Transient temperature and pressure behavior of high-pressure 100 MPa hydrogen during discharge through orifices
High-pressure hydrogen at a maximum of 100 MPa in a 1-L-volume vessel is discharged through 0.1-mm- and 0.2-mm-diameter orifices that imitate cracks, and the transient temperature and pressure behavior of the hydrogen in the vessel is presented. The hydrogen at the initial pressure of 100 MPa during...
Ausführliche Beschreibung
Autor*in: |
Sakoda, N. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
6 |
---|
Übergeordnetes Werk: |
Enthalten in: External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs - Dedhia, Kavita ELSEVIER, 2018, official journal of the International Association for Hydrogen Energy, New York, NY [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:41 ; year:2016 ; number:38 ; day:15 ; month:10 ; pages:17169-17174 ; extent:6 |
Links: |
---|
DOI / URN: |
10.1016/j.ijhydene.2016.06.114 |
---|
Katalog-ID: |
ELV014136384 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV014136384 | ||
003 | DE-627 | ||
005 | 20230625113015.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180602s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ijhydene.2016.06.114 |2 doi | |
028 | 5 | 2 | |a GBVA2016012000026.pica |
035 | |a (DE-627)ELV014136384 | ||
035 | |a (ELSEVIER)S0360-3199(15)31824-3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 660 |a 620 | |
082 | 0 | 4 | |a 660 |q DE-600 |
082 | 0 | 4 | |a 620 |q DE-600 |
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.94 |2 bkl | ||
100 | 1 | |a Sakoda, N. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Transient temperature and pressure behavior of high-pressure 100 MPa hydrogen during discharge through orifices |
264 | 1 | |c 2016transfer abstract | |
300 | |a 6 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a High-pressure hydrogen at a maximum of 100 MPa in a 1-L-volume vessel is discharged through 0.1-mm- and 0.2-mm-diameter orifices that imitate cracks, and the transient temperature and pressure behavior of the hydrogen in the vessel is presented. The hydrogen at the initial pressure of 100 MPa during its discharge through the ϕ 0.2-mm orifice reaches half of the initial pressure after 16 s, while it takes approximately nine times longer for the ϕ 0.1-mm orifice to reach half of the initial pressure. We theoretically calculate the transient temperature and pressure according to the fundamental equations based on the mass and energy conservations using an accurate equation of state for hydrogen. The actual flow rate through an orifice is generally smaller than the theoretically calculated flow rate because of the contraction flow. Therefore, in this study, we adopt the effective diameters of the orifices instead of the actual diameters, and from comparisons with the experimental pressure, we estimate them to be 0.6 and 0.9 of the actual diameters for the ϕ 0.1-mm and ϕ 0.2-mm orifices, respectively. We use a functional form with a time constant for the heat transfer coefficient to represent the transient temperature behavior, and we describe the time dependence of the heat transfer coefficient. The results show that the calculated temperature and pressure are in good agreement with the experimental values obtained. | ||
520 | |a High-pressure hydrogen at a maximum of 100 MPa in a 1-L-volume vessel is discharged through 0.1-mm- and 0.2-mm-diameter orifices that imitate cracks, and the transient temperature and pressure behavior of the hydrogen in the vessel is presented. The hydrogen at the initial pressure of 100 MPa during its discharge through the ϕ 0.2-mm orifice reaches half of the initial pressure after 16 s, while it takes approximately nine times longer for the ϕ 0.1-mm orifice to reach half of the initial pressure. We theoretically calculate the transient temperature and pressure according to the fundamental equations based on the mass and energy conservations using an accurate equation of state for hydrogen. The actual flow rate through an orifice is generally smaller than the theoretically calculated flow rate because of the contraction flow. Therefore, in this study, we adopt the effective diameters of the orifices instead of the actual diameters, and from comparisons with the experimental pressure, we estimate them to be 0.6 and 0.9 of the actual diameters for the ϕ 0.1-mm and ϕ 0.2-mm orifices, respectively. We use a functional form with a time constant for the heat transfer coefficient to represent the transient temperature behavior, and we describe the time dependence of the heat transfer coefficient. The results show that the calculated temperature and pressure are in good agreement with the experimental values obtained. | ||
650 | 7 | |a High-pressure hydrogen |2 Elsevier | |
650 | 7 | |a Transient behavior |2 Elsevier | |
650 | 7 | |a Orifice |2 Elsevier | |
650 | 7 | |a Discharge |2 Elsevier | |
700 | 1 | |a Onoue, K. |4 oth | |
700 | 1 | |a Kuroki, T. |4 oth | |
700 | 1 | |a Shinzato, K. |4 oth | |
700 | 1 | |a Kohno, M. |4 oth | |
700 | 1 | |a Monde, M. |4 oth | |
700 | 1 | |a Takata, Y. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Dedhia, Kavita ELSEVIER |t External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs |d 2018 |d official journal of the International Association for Hydrogen Energy |g New York, NY [u.a.] |w (DE-627)ELV000127019 |
773 | 1 | 8 | |g volume:41 |g year:2016 |g number:38 |g day:15 |g month:10 |g pages:17169-17174 |g extent:6 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.ijhydene.2016.06.114 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 44.94 |j Hals-Nasen-Ohrenheilkunde |q VZ |
951 | |a AR | ||
