A virus-based nanoplasmonic structure as a surface-enhanced Raman biosensor
Fabrication of nanoscale structures with localized surface plasmons allows for substantial increase in sensitivity of chem/bio sensors. The main challenge for realizing complex nanoplasmonic structures in solution is the high level of precision required at the nanoscale to position metal nanoparticl...
Ausführliche Beschreibung
Autor*in: |
Lebedev, Nikolai [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
9 |
---|
Übergeordnetes Werk: |
Enthalten in: Vertical differentiation via multi-tier geographical indications and the consumer perception of quality: The case of Chianti wines - Costanigro, Marco ELSEVIER, 2019, the principal international journal devoted to research, design development and application of biosensors and bioelectronics, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:77 ; year:2016 ; day:15 ; month:03 ; pages:306-314 ; extent:9 |
Links: |
---|
DOI / URN: |
10.1016/j.bios.2015.09.032 |
---|
Katalog-ID: |
ELV014371847 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV014371847 | ||
003 | DE-627 | ||
005 | 20230625113438.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180602s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.bios.2015.09.032 |2 doi | |
028 | 5 | 2 | |a GBVA2016016000025.pica |
035 | |a (DE-627)ELV014371847 | ||
035 | |a (ELSEVIER)S0956-5663(15)30428-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 570 |a 610 | |
082 | 0 | 4 | |a 570 |q DE-600 |
082 | 0 | 4 | |a 610 |q DE-600 |
082 | 0 | 4 | |a 630 |a 640 |q VZ |
084 | |a 49.00 |2 bkl | ||
100 | 1 | |a Lebedev, Nikolai |e verfasserin |4 aut | |
245 | 1 | 0 | |a A virus-based nanoplasmonic structure as a surface-enhanced Raman biosensor |
264 | 1 | |c 2016transfer abstract | |
300 | |a 9 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Fabrication of nanoscale structures with localized surface plasmons allows for substantial increase in sensitivity of chem/bio sensors. The main challenge for realizing complex nanoplasmonic structures in solution is the high level of precision required at the nanoscale to position metal nanoparticles in 3D. In this study, we report a virus-like particle (VLP) for building a 3D plasmonic nanostructure in solution in which gold nanoparticles are precisely positioned on the VLP by directed self-assembly techniques. These structures allow for concentration of electromagnetic fields in the desired locations between the gold nanoparticles or “hot spots”. We measure the efficiency of the optical field spatial concentration for the first time, which results in a ten-fold enhancement of the capsid Raman peaks. Our experimental results agree with our 3D finite element simulations. Furthermore, we demonstrate as a proof-of-principle that the plasmonic nanostructures can be utilized in DNA detection down to 0.25ng/μl (lowest concentration tested), while the protein peaks from the interior of the nanoplasmonic structures, potentially, can serve as an internal tracer for the biosensors. | ||
520 | |a Fabrication of nanoscale structures with localized surface plasmons allows for substantial increase in sensitivity of chem/bio sensors. The main challenge for realizing complex nanoplasmonic structures in solution is the high level of precision required at the nanoscale to position metal nanoparticles in 3D. In this study, we report a virus-like particle (VLP) for building a 3D plasmonic nanostructure in solution in which gold nanoparticles are precisely positioned on the VLP by directed self-assembly techniques. These structures allow for concentration of electromagnetic fields in the desired locations between the gold nanoparticles or “hot spots”. We measure the efficiency of the optical field spatial concentration for the first time, which results in a ten-fold enhancement of the capsid Raman peaks. Our experimental results agree with our 3D finite element simulations. Furthermore, we demonstrate as a proof-of-principle that the plasmonic nanostructures can be utilized in DNA detection down to 0.25ng/μl (lowest concentration tested), while the protein peaks from the interior of the nanoplasmonic structures, potentially, can serve as an internal tracer for the biosensors. | ||
650 | 7 | |a Self-assembly |2 Elsevier | |
650 | 7 | |a Cowpea mosaic virus |2 Elsevier | |
650 | 7 | |a SERS |2 Elsevier | |
650 | 7 | |a Gold nanoparticles |2 Elsevier | |
650 | 7 | |a Raman |2 Elsevier | |
650 | 7 | |a Virus-like particles |2 Elsevier | |
700 | 1 | |a Griva, Igor |4 oth | |
700 | 1 | |a Dressick, Walter J. |4 oth | |
700 | 1 | |a Phelps, Jamie |4 oth | |
700 | 1 | |a Johnson, John E. |4 oth | |
700 | 1 | |a Meshcheriakova, Yulia |4 oth | |
700 | 1 | |a Lomonossoff, George P. |4 oth | |
700 | 1 | |a Soto, Carissa M. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Costanigro, Marco ELSEVIER |t Vertical differentiation via multi-tier geographical indications and the consumer perception of quality: The case of Chianti wines |d 2019 |d the principal international journal devoted to research, design development and application of biosensors and bioelectronics |g Amsterdam [u.a.] |w (DE-627)ELV001931067 |
773 | 1 | 8 | |g volume:77 |g year:2016 |g day:15 |g month:03 |g pages:306-314 |g extent:9 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.bios.2015.09.032 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 49.00 |j Hauswirtschaft: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 77 |j 2016 |b 15 |c 0315 |h 306-314 |g 9 | ||
