Engineering the solid oxide fuel cell electrocatalyst infiltration technique for industrial use
In this work, we explore various parameters for infiltrating La0.6Sr0.4CoO3-δ (LSCo) into the La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) – Ce0.8Sm0.2O2 (SDC) cathode of a planar solid oxide fuel cell (SOFC) using an automated solution dispensing technique for commercial deployment of infiltrated SOFCs by indus...
Ausführliche Beschreibung
Autor*in: |
Dowd, Regis P. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
11 |
---|
Übergeordnetes Werk: |
Enthalten in: External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs - Dedhia, Kavita ELSEVIER, 2018, official journal of the International Association for Hydrogen Energy, New York, NY [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:41 ; year:2016 ; number:33 ; day:7 ; month:09 ; pages:14971-14981 ; extent:11 |
Links: |
---|
DOI / URN: |
10.1016/j.ijhydene.2016.06.015 |
---|
Katalog-ID: |
ELV014130262 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV014130262 | ||
003 | DE-627 | ||
005 | 20230625113000.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180602s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ijhydene.2016.06.015 |2 doi | |
028 | 5 | 2 | |a GBVA2016012000025.pica |
035 | |a (DE-627)ELV014130262 | ||
035 | |a (ELSEVIER)S0360-3199(16)31827-4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 660 |a 620 | |
082 | 0 | 4 | |a 660 |q DE-600 |
082 | 0 | 4 | |a 620 |q DE-600 |
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.94 |2 bkl | ||
100 | 1 | |a Dowd, Regis P. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Engineering the solid oxide fuel cell electrocatalyst infiltration technique for industrial use |
264 | 1 | |c 2016transfer abstract | |
300 | |a 11 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a In this work, we explore various parameters for infiltrating La0.6Sr0.4CoO3-δ (LSCo) into the La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) – Ce0.8Sm0.2O2 (SDC) cathode of a planar solid oxide fuel cell (SOFC) using an automated solution dispensing technique for commercial deployment of infiltrated SOFCs by industry. Substrate temperature, chelating agent concentration, and surfactant type were explored to develop a 1-step infiltration process for delivering 8–10 weight percent of LSCo electrocatalyst to the cathode active layer. The results confirm increased fuel cell performance and durability by optimizing the infiltrate solution for increased transport into the cathode's microstructure. | ||
520 | |a In this work, we explore various parameters for infiltrating La0.6Sr0.4CoO3-δ (LSCo) into the La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) – Ce0.8Sm0.2O2 (SDC) cathode of a planar solid oxide fuel cell (SOFC) using an automated solution dispensing technique for commercial deployment of infiltrated SOFCs by industry. Substrate temperature, chelating agent concentration, and surfactant type were explored to develop a 1-step infiltration process for delivering 8–10 weight percent of LSCo electrocatalyst to the cathode active layer. The results confirm increased fuel cell performance and durability by optimizing the infiltrate solution for increased transport into the cathode's microstructure. | ||
650 | 7 | |a Electrocatalyst |2 Elsevier | |
650 | 7 | |a Infiltration |2 Elsevier | |
650 | 7 | |a Solid oxide fuel cell (SOFC) |2 Elsevier | |
700 | 1 | |a Lee, Shiwoo |4 oth | |
700 | 1 | |a Fan, Yueying |4 oth | |
700 | 1 | |a Gerdes, Kirk |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Dedhia, Kavita ELSEVIER |t External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs |d 2018 |d official journal of the International Association for Hydrogen Energy |g New York, NY [u.a.] |w (DE-627)ELV000127019 |
773 | 1 | 8 | |g volume:41 |g year:2016 |g number:33 |g day:7 |g month:09 |g pages:14971-14981 |g extent:11 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.ijhydene.2016.06.015 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 44.94 |j Hals-Nasen-Ohrenheilkunde |q VZ |
951 | |a AR | ||
952 | |d 41 |j 2016 |e 33 |b 7 |c 0907 |h 14971-14981 |g 11 | ||
953 | |2 045F |a 660 |
author_variant |
r p d rp rpd |
---|---|
matchkey_str |
dowdregispleeshiwoofanyueyinggerdeskirk:2016----:niernteoioieulellcrctlsiflrtotc |
hierarchy_sort_str |
2016transfer abstract |
bklnumber |
44.94 |
publishDate |
2016 |
allfields |