952 | |d 41 |j 2016 |e 38 |b 15 |c 1015 |h 17169-17174 |g 6 | ||
953 | |2 045F |a 660 |
author_variant |
n s ns |
---|---|
matchkey_str |
sakodanonouekkurokitshinzatokkohnommonde:2016----:rnintmeauenpesrbhvoohgpesr10phdoedrn |
hierarchy_sort_str |
2016transfer abstract |
bklnumber |
44.94 |
publishDate |
2016 |
allfields |
10.1016/j.ijhydene.2016.06.114 doi GBVA2016012000026.pica (DE-627)ELV014136384 (ELSEVIER)S0360-3199(15)31824-3 DE-627 ger DE-627 rakwb eng 660 620 660 DE-600 620 DE-600 610 VZ 44.94 bkl Sakoda, N. verfasserin aut Transient temperature and pressure behavior of high-pressure 100 MPa hydrogen during discharge through orifices 2016transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier High-pressure hydrogen at a maximum of 100 MPa in a 1-L-volume vessel is discharged through 0.1-mm- and 0.2-mm-diameter orifices that imitate cracks, and the transient temperature and pressure behavior of the hydrogen in the vessel is presented. The hydrogen at the initial pressure of 100 MPa during its discharge through the ϕ 0.2-mm orifice reaches half of the initial pressure after 16 s, while it takes approximately nine times longer for the ϕ 0.1-mm orifice to reach half of the initial pressure. We theoretically calculate the transient temperature and pressure according to the fundamental equations based on the mass and energy conservations using an accurate equation of state for hydrogen. The actual flow rate through an orifice is generally smaller than the theoretically calculated flow rate because of the contraction flow. Therefore, in this study, we adopt the effective diameters of the orifices instead of the actual diameters, and from comparisons with the experimental pressure, we estimate them to be 0.6 and 0.9 of the actual diameters for the ϕ 0.1-mm and ϕ 0.2-mm orifices, respectively. We use a functional form with a time constant for the heat transfer coefficient to represent the transient temperature behavior, and we describe the time dependence of the heat transfer coefficient. The results show that the calculated temperature and pressure are in good agreement with the experimental values obtained. High-pressure hydrogen at a maximum of 100 MPa in a 1-L-volume vessel is discharged through 0.1-mm- and 0.2-mm-diameter orifices that imitate cracks, and the transient temperature and pressure behavior of the hydrogen in the vessel is presented. The hydrogen at the initial pressure of 100 MPa during its discharge through the ϕ 0.2-mm orifice reaches half of the initial pressure after 16 s, while it takes approximately nine times longer for the ϕ 0.1-mm orifice to reach half of the initial pressure. We theoretically calculate the transient temperature and pressure according to the fundamental equations based on the mass and energy conservations using an accurate equation of state for hydrogen. The actual flow rate through an orifice is generally smaller than the theoretically calculated flow rate because of the contraction flow. Therefore, in this study, we adopt the effective diameters of the orifices instead of the actual diameters, and from comparisons with the experimental pressure, we estimate them to be 0.6 and 0.9 of the actual diameters for the ϕ 0.1-mm and ϕ 0.2-mm orifices, respectively. We use a functional form with a time constant for the heat transfer coefficient to represent the transient temperature behavior, and we describe the time dependence of the heat transfer coefficient. The results show that the calculated temperature and pressure are in good agreement with the experimental values obtained. High-pressure hydrogen Elsevier Transient behavior Elsevier Orifice Elsevier Discharge Elsevier Onoue, K. oth Kuroki, T. oth Shinzato, K. oth Kohno, M. oth Monde, M. oth Takata, Y. oth Enthalten in Elsevier Dedhia, Kavita ELSEVIER External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs 2018 official journal of the International Association for Hydrogen Energy New York, NY [u.a.] (DE-627)ELV000127019 volume:41 year:2016 number:38 day:15 month:10 pages:17169-17174 extent:6 https://doi.org/10.1016/j.ijhydene.2016.06.114 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 41 2016 38 15 1015 17169-17174 6 045F 660 |
spelling |
10.1016/j.ijhydene.2016.06.114 doi GBVA2016012000026.pica (DE-627)ELV014136384 (ELSEVIER)S0360-3199(15)31824-3 DE-627 ger DE-627 rakwb eng 660 620 660 DE-600 620 DE-600 610 VZ 44.94 bkl Sakoda, N. verfasserin aut Transient temperature and pressure behavior of high-pressure 100 MPa hydrogen during discharge through orifices 2016transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier High-pressure hydrogen at a maximum of 100 MPa in a 1-L-volume vessel is discharged through 0.1-mm- and 0.2-mm-diameter orifices that imitate cracks, and the transient temperature and pressure behavior of the hydrogen in the vessel is presented. The hydrogen at the initial pressure of 100 MPa during its discharge through the ϕ 0.2-mm orifice reaches half of the initial pressure after 16 s, while it takes approximately nine times longer for the ϕ 0.1-mm orifice to reach half of the initial pressure. We theoretically calculate the transient temperature and pressure according to the fundamental equations based on the mass and energy conservations using an accurate equation of state for hydrogen. The actual flow rate through an orifice is generally smaller than the theoretically calculated flow rate because of the contraction flow. Therefore, in this study, we adopt the effective diameters of the orifices instead of the actual diameters, and from comparisons with the experimental pressure, we estimate them to be 0.6 and 0.9 of the actual diameters