953 | |2 045F |a 570 |
author_variant |
n l nl |
---|---|
matchkey_str |
lebedevnikolaigrivaigordressickwalterjph:2016----:vrsaennpamnctutraaufcehn |
hierarchy_sort_str |
2016transfer abstract |
bklnumber |
49.00 |
publishDate |
2016 |
allfields |
10.1016/j.bios.2015.09.032 doi GBVA2016016000025.pica (DE-627)ELV014371847 (ELSEVIER)S0956-5663(15)30428-0 DE-627 ger DE-627 rakwb eng 570 610 570 DE-600 610 DE-600 630 640 VZ 49.00 bkl Lebedev, Nikolai verfasserin aut A virus-based nanoplasmonic structure as a surface-enhanced Raman biosensor 2016transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Fabrication of nanoscale structures with localized surface plasmons allows for substantial increase in sensitivity of chem/bio sensors. The main challenge for realizing complex nanoplasmonic structures in solution is the high level of precision required at the nanoscale to position metal nanoparticles in 3D. In this study, we report a virus-like particle (VLP) for building a 3D plasmonic nanostructure in solution in which gold nanoparticles are precisely positioned on the VLP by directed self-assembly techniques. These structures allow for concentration of electromagnetic fields in the desired locations between the gold nanoparticles or “hot spots”. We measure the efficiency of the optical field spatial concentration for the first time, which results in a ten-fold enhancement of the capsid Raman peaks. Our experimental results agree with our 3D finite element simulations. Furthermore, we demonstrate as a proof-of-principle that the plasmonic nanostructures can be utilized in DNA detection down to 0.25ng/μl (lowest concentration tested), while the protein peaks from the interior of the nanoplasmonic structures, potentially, can serve as an internal tracer for the biosensors. Fabrication of nanoscale structures with localized surface plasmons allows for substantial increase in sensitivity of chem/bio sensors. The main challenge for realizing complex nanoplasmonic structures in solution is the high level of precision required at the nanoscale to position metal nanoparticles in 3D. In this study, we report a virus-like particle (VLP) for building a 3D plasmonic nanostructure in solution in which gold nanoparticles are precisely positioned on the VLP by directed self-assembly techniques. These structures allow for concentration of electromagnetic fields in the desired locations between the gold nanoparticles or “hot spots”. We measure the efficiency of the optical field spatial concentration for the first time, which results in a ten-fold enhancement of the capsid Raman peaks. Our experimental results agree with our 3D finite element simulations. Furthermore, we demonstrate as a proof-of-principle that the plasmonic nanostructures can be utilized in DNA detection down to 0.25ng/μl (lowest concentration tested), while the protein peaks from the interior of the nanoplasmonic structures, potentially, can serve as an internal tracer for the biosensors. Self-assembly Elsevier Cowpea mosaic virus Elsevier SERS Elsevier Gold nanoparticles Elsevier Raman Elsevier Virus-like particles Elsevier Griva, Igor oth Dressick, Walter J. oth Phelps, Jamie oth Johnson, John E. oth Meshcheriakova, Yulia oth Lomonossoff, George P. oth Soto, Carissa M. oth Enthalten in Elsevier Science Costanigro, Marco ELSEVIER Vertical differentiation via multi-tier geographical indications and the consumer perception of quality: The case of Chianti wines 2019 the principal international journal devoted to research, design development and application of biosensors and bioelectronics Amsterdam [u.a.] (DE-627)ELV001931067 volume:77 year:2016 day:15 month:03 pages:306-314 extent:9 https://doi.org/10.1016/j.bios.2015.09.032 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 49.00 Hauswirtschaft: Allgemeines VZ AR 77 2016 15 0315 306-314 9 045F 570 |
spelling |
10.1016/j.bios.2015.09.032 doi GBVA2016016000025.pica (DE-627)ELV014371847 (ELSEVIER)S0956-5663(15)30428-0 DE-627 ger DE-627 rakwb eng 570 610 570 DE-600 610 DE-600 630 640 VZ 49.00 bkl Lebedev, Nikolai verfasserin aut A virus-based nanoplasmonic structure as a surface-enhanced Raman biosensor 2016transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Fabrication of nanoscale structures with localized surface plasmons allows for substantial increase in sensitivity of chem/bio sensors. The main challenge for realizing complex nanoplasmonic structures in solution is the high level of precision required at the nanoscale to position metal nanoparticles in 3D. In this study, we report a virus-like particle (VLP) for building a 3D plasmonic nanostructure in solution in which gold nanoparticles are precisely positioned on the VLP by directed self-assembly techniques. These structures allow for concentration of electromagnetic fields in the desired locations between the gold nanoparticles or “hot spots”. We measure the efficiency of the optical field spatial concentration for the first time, which results in a ten-fold enhancement of the capsid Raman peaks. Our experimental results agree with our 3D finite element simulations. Furthermore, we demonstrate as a proof-of-principle that the plasmonic nanostructures can be utilized in DNA detection down to 0.25ng/μl (lowest concentration tested), while the protein peaks from the interior of the nanoplasmonic structures, potentially, can