A biomechanical comparison between expert and novice manual materials handlers using a multi-joint EMG-assisted optimization musculoskeletal model of the lumbar spine
Expertise is a key factor modulating the risk of low back disorders (LBD). Through years of practice in the workplace, the typical expert acquires high level specific skills and maintains a clean record of work-related injuries. Ergonomic observations of manual materials handling (MMH) tasks show th...
Ausführliche Beschreibung
Autor*in: |
Gagnon, Denis [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
8 |
---|
Übergeordnetes Werk: |
Enthalten in: Measuring students' school context exposures: A trajectory-based approach - Halpern-Manners, Andrew ELSEVIER, 2016, affiliated with the American Society of Biomechanics, the European Society of Biomechanics, the International Society of Biomechanics, the Japanese Society for Clinical Biomechanics and Related Research and the Australian and New Zealand Society of Biomechanics, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:49 ; year:2016 ; number:13 ; day:6 ; month:09 ; pages:2938-2945 ; extent:8 |
Links: |
---|
DOI / URN: |
10.1016/j.jbiomech.2016.07.009 |
---|
Katalog-ID: |
ELV014635836 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV014635836 | ||
003 | DE-627 | ||
005 | 20230625113651.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180602s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jbiomech.2016.07.009 |2 doi | |
028 | 5 | 2 | |a GBVA2016022000001.pica |
035 | |a (DE-627)ELV014635836 | ||
035 | |a (ELSEVIER)S0021-9290(16)30755-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 570 |a 796 | |
082 | 0 | 4 | |a 570 |q DE-600 |
082 | 0 | 4 | |a 796 |q DE-600 |
082 | 0 | 4 | |a 300 |q VZ |
084 | |a 70.00 |2 bkl | ||
084 | |a 71.00 |2 bkl | ||
100 | 1 | |a Gagnon, Denis |e verfasserin |4 aut | |
245 | 1 | 0 | |a A biomechanical comparison between expert and novice manual materials handlers using a multi-joint EMG-assisted optimization musculoskeletal model of the lumbar spine |
264 | 1 | |c 2016transfer abstract | |
300 | |a 8 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Expertise is a key factor modulating the risk of low back disorders (LBD). Through years of practice in the workplace, the typical expert acquires high level specific skills and maintains a clean record of work-related injuries. Ergonomic observations of manual materials handling (MMH) tasks show that expert techniques differ from those of novices, leading to the idea that expert techniques are safer. Biomechanical studies of MMH tasks performed by experts/novices report mixed results for kinematic/kinetic variables, evoking potential internal effect of expertise. In the context of series of box transfers simulated by actual workers, detailed internal loads predicted by a multiple-joint EMG-assisted optimization lumbar spine model are compared between experts and novices. The results confirmed that the distribution of internal moments are modulated by worker expertise. Experts flexed less their lumbar spine and exerted more active muscle forces while novices relied more on passive resistance of the muscles and ligamentous spine. More specifically for novices, the passive contributions came from global extensor muscles, selected local extensor muscles, and passive structures of the lumbar spine (ligaments and discs). The distinctive distribution of internal forces was not concomitant with a similar effect on joint forces, these forces being dependent on external loading which was equivalent between experts and novices. From a safety standpoint, the present results suggest that experts were more efficient than novices in partitioning internal moment contributions to balance net (external) loading. Thus, safer handling practices might be seen as a result of experts׳ experience. | ||
520 | |a Expertise is a key factor modulating the risk of low back disorders (LBD). Through years of practice in the workplace, the typical expert acquires high level specific skills and maintains a clean record of work-related injuries. Ergonomic observations of manual materials handling (MMH) tasks show that expert techniques differ from those of novices, leading to the idea that expert techniques are safer. Biomechanical studies of MMH tasks performed by experts/novices report mixed results for kinematic/kinetic variables, evoking potential internal effect of expertise. In the context of series of box transfers simulated by actual workers, detailed internal loads predicted by a multiple-joint EMG-assisted optimization lumbar spine model are compared between experts and novices. The results confirmed that the distribution of internal moments are modulated by worker expertise. Experts flexed less their lumbar spine and exerted more active muscle forces while novices relied more on passive resistance of the muscles and ligamentous spine. More specifically for novices, the passive contributions came from global extensor muscles, selected local extensor muscles, and passive structures of the lumbar spine (ligaments and discs). The distinctive distribution of internal forces was not concomitant with a similar effect on joint forces, these forces being dependent on external loading which was equivalent between experts and novices. From a safety standpoint, the present results suggest that experts were more efficient than novices in partitioning internal moment contributions to balance net (external) loading. Thus, safer handling practices might be seen as a result of experts׳ experience. | ||