for the ϕ 0.1-mm and ϕ 0.2-mm orifices, respectively. We use a functional form with a time constant for the heat transfer coefficient to represent the transient temperature behavior, and we describe the time dependence of the heat transfer coefficient. The results show that the calculated temperature and pressure are in good agreement with the experimental values obtained. High-pressure hydrogen at a maximum of 100 MPa in a 1-L-volume vessel is discharged through 0.1-mm- and 0.2-mm-diameter orifices that imitate cracks, and the transient temperature and pressure behavior of the hydrogen in the vessel is presented. The hydrogen at the initial pressure of 100 MPa during its discharge through the ϕ 0.2-mm orifice reaches half of the initial pressure after 16 s, while it takes approximately nine times longer for the ϕ 0.1-mm orifice to reach half of the initial pressure. We theoretically calculate the transient temperature and pressure according to the fundamental equations based on the mass and energy conservations using an accurate equation of state for hydrogen. The actual flow rate through an orifice is generally smaller than the theoretically calculated flow rate because of the contraction flow. Therefore, in this study, we adopt the effective diameters of the orifices instead of the actual diameters, and from comparisons with the experimental pressure, we estimate them to be 0.6 and 0.9 of the actual diameters for the ϕ 0.1-mm and ϕ 0.2-mm orifices, respectively. We use a functional form with a time constant for the heat transfer coefficient to represent the transient temperature behavior, and we describe the time dependence of the heat transfer coefficient. The results show that the calculated temperature and pressure are in good agreement with the experimental values obtained. High-pressure hydrogen Elsevier Transient behavior Elsevier Orifice Elsevier Discharge Elsevier Onoue, K. oth Kuroki, T. oth Shinzato, K. oth Kohno, M. oth Monde, M. oth Takata, Y. oth Enthalten in Elsevier Dedhia, Kavita ELSEVIER External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs 2018 official journal of the International Association for Hydrogen Energy New York, NY [u.a.] (DE-627)ELV000127019 volume:41 year:2016 number:38 day:15 month:10 pages:17169-17174 extent:6 https://doi.org/10.1016/j.ijhydene.2016.06.114 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 41 2016 38 15 1015 17169-17174 6 045F 660 |
allfields_unstemmed |
10.1016/j.ijhydene.2016.06.114 doi GBVA2016012000026.pica (DE-627)ELV014136384 (ELSEVIER)S0360-3199(15)31824-3 DE-627 ger DE-627 rakwb eng 660 620 660 DE-600 620 DE-600 610 VZ 44.94 bkl Sakoda, N. verfasserin aut Transient temperature and pressure behavior of high-pressure 100 MPa hydrogen during discharge through orifices 2016transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier High-pressure hydrogen at a maximum of 100 MPa in a 1-L-volume vessel is discharged through 0.1-mm- and 0.2-mm-diameter orifices that imitate cracks, and the transient temperature and pressure behavior of the hydrogen in the vessel is presented. The hydrogen at the initial pressure of 100 MPa during its discharge through the ϕ 0.2-mm orifice reaches half of the initial pressure after 16 s, while it takes approximately nine times longer for the ϕ 0.1-mm orifice to reach half of the initial pressure. We theoretically calculate the transient temperature and pressure according to the fundamental equations based on the mass and energy conservations using an accurate equation of state for hydrogen. The actual flow rate through an orifice is generally smaller than the theoretically calculated flow rate because of the contraction flow. Therefore, in this study, we adopt the effective diameters of the orifices instead of the actual diameters, and from comparisons with the experimental pressure, we estimate them to be 0.6 and 0.9 of the actual diameters for the ϕ 0.1-mm and ϕ 0.2-mm orifices, respectively. We use a functional form with a time constant for the heat transfer coefficient to represent the transient temperature behavior, and we describe the time dependence of the heat transfer coefficient. The results show that the calculated temperature and pressure are in good agreement with the experimental values obtained. High-pressure hydrogen at a maximum of 100 MPa in a 1-L-volume vessel is discharged through 0.1-mm- and 0.2-mm-diameter orifices that imitate cracks, and the transient temperature and pressure behavior of the hydrogen in the vessel is presented. The hydrogen at the initial pressure of 100 MPa during its discharge through the ϕ 0.2-mm orifice reaches half of the initial pressure after 16 s, while it takes approximately nine times longer for the ϕ 0.1-mm orifice to reach half of the initial pressure. We theoretically calculate the transient temperature and pressure according to the fundamental equations based on the mass and energy conservations using an accurate equation of state for hydrogen. The actual flow rate through an orifice is generally smaller than the theoretically calculated flow rate because of the contraction flow. Therefore, in this study, we adopt the effective diameters of the orifices instead of the actual diameters, and from comparisons with the experimental pressure, we estimate them to be 0.6 and 0.9 of the actual diameters for the ϕ 0.1-mm and ϕ 0.2-mm orifices, respectively. We use a functional form with a time constant for the heat transfer coefficient to represent the transient temperature behavior, and we describe the time dependence of the heat transfer coefficient. The results show that the calculated temperature and pressure are in good agreement with the experimental values obtained. High-pressure hydrogen Elsevier Transient behavior Elsevier Orifice Elsevier Discharge Elsevier Onoue, K. oth Kuroki, T. oth Shinzato, K. oth Kohno, M. oth Monde, M. oth Takata, Y. oth Enthalten in Elsevier Dedhia, Kavita ELSEVIER External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs 2018 official journal of the International Association for Hydrogen Energy New York, NY [u.a.] (DE-627)ELV000127019 volume:41 year:2016 number:38 day:15 month:10 pages:17169-17174 extent:6 https://doi.org/10.1016/j.ijhydene.2016.06.114 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 41 2016 38 15 1015 17169-17174 6 045F 660 |