serve as an internal tracer for the biosensors. Fabrication of nanoscale structures with localized surface plasmons allows for substantial increase in sensitivity of chem/bio sensors. The main challenge for realizing complex nanoplasmonic structures in solution is the high level of precision required at the nanoscale to position metal nanoparticles in 3D. In this study, we report a virus-like particle (VLP) for building a 3D plasmonic nanostructure in solution in which gold nanoparticles are precisely positioned on the VLP by directed self-assembly techniques. These structures allow for concentration of electromagnetic fields in the desired locations between the gold nanoparticles or “hot spots”. We measure the efficiency of the optical field spatial concentration for the first time, which results in a ten-fold enhancement of the capsid Raman peaks. Our experimental results agree with our 3D finite element simulations. Furthermore, we demonstrate as a proof-of-principle that the plasmonic nanostructures can be utilized in DNA detection down to 0.25ng/μl (lowest concentration tested), while the protein peaks from the interior of the nanoplasmonic structures, potentially, can serve as an internal tracer for the biosensors. Self-assembly Elsevier Cowpea mosaic virus Elsevier SERS Elsevier Gold nanoparticles Elsevier Raman Elsevier Virus-like particles Elsevier Griva, Igor oth Dressick, Walter J. oth Phelps, Jamie oth Johnson, John E. oth Meshcheriakova, Yulia oth Lomonossoff, George P. oth Soto, Carissa M. oth Enthalten in Elsevier Science Costanigro, Marco ELSEVIER Vertical differentiation via multi-tier geographical indications and the consumer perception of quality: The case of Chianti wines 2019 the principal international journal devoted to research, design development and application of biosensors and bioelectronics Amsterdam [u.a.] (DE-627)ELV001931067 volume:77 year:2016 day:15 month:03 pages:306-314 extent:9 https://doi.org/10.1016/j.bios.2015.09.032 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 49.00 Hauswirtschaft: Allgemeines VZ AR 77 2016 15 0315 306-314 9 045F 570 |
allfields_unstemmed |
10.1016/j.bios.2015.09.032 doi GBVA2016016000025.pica (DE-627)ELV014371847 (ELSEVIER)S0956-5663(15)30428-0 DE-627 ger DE-627 rakwb eng 570 610 570 DE-600 610 DE-600 630 640 VZ 49.00 bkl Lebedev, Nikolai verfasserin aut A virus-based nanoplasmonic structure as a surface-enhanced Raman biosensor 2016transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Fabrication of nanoscale structures with localized surface plasmons allows for substantial increase in sensitivity of chem/bio sensors. The main challenge for realizing complex nanoplasmonic structures in solution is the high level of precision required at the nanoscale to position metal nanoparticles in 3D. In this study, we report a virus-like particle (VLP) for building a 3D plasmonic nanostructure in solution in which gold nanoparticles are precisely positioned on the VLP by directed self-assembly techniques. These structures allow for concentration of electromagnetic fields in the desired locations between the gold nanoparticles or “hot spots”. We measure the efficiency of the optical field spatial concentration for the first time, which results in a ten-fold enhancement of the capsid Raman peaks. Our experimental results agree with our 3D finite element simulations. Furthermore, we demonstrate as a proof-of-principle that the plasmonic nanostructures can be utilized in DNA detection down to 0.25ng/μl (lowest concentration tested), while the protein peaks from the interior of the nanoplasmonic structures, potentially, can serve as an internal tracer for the biosensors. Fabrication of nanoscale structures with localized surface plasmons allows for substantial increase in sensitivity of chem/bio sensors. The main challenge for realizing complex nanoplasmonic structures in solution is the high level of precision required at the nanoscale to position metal nanoparticles in 3D. In this study, we report a virus-like particle (VLP) for building a 3D plasmonic nanostructure in solution in which gold nanoparticles are precisely positioned on the VLP by directed self-assembly techniques. These structures allow for concentration of electromagnetic fields in the desired locations between the gold nanoparticles or “hot spots”. We measure the efficiency of the optical field spatial concentration for the first time, which results in a ten-fold enhancement of the capsid Raman peaks. Our experimental results agree with our 3D finite element simulations. Furthermore, we demonstrate as a proof-of-principle that the plasmonic nanostructures can be utilized in DNA detection down to 0.25ng/μl (lowest concentration tested), while the protein peaks from the interior of the nanoplasmonic structures, potentially, can serve as an internal tracer for the biosensors. Self-assembly Elsevier Cowpea mosaic virus Elsevier SERS Elsevier Gold nanoparticles Elsevier Raman Elsevier Virus-like particles Elsevier Griva, Igor oth Dressick, Walter J. oth Phelps, Jamie oth Johnson, John E. oth Meshcheriakova, Yulia oth Lomonossoff, George P. oth Soto, Carissa M. oth Enthalten in Elsevier Science Costanigro, Marco ELSEVIER Vertical differentiation via multi-tier geographical indications and the consumer perception of quality: The case of Chianti wines 2019 the principal international journal devoted to research, design development and application of biosensors and bioelectronics Amsterdam [u.a.] (DE-627)ELV001931067 volume:77 year:2016 day:15 month:03 pages:306-314 extent:9 https://doi.org/10.1016/j.bios.2015.09.032 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 49.00 Hauswirtschaft: Allgemeines VZ AR 77 2016 15 0315 306-314 9 045F 570 |