650 | 7 | |a Compression and shear |2 Elsevier | |
650 | 7 | |a Lumbar spine |2 Elsevier | |
650 | 7 | |a Dynamics |2 Elsevier | |
650 | 7 | |a Manual materials handling |2 Elsevier | |
650 | 7 | |a Trunk muscle forces |2 Elsevier | |
650 | 7 | |a Expertise |2 Elsevier | |
650 | 7 | |a EMG |2 Elsevier | |
650 | 7 | |a Optimization |2 Elsevier | |
700 | 1 | |a Plamondon, André |4 oth | |
700 | 1 | |a Larivière, Christian |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Halpern-Manners, Andrew ELSEVIER |t Measuring students' school context exposures: A trajectory-based approach |d 2016 |d affiliated with the American Society of Biomechanics, the European Society of Biomechanics, the International Society of Biomechanics, the Japanese Society for Clinical Biomechanics and Related Research and the Australian and New Zealand Society of Biomechanics |g Amsterdam [u.a.] |w (DE-627)ELV00201923X |
773 | 1 | 8 | |g volume:49 |g year:2016 |g number:13 |g day:6 |g month:09 |g pages:2938-2945 |g extent:8 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jbiomech.2016.07.009 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 70.00 |j Sozialwissenschaften allgemein: Allgemeines |q VZ |
936 | b | k | |a 71.00 |j Soziologie: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 49 |j 2016 |e 13 |b 6 |c 0906 |h 2938-2945 |g 8 | ||
953 | |2 045F |a 570 |
author_variant |
d g dg |
---|---|
matchkey_str |
gagnondenisplamondonandrlarivirechristia:2016----:boehncloprsneweepradoieaulaeilhnlruigmlionegsitdpiiain |
hierarchy_sort_str |
2016transfer abstract |
bklnumber |
70.00 71.00 |
publishDate |
2016 |
allfields |
10.1016/j.jbiomech.2016.07.009 doi GBVA2016022000001.pica (DE-627)ELV014635836 (ELSEVIER)S0021-9290(16)30755-2 DE-627 ger DE-627 rakwb eng 570 796 570 DE-600 796 DE-600 300 VZ 70.00 bkl 71.00 bkl Gagnon, Denis verfasserin aut A biomechanical comparison between expert and novice manual materials handlers using a multi-joint EMG-assisted optimization musculoskeletal model of the lumbar spine 2016transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Expertise is a key factor modulating the risk of low back disorders (LBD). Through years of practice in the workplace, the typical expert acquires high level specific skills and maintains a clean record of work-related injuries. Ergonomic observations of manual materials handling (MMH) tasks show that expert techniques differ from those of novices, leading to the idea that expert techniques are safer. Biomechanical studies of MMH tasks performed by experts/novices report mixed results for kinematic/kinetic variables, evoking potential internal effect of expertise. In the context of series of box transfers simulated by actual workers, detailed internal loads predicted by a multiple-joint EMG-assisted optimization lumbar spine model are compared between experts and novices. The results confirmed that the distribution of internal moments are modulated by worker expertise. Experts flexed less their lumbar spine and exerted more active muscle forces while novices relied more on passive resistance of the muscles and ligamentous spine. More specifically for novices, the passive contributions came from global extensor muscles, selected local extensor muscles, and passive structures of the lumbar spine (ligaments and discs). The distinctive distribution of internal forces was not concomitant with a similar effect on joint forces, these forces being dependent on external loading which was equivalent between experts and novices. From a safety standpoint, the present results suggest that experts were more efficient than novices in partitioning internal moment contributions to balance net (external) loading. Thus, safer handling practices might be seen as a result of experts׳ experience. Expertise is a key factor modulating the risk of low back disorders (LBD). Through years of practice in the workplace, the typical expert acquires high level specific skills and maintains a clean record of work-related injuries. Ergonomic observations of manual materials handling (MMH) tasks show that expert techniques differ from those of novices, leading to the idea that expert techniques are safer. Biomechanical studies of MMH tasks performed by experts/novices report mixed results for kinematic/kinetic variables, evoking potential internal effect of expertise. In the context of series of box transfers simulated by actual workers, detailed internal loads predicted by a multiple-joint EMG-assisted optimization lumbar spine model are compared between experts and novices. The results confirmed that the distribution of internal moments are modulated by worker expertise. Experts flexed less their lumbar spine and exerted more active muscle forces while novices relied more on passive resistance of the muscles and ligamentous spine. More specifically for novices, the passive contributions came from global extensor muscles, selected local extensor muscles, and passive