10.1016/j.ijhydene.2016.06.015 doi GBVA2016012000025.pica (DE-627)ELV014130262 (ELSEVIER)S0360-3199(16)31827-4 DE-627 ger DE-627 rakwb eng 660 620 660 DE-600 620 DE-600 610 VZ 44.94 bkl Dowd, Regis P. verfasserin aut Engineering the solid oxide fuel cell electrocatalyst infiltration technique for industrial use 2016transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this work, we explore various parameters for infiltrating La0.6Sr0.4CoO3-δ (LSCo) into the La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) – Ce0.8Sm0.2O2 (SDC) cathode of a planar solid oxide fuel cell (SOFC) using an automated solution dispensing technique for commercial deployment of infiltrated SOFCs by industry. Substrate temperature, chelating agent concentration, and surfactant type were explored to develop a 1-step infiltration process for delivering 8–10 weight percent of LSCo electrocatalyst to the cathode active layer. The results confirm increased fuel cell performance and durability by optimizing the infiltrate solution for increased transport into the cathode's microstructure. In this work, we explore various parameters for infiltrating La0.6Sr0.4CoO3-δ (LSCo) into the La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) – Ce0.8Sm0.2O2 (SDC) cathode of a planar solid oxide fuel cell (SOFC) using an automated solution dispensing technique for commercial deployment of infiltrated SOFCs by industry. Substrate temperature, chelating agent concentration, and surfactant type were explored to develop a 1-step infiltration process for delivering 8–10 weight percent of LSCo electrocatalyst to the cathode active layer. The results confirm increased fuel cell performance and durability by optimizing the infiltrate solution for increased transport into the cathode's microstructure. Electrocatalyst Elsevier Infiltration Elsevier Solid oxide fuel cell (SOFC) Elsevier Lee, Shiwoo oth Fan, Yueying oth Gerdes, Kirk oth Enthalten in Elsevier Dedhia, Kavita ELSEVIER External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs 2018 official journal of the International Association for Hydrogen Energy New York, NY [u.a.] (DE-627)ELV000127019 volume:41 year:2016 number:33 day:7 month:09 pages:14971-14981 extent:11 https://doi.org/10.1016/j.ijhydene.2016.06.015 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 41 2016 33 7 0907 14971-14981 11 045F 660 |
spelling |
10.1016/j.ijhydene.2016.06.015 doi GBVA2016012000025.pica (DE-627)ELV014130262 (ELSEVIER)S0360-3199(16)31827-4 DE-627 ger DE-627 rakwb eng 660 620 660 DE-600 620 DE-600 610 VZ 44.94 bkl Dowd, Regis P. verfasserin aut Engineering the solid oxide fuel cell electrocatalyst infiltration technique for industrial use 2016transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this work, we explore various parameters for infiltrating La0.6Sr0.4CoO3-δ (LSCo) into the La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) – Ce0.8Sm0.2O2 (SDC) cathode of a planar solid oxide fuel cell (SOFC) using an automated solution dispensing technique for commercial deployment of infiltrated SOFCs by industry. Substrate temperature, chelating agent concentration, and surfactant type were explored to develop a 1-step infiltration process for delivering 8–10 weight percent of LSCo electrocatalyst to the cathode active layer. The results confirm increased fuel cell performance and durability by optimizing the infiltrate solution for increased transport into the cathode's microstructure. In this work, we explore various parameters for infiltrating La0.6Sr0.4CoO3-δ (LSCo) into the La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) – Ce0.8Sm0.2O2 (SDC) cathode of a planar solid oxide fuel cell (SOFC) using an automated solution dispensing technique for commercial deployment of infiltrated SOFCs by industry. Substrate temperature, chelating agent concentration, and surfactant type were explored to develop a 1-step infiltration process for delivering 8–10 weight percent of LSCo electrocatalyst to the cathode active layer. The results confirm increased fuel cell performance and durability by optimizing the infiltrate solution for increased transport into the cathode's microstructure. Electrocatalyst Elsevier Infiltration Elsevier Solid oxide fuel cell (SOFC) Elsevier Lee, Shiwoo oth Fan, Yueying oth Gerdes, Kirk oth Enthalten in Elsevier Dedhia, Kavita ELSEVIER External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs 2018 official journal of the International Association for Hydrogen Energy New York, NY [u.a.] (DE-627)ELV000127019 volume:41 year:2016 number:33 day:7 month:09 pages:14971-14981 extent:11 https://doi.org/10.1016/j.ijhydene.2016.06.015 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 41 2016 33 7 0907 14971-14981 11 045F 660 |
allfields_unstemmed |
10.1016/j.ijhydene.2016.06.015 doi GBVA2016012000025.pica (DE-627)ELV014130262 (ELSEVIER)S0360-3199(16)31827-4 DE-627 ger DE-627 rakwb eng 660 620 660 DE-600 620 DE-600 610 VZ 44.94 bkl Dowd, Regis P. verfasserin aut Engineering the solid oxide fuel cell electrocatalyst infiltration technique for industrial use 2016transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this work, we explore various parameters for infiltrating La0.6Sr0.4CoO3-δ (LSCo) into the La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) – Ce0.8Sm0.2O2 (SDC) cathode of a planar solid oxide fuel cell (SOFC) using an automated solution dispensing technique for commercial deployment of infiltrated SOFCs by industry. Substrate temperature, chelating agent concentration, and surfactant type were explored to develop a 1-step infiltration process for delivering 8–10 weight percent of LSCo electrocatalyst to the cathode active