allfieldsGer |
10.1016/j.bios.2015.09.032 doi GBVA2016016000025.pica (DE-627)ELV014371847 (ELSEVIER)S0956-5663(15)30428-0 DE-627 ger DE-627 rakwb eng 570 610 570 DE-600 610 DE-600 630 640 VZ 49.00 bkl Lebedev, Nikolai verfasserin aut A virus-based nanoplasmonic structure as a surface-enhanced Raman biosensor 2016transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Fabrication of nanoscale structures with localized surface plasmons allows for substantial increase in sensitivity of chem/bio sensors. The main challenge for realizing complex nanoplasmonic structures in solution is the high level of precision required at the nanoscale to position metal nanoparticles in 3D. In this study, we report a virus-like particle (VLP) for building a 3D plasmonic nanostructure in solution in which gold nanoparticles are precisely positioned on the VLP by directed self-assembly techniques. These structures allow for concentration of electromagnetic fields in the desired locations between the gold nanoparticles or “hot spots”. We measure the efficiency of the optical field spatial concentration for the first time, which results in a ten-fold enhancement of the capsid Raman peaks. Our experimental results agree with our 3D finite element simulations. Furthermore, we demonstrate as a proof-of-principle that the plasmonic nanostructures can be utilized in DNA detection down to 0.25ng/μl (lowest concentration tested), while the protein peaks from the interior of the nanoplasmonic structures, potentially, can serve as an internal tracer for the biosensors. Fabrication of nanoscale structures with localized surface plasmons allows for substantial increase in sensitivity of chem/bio sensors. The main challenge for realizing complex nanoplasmonic structures in solution is the high level of precision required at the nanoscale to position metal nanoparticles in 3D. In this study, we report a virus-like particle (VLP) for building a 3D plasmonic nanostructure in solution in which gold nanoparticles are precisely positioned on the VLP by directed self-assembly techniques. These structures allow for concentration of electromagnetic fields in the desired locations between the gold nanoparticles or “hot spots”. We measure the efficiency of the optical field spatial concentration for the first time, which results in a ten-fold enhancement of the capsid Raman peaks. Our experimental results agree with our 3D finite element simulations. Furthermore, we demonstrate as a proof-of-principle that the plasmonic nanostructures can be utilized in DNA detection down to 0.25ng/μl (lowest concentration tested), while the protein peaks from the interior of the nanoplasmonic structures, potentially, can serve as an internal tracer for the biosensors. Self-assembly Elsevier Cowpea mosaic virus Elsevier SERS Elsevier Gold nanoparticles Elsevier Raman Elsevier Virus-like particles Elsevier Griva, Igor oth Dressick, Walter J. oth Phelps, Jamie oth Johnson, John E. oth Meshcheriakova, Yulia oth Lomonossoff, George P. oth Soto, Carissa M. oth Enthalten in Elsevier Science Costanigro, Marco ELSEVIER Vertical differentiation via multi-tier geographical indications and the consumer perception of quality: The case of Chianti wines 2019 the principal international journal devoted to research, design development and application of biosensors and bioelectronics Amsterdam [u.a.] (DE-627)ELV001931067 volume:77 year:2016 day:15 month:03 pages:306-314 extent:9 https://doi.org/10.1016/j.bios.2015.09.032 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 49.00 Hauswirtschaft: Allgemeines VZ AR 77 2016 15 0315 306-314 9 045F 570 |
allfieldsSound |
10.1016/j.bios.2015.09.032 doi GBVA2016016000025.pica (DE-627)ELV014371847 (ELSEVIER)S0956-5663(15)30428-0 DE-627 ger DE-627 rakwb eng 570 610 570 DE-600 610 DE-600 630 640 VZ 49.00 bkl Lebedev, Nikolai verfasserin aut A virus-based nanoplasmonic structure as a surface-enhanced Raman biosensor 2016transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Fabrication of nanoscale structures with localized surface plasmons allows for substantial increase in sensitivity of chem/bio sensors. The main challenge for realizing complex nanoplasmonic structures in solution is the high level of precision required at the nanoscale to position metal nanoparticles in 3D. In this study, we report a virus-like particle (VLP) for building a 3D plasmonic nanostructure in solution in which gold nanoparticles are precisely positioned on the VLP by directed self-assembly techniques. These structures allow for concentration of electromagnetic fields in the desired locations between the gold nanoparticles or “hot spots”. We measure the efficiency of the optical field spatial concentration for the first time, which results in a ten-fold enhancement of the capsid Raman peaks. Our experimental results agree with our 3D finite element simulations. Furthermore, we demonstrate as a proof-of-principle that the plasmonic nanostructures can be utilized in DNA detection down to 0.25ng/μl (lowest concentration tested), while the protein peaks from the interior of the nanoplasmonic