structures of the lumbar spine (ligaments and discs). The distinctive distribution of internal forces was not concomitant with a similar effect on joint forces, these forces being dependent on external loading which was equivalent between experts and novices. From a safety standpoint, the present results suggest that experts were more efficient than novices in partitioning internal moment contributions to balance net (external) loading. Thus, safer handling practices might be seen as a result of experts׳ experience. Compression and shear Elsevier Lumbar spine Elsevier Dynamics Elsevier Manual materials handling Elsevier Trunk muscle forces Elsevier Expertise Elsevier EMG Elsevier Optimization Elsevier Plamondon, André oth Larivière, Christian oth Enthalten in Elsevier Science Halpern-Manners, Andrew ELSEVIER Measuring students' school context exposures: A trajectory-based approach 2016 affiliated with the American Society of Biomechanics, the European Society of Biomechanics, the International Society of Biomechanics, the Japanese Society for Clinical Biomechanics and Related Research and the Australian and New Zealand Society of Biomechanics Amsterdam [u.a.] (DE-627)ELV00201923X volume:49 year:2016 number:13 day:6 month:09 pages:2938-2945 extent:8 https://doi.org/10.1016/j.jbiomech.2016.07.009 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 70.00 Sozialwissenschaften allgemein: Allgemeines VZ 71.00 Soziologie: Allgemeines VZ AR 49 2016 13 6 0906 2938-2945 8 045F 570 |
spelling |
10.1016/j.jbiomech.2016.07.009 doi GBVA2016022000001.pica (DE-627)ELV014635836 (ELSEVIER)S0021-9290(16)30755-2 DE-627 ger DE-627 rakwb eng 570 796 570 DE-600 796 DE-600 300 VZ 70.00 bkl 71.00 bkl Gagnon, Denis verfasserin aut A biomechanical comparison between expert and novice manual materials handlers using a multi-joint EMG-assisted optimization musculoskeletal model of the lumbar spine 2016transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Expertise is a key factor modulating the risk of low back disorders (LBD). Through years of practice in the workplace, the typical expert acquires high level specific skills and maintains a clean record of work-related injuries. Ergonomic observations of manual materials handling (MMH) tasks show that expert techniques differ from those of novices, leading to the idea that expert techniques are safer. Biomechanical studies of MMH tasks performed by experts/novices report mixed results for kinematic/kinetic variables, evoking potential internal effect of expertise. In the context of series of box transfers simulated by actual workers, detailed internal loads predicted by a multiple-joint EMG-assisted optimization lumbar spine model are compared between experts and novices. The results confirmed that the distribution of internal moments are modulated by worker expertise. Experts flexed less their lumbar spine and exerted more active muscle forces while novices relied more on passive resistance of the muscles and ligamentous spine. More specifically for novices, the passive contributions came from global extensor muscles, selected local extensor muscles, and passive structures of the lumbar spine (ligaments and discs). The distinctive distribution of internal forces was not concomitant with a similar effect on joint forces, these forces being dependent on external loading which was equivalent between experts and novices. From a safety standpoint, the present results suggest that experts were more efficient than novices in partitioning internal moment contributions to balance net (external) loading. Thus, safer handling practices might be seen as a result of experts׳ experience. Expertise is a key factor modulating the risk of low back disorders (LBD). Through years of practice in the workplace, the typical expert acquires high level specific skills and maintains a clean record of work-related injuries. Ergonomic observations of manual materials handling (MMH) tasks show that expert techniques differ from those of novices, leading to the idea that expert techniques are safer. Biomechanical studies of MMH tasks performed by experts/novices report mixed results for kinematic/kinetic variables, evoking potential internal effect of expertise. In the context of series of box transfers simulated by actual workers, detailed internal loads predicted by a multiple-joint EMG-assisted optimization lumbar spine model are compared between experts and novices. The results confirmed that the distribution of internal moments are modulated by worker expertise. Experts flexed less their lumbar spine and exerted more active muscle forces while novices relied more on passive resistance of the muscles and ligamentous spine. More specifically for novices, the passive contributions came from global extensor muscles, selected local extensor muscles, and passive structures of the lumbar spine (ligaments and discs). The distinctive distribution of internal forces was not concomitant with a similar effect on joint forces, these forces being dependent on external loading which was equivalent between experts and novices. From a safety standpoint, the present results suggest that experts were more efficient than novices in partitioning internal moment contributions to balance net (external) loading. Thus, safer handling practices might be seen as a result of experts׳ experience. Compression and shear Elsevier Lumbar spine Elsevier Dynamics Elsevier Manual materials handling Elsevier Trunk muscle forces Elsevier Expertise Elsevier EMG Elsevier Optimization Elsevier Plamondon, André oth Larivière, Christian oth Enthalten in Elsevier Science Halpern-Manners, Andrew ELSEVIER Measuring students' school context exposures: A trajectory-based approach 2016 affiliated with the American Society of Biomechanics, the European Society of Biomechanics, the International Society of Biomechanics, the Japanese Society for Clinical Biomechanics and Related Research and the Australian and New Zealand Society of Biomechanics Amsterdam [u.a.] (DE-627)ELV00201923X volume:49 year:2016 number:13 day:6 month:09 pages:2938-2945 extent:8 https://doi.org/10.1016/j.jbiomech.2016.07.009 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 70.00 Sozialwissenschaften allgemein: Allgemeines VZ 71.00 Soziologie: Allgemeines VZ AR 49 2016 13 6 0906 2938-2945 8 045F 570 |
allfields_unstemmed |
10.1016/j.jbiomech.2016.07.009 doi GBVA2016022000001.pica (DE-627)ELV014635836 (ELSEVIER)S0021-9290(16)30755-2 DE-627 ger DE-627 rakwb eng 570 796 570 DE-600 796 DE-600 300 VZ 70.00 bkl 71.00 bkl Gagnon, Denis verfasserin aut A biomechanical comparison between expert and novice manual materials handlers using a multi-joint EMG-assisted optimization musculoskeletal model of the lumbar spine 2016transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Expertise is a key factor modulating the risk of low back disorders (LBD). Through years of practice in the workplace, the typical expert acquires high level specific skills and maintains a clean record of work-related injuries. Ergonomic observations of manual materials handling (MMH) tasks show that expert techniques differ from those of novices, leading to the idea that expert techniques are safer. Biomechanical studies of MMH tasks performed by experts/novices report mixed results for kinematic/kinetic variables, evoking potential internal effect of expertise. In the context of series of box transfers simulated by actual workers, detailed internal loads predicted by a multiple-joint EMG-assisted optimization lumbar spine model are compared between experts and novices. The results confirmed that the distribution of internal moments are modulated by worker expertise. Experts flexed less their lumbar spine and exerted more active muscle forces while novices relied more on passive resistance of the muscles and ligamentous spine. More specifically for novices, the passive contributions came from global extensor muscles, selected local extensor muscles, and passive structures of the lumbar spine (ligaments and discs). The distinctive distribution of internal forces was not concomitant with a similar effect on joint forces, these forces being dependent on external loading which was equivalent between experts and novices. From a safety standpoint, the present results suggest that experts were more efficient than novices in partitioning internal moment contributions to balance net (external) loading. Thus, safer handling practices might be seen as a result of experts׳ experience. Expertise is a key factor modulating the risk of low back disorders (LBD). Through years of practice in the workplace, the typical expert acquires high level specific skills and maintains a clean record of work-related injuries. Ergonomic observations of manual materials handling (MMH) tasks show that expert techniques differ from those of novices, leading to the idea that expert techniques are safer. Biomechanical studies of MMH tasks performed by experts/novices report mixed results for kinematic/kinetic variables, evoking potential internal effect of expertise. In the context of series of box transfers simulated by actual workers, detailed internal loads predicted by a multiple-joint EMG-assisted optimization lumbar spine model are compared between experts and novices. The results confirmed that the distribution of internal moments are modulated by worker expertise. Experts flexed less their lumbar spine and exerted more active muscle forces while novices relied more on passive resistance of the muscles and ligamentous spine. More specifically for novices, the passive contributions came from global extensor muscles, selected local extensor muscles, and passive structures of the lumbar spine (ligaments and discs). The distinctive distribution of internal forces was not concomitant with a similar effect on joint forces, these forces being dependent on external loading which was equivalent between experts and novices. From a safety standpoint, the present results suggest that experts were more efficient than novices in partitioning internal moment contributions to balance net (external) loading. Thus, safer handling practices might be seen as a result of experts׳ experience. Compression and shear Elsevier Lumbar spine Elsevier Dynamics Elsevier Manual materials handling Elsevier Trunk muscle forces Elsevier Expertise Elsevier EMG Elsevier Optimization Elsevier Plamondon, André oth Larivière, Christian oth Enthalten in Elsevier Science Halpern-Manners, Andrew ELSEVIER Measuring students' school context exposures: A trajectory-based approach 2016 affiliated with the American Society of Biomechanics, the European Society of Biomechanics, the International Society of Biomechanics, the Japanese Society for Clinical Biomechanics and Related Research and the Australian and New Zealand Society of Biomechanics Amsterdam [u.a.] (DE-627)ELV00201923X volume:49 year:2016 number:13 day:6 month:09 pages:2938-2945 extent:8 https://doi.org/10.1016/j.jbiomech.2016.07.009 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 70.00 Sozialwissenschaften allgemein: Allgemeines VZ 71.00 Soziologie: Allgemeines VZ AR 49 2016 13 6 0906 2938-2945 8 045F 570 |
