |
format |
electronic Article |
dewey-ones |
660 - Chemical engineering 620 - Engineering & allied operations 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
660 620 660 DE-600 620 DE-600 610 VZ 44.94 bkl A novel dehydrogenation style of NH3BH3 by catalyst of transition metal clusters Metal-dihydrogen complexes Elsevier Dehydrogenation Elsevier Ammonia borane Elsevier Density functional theory Elsevier Transition metal Elsevier |
topic |
ddc 660 ddc 620 ddc 610 bkl 44.94 Elsevier Metal-dihydrogen complexes Elsevier Dehydrogenation Elsevier Ammonia borane Elsevier Density functional theory Elsevier Transition metal |
topic_unstemmed |
ddc 660 ddc 620 ddc 610 bkl 44.94 Elsevier Metal-dihydrogen complexes Elsevier Dehydrogenation Elsevier Ammonia borane Elsevier Density functional theory Elsevier Transition metal |
topic_browse |
ddc 660 ddc 620 ddc 610 bkl 44.94 Elsevier Metal-dihydrogen complexes Elsevier Dehydrogenation Elsevier Ammonia borane Elsevier Density functional theory Elsevier Transition metal |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
g w gw h c hc h y hy a k ak c t ct j w jw h c hc |
hierarchy_parent_title |
External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs |
hierarchy_parent_id |
ELV000127019 |
dewey-tens |
660 - Chemical engineering 620 - Engineering 610 - Medicine & health |
hierarchy_top_title |
External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV000127019 |
title |
A novel dehydrogenation style of NH3BH3 by catalyst of transition metal clusters |
ctrlnum |
(DE-627)ELV01412601X (ELSEVIER)S0360-3199(15)30948-4 |
title_full |
A novel dehydrogenation style of NH3BH3 by catalyst of transition metal clusters |
author_sort |
Zhou, Tingwei |
journal |
External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs |
journalStr |
External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
zzz |
container_start_page |
11746 |
author_browse |
Zhou, Tingwei |
container_volume |
41 |
physical |
15 |
class |
660 620 660 DE-600 620 DE-600 610 VZ 44.94 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zhou, Tingwei |
doi_str_mv |
10.1016/j.ijhydene.2015.12.201 |
dewey-full |
660 620 610 |
title_sort |
a novel dehydrogenation style of nh3bh3 by catalyst of transition metal clusters |
title_auth |
A novel dehydrogenation style of NH3BH3 by catalyst of transition metal clusters |
abstract |
The dehydrogenation of ammonia-borane (NH3BH3, AB) by transition metal (TM) catalyst has been under intense scrutiny in experiments but a sound molecular level understanding has remained elusive. Herein, using the density functional theory (DFT) method, AB dehydrogenation mechanistic routes underscores the importance of formations of metal-dihydrogen intermediate in the presence of Cu2, Fe2, FeCu dimers and Fe12 Cu cluster. Its formation involves the stepwise or concerted transfer of H(B) and H(N) hydrogen atoms from AB to metal atom, which is different from the previously proposed dehydrogenation mechanism that one H(N) hydrogen atom is firstly transferred to B atom and then the polymerized H2 molecule is released from B atom. The metal-dihydride Cu2 H2 rather than the dissociated H2 is ultimately derived for the catalytic reaction between Cu2 and AB. Nevertheless, with respect to the dehydrogenation of pristine AB, the release of one equiv of H2 molecule per AB can be significantly promoted in a kinetically fast and thermodynamically favorable way by the catalysts of Fe2, FeCu, and Fe12 Cu. |
abstractGer |
The dehydrogenation of ammonia-borane (NH3BH3, AB) by transition metal (TM) catalyst has been under intense scrutiny in experiments but a sound molecular level understanding has remained elusive. Herein, using the density functional theory (DFT) method, AB dehydrogenation mechanistic routes underscores the importance of formations of metal-dihydrogen intermediate in the presence of Cu2, Fe2, FeCu dimers and Fe12 Cu cluster. Its formation involves the stepwise or concerted transfer of H(B) and H(N) hydrogen atoms from AB to metal atom, which is different from the previously proposed dehydrogenation mechanism that one H(N) hydrogen atom is firstly transferred to B atom and then the polymerized H2 molecule is released from B atom. The metal-dihydride Cu2 H2 rather than the dissociated H2 is ultimately derived for the catalytic reaction between Cu2 and AB. Nevertheless, with respect to the dehydrogenation of pristine AB, the release of one equiv of H2 molecule per AB can be significantly promoted in a kinetically fast and thermodynamically favorable way by the catalysts of Fe2, FeCu, and Fe12 Cu. |
abstract_unstemmed |
The dehydrogenation of ammonia-borane (NH3BH3, AB) by transition metal (TM) catalyst has been under intense scrutiny in experiments but a sound molecular level understanding has remained elusive. Herein, using the density functional theory (DFT) method, AB dehydrogenation mechanistic routes underscores the importance of formations of metal-dihydrogen intermediate in the presence of Cu2, Fe2, FeCu dimers and Fe12 Cu cluster. Its formation involves the stepwise or concerted transfer of H(B) and H(N) hydrogen atoms from AB to metal atom, which is different from the previously proposed dehydrogenation mechanism that one H(N) hydrogen atom is firstly transferred to B atom and then the polymerized H2 molecule is released from B atom. The metal-dihydride Cu2 H2 rather than the dissociated H2 is ultimately derived for the catalytic reaction between Cu2 and AB. Nevertheless, with respect to the dehydrogenation of pristine AB, the release of one equiv of H2 molecule per AB can be significantly promoted in a kinetically fast and thermodynamically favorable way by the catalysts of Fe2, FeCu, and Fe12 Cu. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