structures, potentially, can serve as an internal tracer for the biosensors. Fabrication of nanoscale structures with localized surface plasmons allows for substantial increase in sensitivity of chem/bio sensors. The main challenge for realizing complex nanoplasmonic structures in solution is the high level of precision required at the nanoscale to position metal nanoparticles in 3D. In this study, we report a virus-like particle (VLP) for building a 3D plasmonic nanostructure in solution in which gold nanoparticles are precisely positioned on the VLP by directed self-assembly techniques. These structures allow for concentration of electromagnetic fields in the desired locations between the gold nanoparticles or “hot spots”. We measure the efficiency of the optical field spatial concentration for the first time, which results in a ten-fold enhancement of the capsid Raman peaks. Our experimental results agree with our 3D finite element simulations. Furthermore, we demonstrate as a proof-of-principle that the plasmonic nanostructures can be utilized in DNA detection down to 0.25ng/μl (lowest concentration tested), while the protein peaks from the interior of the nanoplasmonic structures, potentially, can serve as an internal tracer for the biosensors. Self-assembly Elsevier Cowpea mosaic virus Elsevier SERS Elsevier Gold nanoparticles Elsevier Raman Elsevier Virus-like particles Elsevier Griva, Igor oth Dressick, Walter J. oth Phelps, Jamie oth Johnson, John E. oth Meshcheriakova, Yulia oth Lomonossoff, George P. oth Soto, Carissa M. oth Enthalten in Elsevier Science Costanigro, Marco ELSEVIER Vertical differentiation via multi-tier geographical indications and the consumer perception of quality: The case of Chianti wines 2019 the principal international journal devoted to research, design development and application of biosensors and bioelectronics Amsterdam [u.a.] (DE-627)ELV001931067 volume:77 year:2016 day:15 month:03 pages:306-314 extent:9 https://doi.org/10.1016/j.bios.2015.09.032 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 49.00 Hauswirtschaft: Allgemeines VZ AR 77 2016 15 0315 306-314 9 045F 570 |
language |
English |
source |
Enthalten in Vertical differentiation via multi-tier geographical indications and the consumer perception of quality: The case of Chianti wines Amsterdam [u.a.] volume:77 year:2016 day:15 month:03 pages:306-314 extent:9 |
sourceStr |
Enthalten in Vertical differentiation via multi-tier geographical indications and the consumer perception of quality: The case of Chianti wines Amsterdam [u.a.] volume:77 year:2016 day:15 month:03 pages:306-314 extent:9 |
format_phy_str_mv |
Article |
bklname |
Hauswirtschaft: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Self-assembly Cowpea mosaic virus SERS Gold nanoparticles Raman Virus-like particles |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
Vertical differentiation via multi-tier geographical indications and the consumer perception of quality: The case of Chianti wines |
authorswithroles_txt_mv |
Lebedev, Nikolai @@aut@@ Griva, Igor @@oth@@ Dressick, Walter J. @@oth@@ Phelps, Jamie @@oth@@ Johnson, John E. @@oth@@ Meshcheriakova, Yulia @@oth@@ Lomonossoff, George P. @@oth@@ Soto, Carissa M. @@oth@@ |
publishDateDaySort_date |
2016-01-15T00:00:00Z |
hierarchy_top_id |
ELV001931067 |
dewey-sort |
3570 |
id |
ELV014371847 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV014371847</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625113438.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.bios.2015.09.032</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2016016000025.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV014371847</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0956-5663(15)30428-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">570</subfield><subfield code="a">610</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">49.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lebedev, Nikolai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A virus-based nanoplasmonic structure as a surface-enhanced Raman biosensor</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">9</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Fabrication of nanoscale structures with localized surface plasmons allows for substantial increase in sensitivity of chem/bio sensors. The main challenge for realizing complex nanoplasmonic structures in solution is the high level of precision required at the nanoscale to position metal nanoparticles in 3D. In this study, we report a virus-like particle (VLP) for building a 3D plasmonic nanostructure in solution in which gold nanoparticles are precisely positioned on the VLP by directed self-assembly techniques. These structures allow for concentration of electromagnetic fields in the desired locations between the gold nanoparticles or “hot spots”. We measure the efficiency of the optical field spatial concentration for the first time, which results in a ten-fold enhancement of the capsid Raman peaks. Our experimental results agree with our 3D finite element simulations. Furthermore, we demonstrate as a proof-of-principle that the plasmonic nanostructures can be utilized in DNA detection down to 0.25ng/μl (lowest concentration tested), while the protein peaks from the interior of the nanoplasmonic structures, potentially, can serve as an internal tracer for the biosensors.