layer. The results confirm increased fuel cell performance and durability by optimizing the infiltrate solution for increased transport into the cathode's microstructure. In this work, we explore various parameters for infiltrating La0.6Sr0.4CoO3-δ (LSCo) into the La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) – Ce0.8Sm0.2O2 (SDC) cathode of a planar solid oxide fuel cell (SOFC) using an automated solution dispensing technique for commercial deployment of infiltrated SOFCs by industry. Substrate temperature, chelating agent concentration, and surfactant type were explored to develop a 1-step infiltration process for delivering 8–10 weight percent of LSCo electrocatalyst to the cathode active layer. The results confirm increased fuel cell performance and durability by optimizing the infiltrate solution for increased transport into the cathode's microstructure. Electrocatalyst Elsevier Infiltration Elsevier Solid oxide fuel cell (SOFC) Elsevier Lee, Shiwoo oth Fan, Yueying oth Gerdes, Kirk oth Enthalten in Elsevier Dedhia, Kavita ELSEVIER External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs 2018 official journal of the International Association for Hydrogen Energy New York, NY [u.a.] (DE-627)ELV000127019 volume:41 year:2016 number:33 day:7 month:09 pages:14971-14981 extent:11 https://doi.org/10.1016/j.ijhydene.2016.06.015 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 41 2016 33 7 0907 14971-14981 11 045F 660 |
allfieldsGer |
10.1016/j.ijhydene.2016.06.015 doi GBVA2016012000025.pica (DE-627)ELV014130262 (ELSEVIER)S0360-3199(16)31827-4 DE-627 ger DE-627 rakwb eng 660 620 660 DE-600 620 DE-600 610 VZ 44.94 bkl Dowd, Regis P. verfasserin aut Engineering the solid oxide fuel cell electrocatalyst infiltration technique for industrial use 2016transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this work, we explore various parameters for infiltrating La0.6Sr0.4CoO3-δ (LSCo) into the La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) – Ce0.8Sm0.2O2 (SDC) cathode of a planar solid oxide fuel cell (SOFC) using an automated solution dispensing technique for commercial deployment of infiltrated SOFCs by industry. Substrate temperature, chelating agent concentration, and surfactant type were explored to develop a 1-step infiltration process for delivering 8–10 weight percent of LSCo electrocatalyst to the cathode active layer. The results confirm increased fuel cell performance and durability by optimizing the infiltrate solution for increased transport into the cathode's microstructure. In this work, we explore various parameters for infiltrating La0.6Sr0.4CoO3-δ (LSCo) into the La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) – Ce0.8Sm0.2O2 (SDC) cathode of a planar solid oxide fuel cell (SOFC) using an automated solution dispensing technique for commercial deployment of infiltrated SOFCs by industry. Substrate temperature, chelating agent concentration, and surfactant type were explored to develop a 1-step infiltration process for delivering 8–10 weight percent of LSCo electrocatalyst to the cathode active layer. The results confirm increased fuel cell performance and durability by optimizing the infiltrate solution for increased transport into the cathode's microstructure. Electrocatalyst Elsevier Infiltration Elsevier Solid oxide fuel cell (SOFC) Elsevier Lee, Shiwoo oth Fan, Yueying oth Gerdes, Kirk oth Enthalten in Elsevier Dedhia, Kavita ELSEVIER External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs 2018 official journal of the International Association for Hydrogen Energy New York, NY [u.a.] (DE-627)ELV000127019 volume:41 year:2016 number:33 day:7 month:09 pages:14971-14981 extent:11 https://doi.org/10.1016/j.ijhydene.2016.06.015 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 41 2016 33 7 0907 14971-14981 11 045F 660 |
allfieldsSound |
10.1016/j.ijhydene.2016.06.015 doi GBVA2016012000025.pica (DE-627)ELV014130262 (ELSEVIER)S0360-3199(16)31827-4 DE-627 ger DE-627 rakwb eng 660 620 660 DE-600 620 DE-600 610 VZ 44.94 bkl Dowd, Regis P. verfasserin aut Engineering the solid oxide fuel cell electrocatalyst infiltration technique for industrial use 2016transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this work, we explore various parameters for infiltrating La0.6Sr0.4CoO3-δ (LSCo) into the La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) – Ce0.8Sm0.2O2 (SDC) cathode of a planar solid oxide fuel cell (SOFC) using an automated solution dispensing technique for commercial deployment of infiltrated SOFCs by industry. Substrate temperature, chelating agent concentration, and surfactant type were explored to develop a 1-step infiltration process for delivering 8–10 weight percent of LSCo electrocatalyst to the cathode active layer. The results confirm increased fuel cell performance and durability by optimizing the infiltrate solution for increased transport into the cathode's microstructure. In this work, we explore various parameters for infiltrating La0.6Sr0.4CoO3-δ (LSCo) into the