allfieldsGer |
10.1016/j.ijhydene.2016.06.114 doi GBVA2016012000026.pica (DE-627)ELV014136384 (ELSEVIER)S0360-3199(15)31824-3 DE-627 ger DE-627 rakwb eng 660 620 660 DE-600 620 DE-600 610 VZ 44.94 bkl Sakoda, N. verfasserin aut Transient temperature and pressure behavior of high-pressure 100 MPa hydrogen during discharge through orifices 2016transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier High-pressure hydrogen at a maximum of 100 MPa in a 1-L-volume vessel is discharged through 0.1-mm- and 0.2-mm-diameter orifices that imitate cracks, and the transient temperature and pressure behavior of the hydrogen in the vessel is presented. The hydrogen at the initial pressure of 100 MPa during its discharge through the ϕ 0.2-mm orifice reaches half of the initial pressure after 16 s, while it takes approximately nine times longer for the ϕ 0.1-mm orifice to reach half of the initial pressure. We theoretically calculate the transient temperature and pressure according to the fundamental equations based on the mass and energy conservations using an accurate equation of state for hydrogen. The actual flow rate through an orifice is generally smaller than the theoretically calculated flow rate because of the contraction flow. Therefore, in this study, we adopt the effective diameters of the orifices instead of the actual diameters, and from comparisons with the experimental pressure, we estimate them to be 0.6 and 0.9 of the actual diameters for the ϕ 0.1-mm and ϕ 0.2-mm orifices, respectively. We use a functional form with a time constant for the heat transfer coefficient to represent the transient temperature behavior, and we describe the time dependence of the heat transfer coefficient. The results show that the calculated temperature and pressure are in good agreement with the experimental values obtained. High-pressure hydrogen at a maximum of 100 MPa in a 1-L-volume vessel is discharged through 0.1-mm- and 0.2-mm-diameter orifices that imitate cracks, and the transient temperature and pressure behavior of the hydrogen in the vessel is presented. The hydrogen at the initial pressure of 100 MPa during its discharge through the ϕ 0.2-mm orifice reaches half of the initial pressure after 16 s, while it takes approximately nine times longer for the ϕ 0.1-mm orifice to reach half of the initial pressure. We theoretically calculate the transient temperature and pressure according to the fundamental equations based on the mass and energy conservations using an accurate equation of state for hydrogen. The actual flow rate through an orifice is generally smaller than the theoretically calculated flow rate because of the contraction flow. Therefore, in this study, we adopt the effective diameters of the orifices instead of the actual diameters, and from comparisons with the experimental pressure, we estimate them to be 0.6 and 0.9 of the actual diameters for the ϕ 0.1-mm and ϕ 0.2-mm orifices, respectively. We use a functional form with a time constant for the heat transfer coefficient to represent the transient temperature behavior, and we describe the time dependence of the heat transfer coefficient. The results show that the calculated temperature and pressure are in good agreement with the experimental values obtained. High-pressure hydrogen Elsevier Transient behavior Elsevier Orifice Elsevier Discharge Elsevier Onoue, K. oth Kuroki, T. oth Shinzato, K. oth Kohno, M. oth Monde, M. oth Takata, Y. oth Enthalten in Elsevier Dedhia, Kavita ELSEVIER External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs 2018 official journal of the International Association for Hydrogen Energy New York, NY [u.a.] (DE-627)ELV000127019 volume:41 year:2016 number:38 day:15 month:10 pages:17169-17174 extent:6 https://doi.org/10.1016/j.ijhydene.2016.06.114 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 41 2016 38 15 1015 17169-17174 6 045F 660 |
allfieldsSound |
10.1016/j.ijhydene.2016.06.114 doi GBVA2016012000026.pica (DE-627)ELV014136384 (ELSEVIER)S0360-3199(15)31824-3 DE-627 ger DE-627 rakwb eng 660 620 660 DE-600 620 DE-600 610 VZ 44.94 bkl Sakoda, N. verfasserin aut Transient temperature and pressure behavior of high-pressure 100 MPa hydrogen during discharge through orifices 2016transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier High-pressure hydrogen at a maximum of 100 MPa in a 1-L-volume vessel is discharged through 0.1-mm- and 0.2-mm-diameter orifices that imitate cracks, and the transient temperature and pressure behavior of the hydrogen in the vessel is presented. The hydrogen at the initial pressure of 100 MPa during its discharge through the ϕ 0.2-mm orifice reaches half of the initial pressure after 16 s, while it takes approximately nine times longer for the ϕ 0.1-mm orifice to reach half of the initial pressure. We theoretically calculate the transient temperature and pressure according to the fundamental equations based on the mass and energy conservations using an accurate equation