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Fabrication of nanoscale structures with localized surface plasmons allows for substantial increase in sensitivity of chem/bio sensors. The main challenge for realizing complex nanoplasmonic structures in solution is the high level of precision required at the nanoscale to position metal nanoparticles in 3D. In this study, we report a virus-like particle (VLP) for building a 3D plasmonic nanostructure in solution in which gold nanoparticles are precisely positioned on the VLP by directed self-assembly techniques. These structures allow for concentration of electromagnetic fields in the desired locations between the gold nanoparticles or “hot spots”. We measure the efficiency of the optical field spatial concentration for the first time, which results in a ten-fold enhancement of the capsid Raman peaks. Our experimental results agree with our 3D finite element simulations. Furthermore, we demonstrate as a proof-of-principle that the plasmonic nanostructures can be utilized in DNA detection down to 0.25ng/μl (lowest concentration tested), while the protein peaks from the interior of the nanoplasmonic structures, potentially, can serve as an internal tracer for the biosensors.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Self-assembly</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cowpea mosaic virus</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SERS</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Gold nanoparticles</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Raman</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Virus-like particles</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Griva, Igor</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dressick, Walter J.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Phelps, Jamie</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Johnson, John E.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meshcheriakova, Yulia</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lomonossoff, George P.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Soto, Carissa M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Costanigro, Marco ELSEVIER</subfield><subfield code="t">Vertical differentiation via multi-tier geographical indications and the consumer perception of quality: The case of Chianti wines</subfield><subfield code="d">2019</subfield><subfield code="d">the principal international journal devoted to research, design development and application of biosensors and bioelectronics</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV001931067</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:77</subfield><subfield code="g">year:2016</subfield><subfield code="g">day:15</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:306-314</subfield><subfield code="g">extent:9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.bios.2015.09.032</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">49.00</subfield><subfield code="j">Hauswirtschaft: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">77</subfield><subfield code="j">2016</subfield><subfield code="b">15</subfield><subfield code="c">0315</subfield><subfield code="h">306-314</subfield><subfield code="g">9</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">570</subfield></datafield></record></collection>
|
author |
Lebedev, Nikolai |
spellingShingle |
Lebedev, Nikolai ddc 570 ddc 610 ddc 630 bkl 49.00 Elsevier Self-assembly Elsevier Cowpea mosaic virus Elsevier SERS Elsevier Gold nanoparticles Elsevier Raman Elsevier Virus-like particles A virus-based nanoplasmonic structure as a surface-enhanced Raman biosensor |
authorStr |
Lebedev, Nikolai |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV001931067 |
format |
electronic Article |
dewey-ones |
570 - Life sciences; biology 610 - Medicine & health 630 - Agriculture & related technologies 640 - Home & family management |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
570 610 570 DE-600 610 DE-600 630 640 VZ 49.00 bkl A virus-based nanoplasmonic structure as a surface-enhanced Raman biosensor Self-assembly Elsevier Cowpea mosaic virus Elsevier SERS Elsevier Gold nanoparticles Elsevier Raman Elsevier Virus-like particles Elsevier |
topic |
ddc 570 ddc 610 ddc 630 bkl 49.00 Elsevier Self-assembly Elsevier Cowpea mosaic virus Elsevier SERS Elsevier Gold nanoparticles Elsevier Raman Elsevier Virus-like particles |
topic_unstemmed |
ddc 570 ddc 610 ddc 630 bkl 49.00 Elsevier Self-assembly Elsevier Cowpea mosaic virus Elsevier SERS Elsevier Gold nanoparticles Elsevier Raman Elsevier Virus-like particles |
topic_browse |
ddc 570 ddc 610 ddc 630 bkl 49.00 Elsevier Self-assembly Elsevier Cowpea mosaic virus Elsevier SERS Elsevier Gold nanoparticles Elsevier Raman Elsevier Virus-like particles |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
i g ig w j d wj wjd j p jp j e j je jej y m ym g p l gp gpl c m s cm cms |
hierarchy_parent_title |
Vertical differentiation via multi-tier geographical indications and the consumer perception of quality: The case of Chianti wines |
hierarchy_parent_id |
ELV001931067 |
dewey-tens |
570 - Life sciences; biology 610 - Medicine & health 630 - Agriculture 640 - Home & family management |
hierarchy_top_title |
Vertical differentiation via multi-tier geographical indications and the consumer perception of quality: The case of Chianti wines |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV001931067 |