La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) – Ce0.8Sm0.2O2 (SDC) cathode of a planar solid oxide fuel cell (SOFC) using an automated solution dispensing technique for commercial deployment of infiltrated SOFCs by industry. Substrate temperature, chelating agent concentration, and surfactant type were explored to develop a 1-step infiltration process for delivering 8–10 weight percent of LSCo electrocatalyst to the cathode active layer. The results confirm increased fuel cell performance and durability by optimizing the infiltrate solution for increased transport into the cathode's microstructure. Electrocatalyst Elsevier Infiltration Elsevier Solid oxide fuel cell (SOFC) Elsevier Lee, Shiwoo oth Fan, Yueying oth Gerdes, Kirk oth Enthalten in Elsevier Dedhia, Kavita ELSEVIER External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs 2018 official journal of the International Association for Hydrogen Energy New York, NY [u.a.] (DE-627)ELV000127019 volume:41 year:2016 number:33 day:7 month:09 pages:14971-14981 extent:11 https://doi.org/10.1016/j.ijhydene.2016.06.015 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 41 2016 33 7 0907 14971-14981 11 045F 660 |
language |
English |
source |
Enthalten in External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs New York, NY [u.a.] volume:41 year:2016 number:33 day:7 month:09 pages:14971-14981 extent:11 |
sourceStr |
Enthalten in External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs New York, NY [u.a.] volume:41 year:2016 number:33 day:7 month:09 pages:14971-14981 extent:11 |
format_phy_str_mv |
Article |
bklname |
Hals-Nasen-Ohrenheilkunde |
institution |
findex.gbv.de |
topic_facet |
Electrocatalyst Infiltration Solid oxide fuel cell (SOFC) |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs |
authorswithroles_txt_mv |
Dowd, Regis P. @@aut@@ Lee, Shiwoo @@oth@@ Fan, Yueying @@oth@@ Gerdes, Kirk @@oth@@ |
publishDateDaySort_date |
2016-01-07T00:00:00Z |
hierarchy_top_id |
ELV000127019 |
dewey-sort |
3660 |
id |
ELV014130262 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV014130262</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625113000.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijhydene.2016.06.015</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2016012000025.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV014130262</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-3199(16)31827-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">660</subfield><subfield code="a">620</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.94</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dowd, Regis P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Engineering the solid oxide fuel cell electrocatalyst infiltration technique for industrial use</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">11</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this work, we explore various parameters for infiltrating La0.6Sr0.4CoO3-δ (LSCo) into the La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) – Ce0.8Sm0.2O2 (SDC) cathode of a planar solid oxide fuel cell (SOFC) using an automated solution dispensing technique for commercial deployment of infiltrated SOFCs by industry. Substrate temperature, chelating agent concentration, and surfactant type were explored to develop a 1-step infiltration process for delivering 8–10 weight percent of LSCo electrocatalyst to the cathode active layer. The results confirm increased fuel cell performance and durability by optimizing the infiltrate solution for increased transport into the cathode's microstructure.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this work, we explore various parameters for infiltrating La0.6Sr0.4CoO3-δ (LSCo) into the La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) – Ce0.8Sm0.2O2 (SDC) cathode of a planar solid oxide fuel cell (SOFC) using an automated solution dispensing technique for commercial deployment of infiltrated SOFCs by industry. Substrate temperature, chelating agent concentration, and surfactant type were explored to develop a 1-step infiltration process for delivering 8–10 weight percent of LSCo electrocatalyst to the cathode active layer. The results confirm increased fuel cell performance and durability by optimizing the infiltrate solution for increased transport into the cathode's microstructure.