of state for hydrogen. The actual flow rate through an orifice is generally smaller than the theoretically calculated flow rate because of the contraction flow. Therefore, in this study, we adopt the effective diameters of the orifices instead of the actual diameters, and from comparisons with the experimental pressure, we estimate them to be 0.6 and 0.9 of the actual diameters for the ϕ 0.1-mm and ϕ 0.2-mm orifices, respectively. We use a functional form with a time constant for the heat transfer coefficient to represent the transient temperature behavior, and we describe the time dependence of the heat transfer coefficient. The results show that the calculated temperature and pressure are in good agreement with the experimental values obtained. High-pressure hydrogen at a maximum of 100 MPa in a 1-L-volume vessel is discharged through 0.1-mm- and 0.2-mm-diameter orifices that imitate cracks, and the transient temperature and pressure behavior of the hydrogen in the vessel is presented. The hydrogen at the initial pressure of 100 MPa during its discharge through the ϕ 0.2-mm orifice reaches half of the initial pressure after 16 s, while it takes approximately nine times longer for the ϕ 0.1-mm orifice to reach half of the initial pressure. We theoretically calculate the transient temperature and pressure according to the fundamental equations based on the mass and energy conservations using an accurate equation of state for hydrogen. The actual flow rate through an orifice is generally smaller than the theoretically calculated flow rate because of the contraction flow. Therefore, in this study, we adopt the effective diameters of the orifices instead of the actual diameters, and from comparisons with the experimental pressure, we estimate them to be 0.6 and 0.9 of the actual diameters for the ϕ 0.1-mm and ϕ 0.2-mm orifices, respectively. We use a functional form with a time constant for the heat transfer coefficient to represent the transient temperature behavior, and we describe the time dependence of the heat transfer coefficient. The results show that the calculated temperature and pressure are in good agreement with the experimental values obtained. High-pressure hydrogen Elsevier Transient behavior Elsevier Orifice Elsevier Discharge Elsevier Onoue, K. oth Kuroki, T. oth Shinzato, K. oth Kohno, M. oth Monde, M. oth Takata, Y. oth Enthalten in Elsevier Dedhia, Kavita ELSEVIER External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs 2018 official journal of the International Association for Hydrogen Energy New York, NY [u.a.] (DE-627)ELV000127019 volume:41 year:2016 number:38 day:15 month:10 pages:17169-17174 extent:6 https://doi.org/10.1016/j.ijhydene.2016.06.114 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 41 2016 38 15 1015 17169-17174 6 045F 660 |
language |
English |
source |
Enthalten in External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs New York, NY [u.a.] volume:41 year:2016 number:38 day:15 month:10 pages:17169-17174 extent:6 |
sourceStr |
Enthalten in External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs New York, NY [u.a.] volume:41 year:2016 number:38 day:15 month:10 pages:17169-17174 extent:6 |
format_phy_str_mv |
Article |
bklname |
Hals-Nasen-Ohrenheilkunde |
institution |
findex.gbv.de |
topic_facet |
High-pressure hydrogen Transient behavior Orifice Discharge |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs |
authorswithroles_txt_mv |
Sakoda, N. @@aut@@ Onoue, K. @@oth@@ Kuroki, T. @@oth@@ Shinzato, K. @@oth@@ Kohno, M. @@oth@@ Monde, M. @@oth@@ Takata, Y. @@oth@@ |
publishDateDaySort_date |
2016-01-15T00:00:00Z |
hierarchy_top_id |
ELV000127019 |
dewey-sort |
3660 |
id |
ELV014136384 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV014136384</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625113015.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijhydene.2016.06.114</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2016012000026.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV014136384</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-3199(15)31824-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">660</subfield><subfield code="a">620</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.94</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sakoda, N.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Transient temperature and pressure behavior of high-pressure 100 MPa hydrogen during discharge through orifices</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">6</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">High-pressure hydrogen at a maximum of 100 MPa in a 1-L-volume vessel is discharged through 0.1-mm- and 0.2-mm-diameter orifices that imitate cracks, and the transient temperature and pressure behavior of the hydrogen in the vessel is presented. The hydrogen at the initial pressure of 100 MPa during its discharge through the ϕ 0.2-mm orifice reaches half of the initial pressure after 16 s, while it takes approximately nine times longer for the ϕ 0.1-mm orifice to reach half of the initial pressure. We theoretically calculate the transient temperature and pressure according to the fundamental equations based on the mass and energy conservations using an accurate equation of state for hydrogen. The actual flow rate through an orifice is generally smaller than the theoretically calculated flow rate because of the contraction flow. Therefore, in this study, we adopt the effective diameters of the orifices instead of the actual diameters, and from comparisons with the experimental pressure, we estimate them to be 0.6 and 0.9 of the actual diameters for the ϕ 0.1-mm and ϕ 0.2-mm orifices, respectively. We use a functional form with a time constant for the heat transfer coefficient to represent the transient temperature behavior, and we describe the time dependence of the heat transfer coefficient. The results show that the calculated temperature and pressure are in good agreement with the experimental values obtained.