container_issue |
27 |
title_short |
A novel dehydrogenation style of NH3BH3 by catalyst of transition metal clusters |
url |
https://doi.org/10.1016/j.ijhydene.2015.12.201 |
remote_bool |
true |
author2 |
Wang, Guanqi Cui, Hong Yuan, Hongkuan Kuang, Anlong Tian, Chunling Wang, Junzhong Chen, Hong |
author2Str |
Wang, Guanqi Cui, Hong Yuan, Hongkuan Kuang, Anlong Tian, Chunling Wang, Junzhong Chen, Hong |
ppnlink |
ELV000127019 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth |
doi_str |
10.1016/j.ijhydene.2015.12.201 |
up_date |
2024-07-06T20:42:22.246Z |
_version_ |
1803863764235190272 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV01412601X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625112950.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijhydene.2015.12.201</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2016012000025.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV01412601X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-3199(15)30948-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">660</subfield><subfield code="a">620</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.94</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhou, Tingwei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A novel dehydrogenation style of NH3BH3 by catalyst of transition metal clusters</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">15</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The dehydrogenation of ammonia-borane (NH3BH3, AB) by transition metal (TM) catalyst has been under intense scrutiny in experiments but a sound molecular level understanding has remained elusive. Herein, using the density functional theory (DFT) method, AB dehydrogenation mechanistic routes underscores the importance of formations of metal-dihydrogen intermediate in the presence of Cu2, Fe2, FeCu dimers and Fe12 Cu cluster. Its formation involves the stepwise or concerted transfer of H(B) and H(N) hydrogen atoms from AB to metal atom, which is different from the previously proposed dehydrogenation mechanism that one H(N) hydrogen atom is firstly transferred to B atom and then the polymerized H2 molecule is released from B atom. The metal-dihydride Cu2 H2 rather than the dissociated H2 is ultimately derived for the catalytic reaction between Cu2 and AB. Nevertheless, with respect to the dehydrogenation of pristine AB, the release of one equiv of H2 molecule per AB can be significantly promoted in a kinetically fast and thermodynamically favorable way by the catalysts of Fe2, FeCu, and Fe12 Cu.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The dehydrogenation of ammonia-borane (NH3BH3, AB) by transition metal (TM) catalyst has been under intense scrutiny in experiments but a sound molecular level understanding has remained elusive. Herein, using the density functional theory (DFT) method, AB dehydrogenation mechanistic routes underscores the importance of formations of metal-dihydrogen intermediate in the presence of Cu2, Fe2, FeCu dimers and Fe12 Cu cluster. Its formation involves the stepwise or concerted transfer of H(B) and H(N) hydrogen atoms from AB to metal atom, which is different from the previously proposed dehydrogenation mechanism that one H(N) hydrogen atom is firstly transferred to B atom and then the polymerized H2 molecule is released from B atom. The metal-dihydride Cu2 H2 rather than the dissociated H2 is ultimately derived for the catalytic reaction between Cu2 and AB. Nevertheless, with respect to the dehydrogenation of pristine AB, the release of one equiv of H2 molecule per AB can be significantly promoted in a kinetically fast and thermodynamically favorable way by the catalysts of Fe2, FeCu, and Fe12 Cu.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Metal-dihydrogen complexes</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Dehydrogenation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ammonia borane</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Density functional theory</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Transition metal</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Guanqi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cui, Hong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yuan, Hongkuan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kuang, Anlong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tian, Chunling</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Junzhong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Hong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Dedhia, Kavita ELSEVIER</subfield><subfield code="t">External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs</subfield><subfield code="d">2018</subfield><subfield code="d">official journal of the International Association for Hydrogen Energy</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV000127019</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:41</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:27</subfield><subfield code="g">day:20</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:11746-11760</subfield><subfield code="g">extent:15</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ijhydene.2015.12.201</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.94</subfield><subfield code="j">Hals-Nasen-Ohrenheilkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">41</subfield><subfield code="j">2016</subfield><subfield code="e">27</subfield><subfield code="b">20</subfield><subfield code="c">0720</subfield><subfield code="h">11746-11760</subfield><subfield code="g">15</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">660</subfield></datafield></record></collection>
|
score |
7.4004793 |