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Electrocatalyst</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Infiltration</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Solid oxide fuel cell (SOFC)</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lee, Shiwoo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fan, Yueying</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gerdes, Kirk</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Dedhia, Kavita ELSEVIER</subfield><subfield code="t">External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs</subfield><subfield code="d">2018</subfield><subfield code="d">official journal of the International Association for Hydrogen Energy</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV000127019</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:41</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:33</subfield><subfield code="g">day:7</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:14971-14981</subfield><subfield code="g">extent:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ijhydene.2016.06.015</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.94</subfield><subfield code="j">Hals-Nasen-Ohrenheilkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">41</subfield><subfield code="j">2016</subfield><subfield code="e">33</subfield><subfield code="b">7</subfield><subfield code="c">0907</subfield><subfield code="h">14971-14981</subfield><subfield code="g">11</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">660</subfield></datafield></record></collection>
|
author |
Dowd, Regis P. |
spellingShingle |
Dowd, Regis P. ddc 660 ddc 620 ddc 610 bkl 44.94 Elsevier Electrocatalyst Elsevier Infiltration Elsevier Solid oxide fuel cell (SOFC) Engineering the solid oxide fuel cell electrocatalyst infiltration technique for industrial use |
authorStr |
Dowd, Regis P. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV000127019 |
format |
electronic Article |
dewey-ones |
660 - Chemical engineering 620 - Engineering & allied operations 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
660 620 660 DE-600 620 DE-600 610 VZ 44.94 bkl Engineering the solid oxide fuel cell electrocatalyst infiltration technique for industrial use Electrocatalyst Elsevier Infiltration Elsevier Solid oxide fuel cell (SOFC) Elsevier |
topic |
ddc 660 ddc 620 ddc 610 bkl 44.94 Elsevier Electrocatalyst Elsevier Infiltration Elsevier Solid oxide fuel cell (SOFC) |
topic_unstemmed |
ddc 660 ddc 620 ddc 610 bkl 44.94 Elsevier Electrocatalyst Elsevier Infiltration Elsevier Solid oxide fuel cell (SOFC) |
topic_browse |
ddc 660 ddc 620 ddc 610 bkl 44.94 Elsevier Electrocatalyst Elsevier Infiltration Elsevier Solid oxide fuel cell (SOFC) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
s l sl y f yf k g kg |
hierarchy_parent_title |
External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs |
hierarchy_parent_id |
ELV000127019 |
dewey-tens |
660 - Chemical engineering 620 - Engineering 610 - Medicine & health |
hierarchy_top_title |
External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV000127019 |
title |
Engineering the solid oxide fuel cell electrocatalyst infiltration technique for industrial use |
ctrlnum |
(DE-627)ELV014130262 (ELSEVIER)S0360-3199(16)31827-4 |
title_full |
Engineering the solid oxide fuel cell electrocatalyst infiltration technique for industrial use |
author_sort |
Dowd, Regis P. |
journal |
External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs |
journalStr |
External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
zzz |
container_start_page |
14971 |
author_browse |
Dowd, Regis P. |
container_volume |
41 |
physical |
11 |
class |
660 620 660 DE-600 620 DE-600 610 VZ 44.94 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Dowd, Regis P. |
doi_str_mv |
10.1016/j.ijhydene.2016.06.015 |
dewey-full |
660 620 610 |
title_sort |
engineering the solid oxide fuel cell electrocatalyst infiltration technique for industrial use |
title_auth |
Engineering the solid oxide fuel cell electrocatalyst infiltration technique for industrial use |
abstract |
In this work, we explore various parameters for infiltrating La0.6Sr0.4CoO3-δ (LSCo) into the La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) – Ce0.8Sm0.2O2 (SDC) cathode of a planar solid oxide fuel cell (SOFC) using an automated solution dispensing technique for commercial deployment of infiltrated SOFCs by industry. Substrate temperature, chelating agent concentration, and surfactant type were explored to develop a 1-step infiltration process for delivering 8–10 weight percent of LSCo electrocatalyst to the cathode active layer. The results confirm increased fuel cell performance and durability by optimizing the infiltrate solution for increased transport into the cathode's microstructure. |
abstractGer |
In this work, we explore various parameters for infiltrating La0.6Sr0.4CoO3-δ (LSCo) into the La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) – Ce0.8Sm0.2O2 (SDC) cathode of a planar solid oxide fuel cell (SOFC) using an automated solution dispensing technique for commercial deployment of infiltrated SOFCs by industry. Substrate temperature, chelating agent concentration, and surfactant type were explored to develop a 1-step infiltration process for delivering 8–10 weight percent of LSCo electrocatalyst to the cathode active layer. The results confirm increased fuel cell performance and durability by optimizing the infiltrate solution for increased transport into the cathode's microstructure. |
abstract_unstemmed |