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">High-pressure hydrogen at a maximum of 100 MPa in a 1-L-volume vessel is discharged through 0.1-mm- and 0.2-mm-diameter orifices that imitate cracks, and the transient temperature and pressure behavior of the hydrogen in the vessel is presented. The hydrogen at the initial pressure of 100 MPa during its discharge through the ϕ 0.2-mm orifice reaches half of the initial pressure after 16 s, while it takes approximately nine times longer for the ϕ 0.1-mm orifice to reach half of the initial pressure. We theoretically calculate the transient temperature and pressure according to the fundamental equations based on the mass and energy conservations using an accurate equation of state for hydrogen. The actual flow rate through an orifice is generally smaller than the theoretically calculated flow rate because of the contraction flow. Therefore, in this study, we adopt the effective diameters of the orifices instead of the actual diameters, and from comparisons with the experimental pressure, we estimate them to be 0.6 and 0.9 of the actual diameters for the ϕ 0.1-mm and ϕ 0.2-mm orifices, respectively. We use a functional form with a time constant for the heat transfer coefficient to represent the transient temperature behavior, and we describe the time dependence of the heat transfer coefficient. The results show that the calculated temperature and pressure are in good agreement with the experimental values obtained.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">High-pressure hydrogen</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Transient behavior</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Orifice</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Discharge</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Onoue, K.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kuroki, T.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shinzato, K.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kohno, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Monde, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Takata, Y.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Dedhia, Kavita ELSEVIER</subfield><subfield code="t">External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs</subfield><subfield code="d">2018</subfield><subfield code="d">official journal of the International Association for Hydrogen Energy</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV000127019</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:41</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:38</subfield><subfield code="g">day:15</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:17169-17174</subfield><subfield code="g">extent:6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ijhydene.2016.06.114</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.94</subfield><subfield code="j">Hals-Nasen-Ohrenheilkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">41</subfield><subfield code="j">2016</subfield><subfield code="e">38</subfield><subfield code="b">15</subfield><subfield code="c">1015</subfield><subfield code="h">17169-17174</subfield><subfield code="g">6</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">660</subfield></datafield></record></collection>
|
author |
Sakoda, N. |
spellingShingle |
Sakoda, N. ddc 660 ddc 620 ddc 610 bkl 44.94 Elsevier High-pressure hydrogen Elsevier Transient behavior Elsevier Orifice Elsevier Discharge Transient temperature and pressure behavior of high-pressure 100 MPa hydrogen during discharge through orifices |
authorStr |
Sakoda, N. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV000127019 |
format |
electronic Article |
dewey-ones |
660 - Chemical engineering 620 - Engineering & allied operations 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
660 620 660 DE-600 620 DE-600 610 VZ 44.94 bkl Transient temperature and pressure behavior of high-pressure 100 MPa hydrogen during discharge through orifices High-pressure hydrogen Elsevier Transient behavior Elsevier Orifice Elsevier Discharge Elsevier |
topic |
ddc 660 ddc 620 ddc 610 bkl 44.94 Elsevier High-pressure hydrogen Elsevier Transient behavior Elsevier Orifice Elsevier Discharge |
topic_unstemmed |
ddc 660 ddc 620 ddc 610 bkl 44.94 Elsevier High-pressure hydrogen Elsevier Transient behavior Elsevier Orifice Elsevier Discharge |
topic_browse |
ddc 660 ddc 620 ddc 610 bkl 44.94 Elsevier High-pressure hydrogen Elsevier Transient behavior Elsevier Orifice Elsevier Discharge |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
k o ko t k tk k s ks m k mk m m mm y t yt |
hierarchy_parent_title |
External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs |
hierarchy_parent_id |
ELV000127019 |
dewey-tens |
660 - Chemical engineering 620 - Engineering 610 - Medicine & health |
hierarchy_top_title |
External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV000127019 |
title |
Transient temperature and pressure behavior of high-pressure 100 MPa hydrogen during discharge through orifices |
ctrlnum |
(DE-627)ELV014136384 (ELSEVIER)S0360-3199(15)31824-3 |
title_full |
Transient temperature and pressure behavior of high-pressure 100 MPa hydrogen during discharge through orifices |
author_sort |
Sakoda, N. |