title |
A virus-based nanoplasmonic structure as a surface-enhanced Raman biosensor |
ctrlnum |
(DE-627)ELV014371847 (ELSEVIER)S0956-5663(15)30428-0 |
title_full |
A virus-based nanoplasmonic structure as a surface-enhanced Raman biosensor |
author_sort |
Lebedev, Nikolai |
journal |
Vertical differentiation via multi-tier geographical indications and the consumer perception of quality: The case of Chianti wines |
journalStr |
Vertical differentiation via multi-tier geographical indications and the consumer perception of quality: The case of Chianti wines |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
zzz |
container_start_page |
306 |
author_browse |
Lebedev, Nikolai |
container_volume |
77 |
physical |
9 |
class |
570 610 570 DE-600 610 DE-600 630 640 VZ 49.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Lebedev, Nikolai |
doi_str_mv |
10.1016/j.bios.2015.09.032 |
dewey-full |
570 610 630 640 |
title_sort |
a virus-based nanoplasmonic structure as a surface-enhanced raman biosensor |
title_auth |
A virus-based nanoplasmonic structure as a surface-enhanced Raman biosensor |
abstract |
Fabrication of nanoscale structures with localized surface plasmons allows for substantial increase in sensitivity of chem/bio sensors. The main challenge for realizing complex nanoplasmonic structures in solution is the high level of precision required at the nanoscale to position metal nanoparticles in 3D. In this study, we report a virus-like particle (VLP) for building a 3D plasmonic nanostructure in solution in which gold nanoparticles are precisely positioned on the VLP by directed self-assembly techniques. These structures allow for concentration of electromagnetic fields in the desired locations between the gold nanoparticles or “hot spots”. We measure the efficiency of the optical field spatial concentration for the first time, which results in a ten-fold enhancement of the capsid Raman peaks. Our experimental results agree with our 3D finite element simulations. Furthermore, we demonstrate as a proof-of-principle that the plasmonic nanostructures can be utilized in DNA detection down to 0.25ng/μl (lowest concentration tested), while the protein peaks from the interior of the nanoplasmonic structures, potentially, can serve as an internal tracer for the biosensors. |
abstractGer |
Fabrication of nanoscale structures with localized surface plasmons allows for substantial increase in sensitivity of chem/bio sensors. The main challenge for realizing complex nanoplasmonic structures in solution is the high level of precision required at the nanoscale to position metal nanoparticles in 3D. In this study, we report a virus-like particle (VLP) for building a 3D plasmonic nanostructure in solution in which gold nanoparticles are precisely positioned on the VLP by directed self-assembly techniques. These structures allow for concentration of electromagnetic fields in the desired locations between the gold nanoparticles or “hot spots”. We measure the efficiency of the optical field spatial concentration for the first time, which results in a ten-fold enhancement of the capsid Raman peaks. Our experimental results agree with our 3D finite element simulations. Furthermore, we demonstrate as a proof-of-principle that the plasmonic nanostructures can be utilized in DNA detection down to 0.25ng/μl (lowest concentration tested), while the protein peaks from the interior of the nanoplasmonic structures, potentially, can serve as an internal tracer for the biosensors. |
abstract_unstemmed |
Fabrication of nanoscale structures with localized surface plasmons allows for substantial increase in sensitivity of chem/bio sensors. The main challenge for realizing complex nanoplasmonic structures in solution is the high level of precision required at the nanoscale to position metal nanoparticles in 3D. In this study, we report a virus-like particle (VLP) for building a 3D plasmonic nanostructure in solution in which gold nanoparticles are precisely positioned on the VLP by directed self-assembly techniques. These structures allow for concentration of electromagnetic fields in the desired locations between the gold nanoparticles or “hot spots”. We measure the efficiency of the optical field spatial concentration for the first time, which results in a ten-fold enhancement of the capsid Raman peaks. Our experimental results agree with our 3D finite element simulations. Furthermore, we demonstrate as a proof-of-principle that the plasmonic nanostructures can be utilized in DNA detection down to 0.25ng/μl (lowest concentration tested), while the protein peaks from the interior of the nanoplasmonic structures, potentially, can serve as an internal tracer for the biosensors. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
A virus-based nanoplasmonic structure as a surface-enhanced Raman biosensor |
url |
https://doi.org/10.1016/j.bios.2015.09.032 |
remote_bool |
true |
author2 |
Griva, Igor Dressick, Walter J. Phelps, Jamie Johnson, John E. Meshcheriakova, Yulia Lomonossoff, George P. Soto, Carissa M. |
author2Str |
Griva, Igor Dressick, Walter J. Phelps, Jamie Johnson, John E. Meshcheriakova, Yulia Lomonossoff, George P. Soto, Carissa M. |
ppnlink |
ELV001931067 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth |
doi_str |
10.1016/j.bios.2015.09.032 |
up_date |
2024-07-06T21:23:30.918Z |
_version_ |