In this work, we explore various parameters for infiltrating La0.6Sr0.4CoO3-δ (LSCo) into the La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) – Ce0.8Sm0.2O2 (SDC) cathode of a planar solid oxide fuel cell (SOFC) using an automated solution dispensing technique for commercial deployment of infiltrated SOFCs by industry. Substrate temperature, chelating agent concentration, and surfactant type were explored to develop a 1-step infiltration process for delivering 8–10 weight percent of LSCo electrocatalyst to the cathode active layer. The results confirm increased fuel cell performance and durability by optimizing the infiltrate solution for increased transport into the cathode's microstructure. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
container_issue |
33 |
title_short |
Engineering the solid oxide fuel cell electrocatalyst infiltration technique for industrial use |
url |
https://doi.org/10.1016/j.ijhydene.2016.06.015 |
remote_bool |
true |
author2 |
Lee, Shiwoo Fan, Yueying Gerdes, Kirk |
author2Str |
Lee, Shiwoo Fan, Yueying Gerdes, Kirk |
ppnlink |
ELV000127019 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1016/j.ijhydene.2016.06.015 |
up_date |
2024-07-06T20:43:13.133Z |
_version_ |
1803863817594077184 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV014130262</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625113000.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijhydene.2016.06.015</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2016012000025.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV014130262</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-3199(16)31827-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">660</subfield><subfield code="a">620</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.94</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dowd, Regis P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Engineering the solid oxide fuel cell electrocatalyst infiltration technique for industrial use</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">11</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this work, we explore various parameters for infiltrating La0.6Sr0.4CoO3-δ (LSCo) into the La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) – Ce0.8Sm0.2O2 (SDC) cathode of a planar solid oxide fuel cell (SOFC) using an automated solution dispensing technique for commercial deployment of infiltrated SOFCs by industry. Substrate temperature, chelating agent concentration, and surfactant type were explored to develop a 1-step infiltration process for delivering 8–10 weight percent of LSCo electrocatalyst to the cathode active layer. The results confirm increased fuel cell performance and durability by optimizing the infiltrate solution for increased transport into the cathode's microstructure.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this work, we explore various parameters for infiltrating La0.6Sr0.4CoO3-δ (LSCo) into the La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) – Ce0.8Sm0.2O2 (SDC) cathode of a planar solid oxide fuel cell (SOFC) using an automated solution dispensing technique for commercial deployment of infiltrated SOFCs by industry. Substrate temperature, chelating agent concentration, and surfactant type were explored to develop a 1-step infiltration process for delivering 8–10 weight percent of LSCo electrocatalyst to the cathode active layer. The results confirm increased fuel cell performance and durability by optimizing the infiltrate solution for increased transport into the cathode's microstructure.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Electrocatalyst</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Infiltration</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Solid oxide fuel cell (SOFC)</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lee, Shiwoo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fan, Yueying</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gerdes, Kirk</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Dedhia, Kavita ELSEVIER</subfield><subfield code="t">External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs</subfield><subfield code="d">2018</subfield><subfield code="d">official journal of the International Association for Hydrogen Energy</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV000127019</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:41</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:33</subfield><subfield code="g">day:7</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:14971-14981</subfield><subfield code="g">extent:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ijhydene.2016.06.015</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.94</subfield><subfield code="j">Hals-Nasen-Ohrenheilkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">41</subfield><subfield code="j">2016</subfield><subfield code="e">33</subfield><subfield code="b">7</subfield><subfield code="c">0907</subfield><subfield code="h">14971-14981</subfield><subfield code="g">11</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">660</subfield></datafield></record></collection>
|
score |
7.401143 |