journal |
External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs |
journalStr |
External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
zzz |
container_start_page |
17169 |
author_browse |
Sakoda, N. |
container_volume |
41 |
physical |
6 |
class |
660 620 660 DE-600 620 DE-600 610 VZ 44.94 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Sakoda, N. |
doi_str_mv |
10.1016/j.ijhydene.2016.06.114 |
dewey-full |
660 620 610 |
title_sort |
transient temperature and pressure behavior of high-pressure 100 mpa hydrogen during discharge through orifices |
title_auth |
Transient temperature and pressure behavior of high-pressure 100 MPa hydrogen during discharge through orifices |
abstract |
High-pressure hydrogen at a maximum of 100 MPa in a 1-L-volume vessel is discharged through 0.1-mm- and 0.2-mm-diameter orifices that imitate cracks, and the transient temperature and pressure behavior of the hydrogen in the vessel is presented. The hydrogen at the initial pressure of 100 MPa during its discharge through the ϕ 0.2-mm orifice reaches half of the initial pressure after 16 s, while it takes approximately nine times longer for the ϕ 0.1-mm orifice to reach half of the initial pressure. We theoretically calculate the transient temperature and pressure according to the fundamental equations based on the mass and energy conservations using an accurate equation of state for hydrogen. The actual flow rate through an orifice is generally smaller than the theoretically calculated flow rate because of the contraction flow. Therefore, in this study, we adopt the effective diameters of the orifices instead of the actual diameters, and from comparisons with the experimental pressure, we estimate them to be 0.6 and 0.9 of the actual diameters for the ϕ 0.1-mm and ϕ 0.2-mm orifices, respectively. We use a functional form with a time constant for the heat transfer coefficient to represent the transient temperature behavior, and we describe the time dependence of the heat transfer coefficient. The results show that the calculated temperature and pressure are in good agreement with the experimental values obtained. |
abstractGer |
High-pressure hydrogen at a maximum of 100 MPa in a 1-L-volume vessel is discharged through 0.1-mm- and 0.2-mm-diameter orifices that imitate cracks, and the transient temperature and pressure behavior of the hydrogen in the vessel is presented. The hydrogen at the initial pressure of 100 MPa during its discharge through the ϕ 0.2-mm orifice reaches half of the initial pressure after 16 s, while it takes approximately nine times longer for the ϕ 0.1-mm orifice to reach half of the initial pressure. We theoretically calculate the transient temperature and pressure according to the fundamental equations based on the mass and energy conservations using an accurate equation of state for hydrogen. The actual flow rate through an orifice is generally smaller than the theoretically calculated flow rate because of the contraction flow. Therefore, in this study, we adopt the effective diameters of the orifices instead of the actual diameters, and from comparisons with the experimental pressure, we estimate them to be 0.6 and 0.9 of the actual diameters for the ϕ 0.1-mm and ϕ 0.2-mm orifices, respectively. We use a functional form with a time constant for the heat transfer coefficient to represent the transient temperature behavior, and we describe the time dependence of the heat transfer coefficient. The results show that the calculated temperature and pressure are in good agreement with the experimental values obtained. |
abstract_unstemmed |
High-pressure hydrogen at a maximum of 100 MPa in a 1-L-volume vessel is discharged through 0.1-mm- and 0.2-mm-diameter orifices that imitate cracks, and the transient temperature and pressure behavior of the hydrogen in the vessel is presented. The hydrogen at the initial pressure of 100 MPa during its discharge through the ϕ 0.2-mm orifice reaches half of the initial pressure after 16 s, while it takes approximately nine times longer for the ϕ 0.1-mm orifice to reach half of the initial pressure. We theoretically calculate the transient temperature and pressure according to the fundamental equations based on the mass and energy conservations using an accurate equation of state for hydrogen. The actual flow rate through an orifice is generally smaller than the theoretically calculated flow rate because of the contraction flow. Therefore, in this study, we adopt the effective diameters of the orifices instead of the actual diameters, and from comparisons with the experimental pressure, we estimate them to be 0.6 and 0.9 of the actual diameters for the ϕ 0.1-mm and ϕ 0.2-mm orifices, respectively. We use a functional form with a time constant for the heat transfer coefficient to represent the transient temperature behavior, and we describe the time dependence of the heat transfer coefficient. The results show that the calculated temperature and pressure are in good agreement with the experimental values obtained. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
container_issue |
38 |
title_short |
Transient temperature and pressure behavior of high-pressure 100 MPa hydrogen during discharge through orifices |
url |
https://doi.org/10.1016/j.ijhydene.2016.06.114 |
remote_bool |
true |
author2 |
Onoue, K. Kuroki, T. Shinzato, K. Kohno, M. Monde, M. Takata, Y. |
author2Str |
Onoue, K. Kuroki, T. Shinzato, K. Kohno, M. Monde, M. Takata, Y. |
ppnlink |
ELV000127019 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth |
doi_str |
10.1016/j.ijhydene.2016.06.114 |
up_date |
2024-07-06T20:44:25.375Z |
_version_ |