1803866352825401344 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV014371847</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625113438.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.bios.2015.09.032</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2016016000025.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV014371847</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0956-5663(15)30428-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">570</subfield><subfield code="a">610</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">49.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lebedev, Nikolai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A virus-based nanoplasmonic structure as a surface-enhanced Raman biosensor</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">9</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Fabrication of nanoscale structures with localized surface plasmons allows for substantial increase in sensitivity of chem/bio sensors. The main challenge for realizing complex nanoplasmonic structures in solution is the high level of precision required at the nanoscale to position metal nanoparticles in 3D. In this study, we report a virus-like particle (VLP) for building a 3D plasmonic nanostructure in solution in which gold nanoparticles are precisely positioned on the VLP by directed self-assembly techniques. These structures allow for concentration of electromagnetic fields in the desired locations between the gold nanoparticles or “hot spots”. We measure the efficiency of the optical field spatial concentration for the first time, which results in a ten-fold enhancement of the capsid Raman peaks. Our experimental results agree with our 3D finite element simulations. Furthermore, we demonstrate as a proof-of-principle that the plasmonic nanostructures can be utilized in DNA detection down to 0.25ng/μl (lowest concentration tested), while the protein peaks from the interior of the nanoplasmonic structures, potentially, can serve as an internal tracer for the biosensors.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Fabrication of nanoscale structures with localized surface plasmons allows for substantial increase in sensitivity of chem/bio sensors. The main challenge for realizing complex nanoplasmonic structures in solution is the high level of precision required at the nanoscale to position metal nanoparticles in 3D. In this study, we report a virus-like particle (VLP) for building a 3D plasmonic nanostructure in solution in which gold nanoparticles are precisely positioned on the VLP by directed self-assembly techniques. These structures allow for concentration of electromagnetic fields in the desired locations between the gold nanoparticles or “hot spots”. We measure the efficiency of the optical field spatial concentration for the first time, which results in a ten-fold enhancement of the capsid Raman peaks. Our experimental results agree with our 3D finite element simulations. Furthermore, we demonstrate as a proof-of-principle that the plasmonic nanostructures can be utilized in DNA detection down to 0.25ng/μl (lowest concentration tested), while the protein peaks from the interior of the nanoplasmonic structures, potentially, can serve as an internal tracer for the biosensors.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Self-assembly</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cowpea mosaic virus</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SERS</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Gold nanoparticles</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Raman</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Virus-like particles</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Griva, Igor</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dressick, Walter J.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Phelps, Jamie</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Johnson, John E.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meshcheriakova, Yulia</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lomonossoff, George P.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Soto, Carissa M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Costanigro, Marco ELSEVIER</subfield><subfield code="t">Vertical differentiation via multi-tier geographical indications and the consumer perception of quality: The case of Chianti wines</subfield><subfield code="d">2019</subfield><subfield code="d">the principal international journal devoted to research, design development and application of biosensors and bioelectronics</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV001931067</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:77</subfield><subfield code="g">year:2016</subfield><subfield code="g">day:15</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:306-314</subfield><subfield code="g">extent:9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.bios.2015.09.032</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">49.00</subfield><subfield code="j">Hauswirtschaft: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">77</subfield><subfield code="j">2016</subfield><subfield code="b">15</subfield><subfield code="c">0315</subfield><subfield code="h">306-314</subfield><subfield code="g">9</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">570</subfield></datafield></record></collection>
|
score |
7.4012585 |