1803863893345304576 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV014136384</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625113015.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijhydene.2016.06.114</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2016012000026.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV014136384</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-3199(15)31824-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">660</subfield><subfield code="a">620</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.94</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sakoda, N.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Transient temperature and pressure behavior of high-pressure 100 MPa hydrogen during discharge through orifices</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">6</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">High-pressure hydrogen at a maximum of 100 MPa in a 1-L-volume vessel is discharged through 0.1-mm- and 0.2-mm-diameter orifices that imitate cracks, and the transient temperature and pressure behavior of the hydrogen in the vessel is presented. The hydrogen at the initial pressure of 100 MPa during its discharge through the ϕ 0.2-mm orifice reaches half of the initial pressure after 16 s, while it takes approximately nine times longer for the ϕ 0.1-mm orifice to reach half of the initial pressure. We theoretically calculate the transient temperature and pressure according to the fundamental equations based on the mass and energy conservations using an accurate equation of state for hydrogen. The actual flow rate through an orifice is generally smaller than the theoretically calculated flow rate because of the contraction flow. Therefore, in this study, we adopt the effective diameters of the orifices instead of the actual diameters, and from comparisons with the experimental pressure, we estimate them to be 0.6 and 0.9 of the actual diameters for the ϕ 0.1-mm and ϕ 0.2-mm orifices, respectively. We use a functional form with a time constant for the heat transfer coefficient to represent the transient temperature behavior, and we describe the time dependence of the heat transfer coefficient. The results show that the calculated temperature and pressure are in good agreement with the experimental values obtained.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">High-pressure hydrogen at a maximum of 100 MPa in a 1-L-volume vessel is discharged through 0.1-mm- and 0.2-mm-diameter orifices that imitate cracks, and the transient temperature and pressure behavior of the hydrogen in the vessel is presented. The hydrogen at the initial pressure of 100 MPa during its discharge through the ϕ 0.2-mm orifice reaches half of the initial pressure after 16 s, while it takes approximately nine times longer for the ϕ 0.1-mm orifice to reach half of the initial pressure. We theoretically calculate the transient temperature and pressure according to the fundamental equations based on the mass and energy conservations using an accurate equation of state for hydrogen. The actual flow rate through an orifice is generally smaller than the theoretically calculated flow rate because of the contraction flow. Therefore, in this study, we adopt the effective diameters of the orifices instead of the actual diameters, and from comparisons with the experimental pressure, we estimate them to be 0.6 and 0.9 of the actual diameters for the ϕ 0.1-mm and ϕ 0.2-mm orifices, respectively. We use a functional form with a time constant for the heat transfer coefficient to represent the transient temperature behavior, and we describe the time dependence of the heat transfer coefficient. The results show that the calculated temperature and pressure are in good agreement with the experimental values obtained.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">High-pressure hydrogen</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Transient behavior</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Orifice</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Discharge</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Onoue, K.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kuroki, T.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shinzato, K.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kohno, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Monde, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Takata, Y.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Dedhia, Kavita ELSEVIER</subfield><subfield code="t">External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs</subfield><subfield code="d">2018</subfield><subfield code="d">official journal of the International Association for Hydrogen Energy</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV000127019</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:41</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:38</subfield><subfield code="g">day:15</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:17169-17174</subfield><subfield code="g">extent:6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ijhydene.2016.06.114</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.94</subfield><subfield code="j">Hals-Nasen-Ohrenheilkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">41</subfield><subfield code="j">2016</subfield><subfield code="e">38</subfield><subfield code="b">15</subfield><subfield code="c">1015</subfield><subfield code="h">17169-17174</subfield><subfield code="g">6</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">660</subfield></datafield></record></collection>
|
score |
7.4023485 |