allfieldsGer |
10.1016/j.jbiomech.2016.07.009 doi GBVA2016022000001.pica (DE-627)ELV014635836 (ELSEVIER)S0021-9290(16)30755-2 DE-627 ger DE-627 rakwb eng 570 796 570 DE-600 796 DE-600 300 VZ 70.00 bkl 71.00 bkl Gagnon, Denis verfasserin aut A biomechanical comparison between expert and novice manual materials handlers using a multi-joint EMG-assisted optimization musculoskeletal model of the lumbar spine 2016transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Expertise is a key factor modulating the risk of low back disorders (LBD). Through years of practice in the workplace, the typical expert acquires high level specific skills and maintains a clean record of work-related injuries. Ergonomic observations of manual materials handling (MMH) tasks show that expert techniques differ from those of novices, leading to the idea that expert techniques are safer. Biomechanical studies of MMH tasks performed by experts/novices report mixed results for kinematic/kinetic variables, evoking potential internal effect of expertise. In the context of series of box transfers simulated by actual workers, detailed internal loads predicted by a multiple-joint EMG-assisted optimization lumbar spine model are compared between experts and novices. The results confirmed that the distribution of internal moments are modulated by worker expertise. Experts flexed less their lumbar spine and exerted more active muscle forces while novices relied more on passive resistance of the muscles and ligamentous spine. More specifically for novices, the passive contributions came from global extensor muscles, selected local extensor muscles, and passive structures of the lumbar spine (ligaments and discs). The distinctive distribution of internal forces was not concomitant with a similar effect on joint forces, these forces being dependent on external loading which was equivalent between experts and novices. From a safety standpoint, the present results suggest that experts were more efficient than novices in partitioning internal moment contributions to balance net (external) loading. Thus, safer handling practices might be seen as a result of experts׳ experience. Expertise is a key factor modulating the risk of low back disorders (LBD). Through years of practice in the workplace, the typical expert acquires high level specific skills and maintains a clean record of work-related injuries. Ergonomic observations of manual materials handling (MMH) tasks show that expert techniques differ from those of novices, leading to the idea that expert techniques are safer. Biomechanical studies of MMH tasks performed by experts/novices report mixed results for kinematic/kinetic variables, evoking potential internal effect of expertise. In the context of series of box transfers simulated by actual workers, detailed internal loads predicted by a multiple-joint EMG-assisted optimization lumbar spine model are compared between experts and novices. The results confirmed that the distribution of internal moments are modulated by worker expertise. Experts flexed less their lumbar spine and exerted more active muscle forces while novices relied more on passive resistance of the muscles and ligamentous spine. More specifically for novices, the passive contributions came from global extensor muscles, selected local extensor muscles, and passive structures of the lumbar spine (ligaments and discs). The distinctive distribution of internal forces was not concomitant with a similar effect on joint forces, these forces being dependent on external loading which was equivalent between experts and novices. From a safety standpoint, the present results suggest that experts were more efficient than novices in partitioning internal moment contributions to balance net (external) loading. Thus, safer handling practices might be seen as a result of experts׳ experience. Compression and shear Elsevier Lumbar spine Elsevier Dynamics Elsevier Manual materials handling Elsevier Trunk muscle forces Elsevier Expertise Elsevier EMG Elsevier Optimization Elsevier Plamondon, André oth Larivière, Christian oth Enthalten in Elsevier Science Halpern-Manners, Andrew ELSEVIER Measuring students' school context exposures: A trajectory-based approach 2016 affiliated with the American Society of Biomechanics, the European Society of Biomechanics, the International Society of Biomechanics, the Japanese Society for Clinical Biomechanics and Related Research and the Australian and New Zealand Society of Biomechanics Amsterdam [u.a.] (DE-627)ELV00201923X volume:49 year:2016 number:13 day:6 month:09 pages:2938-2945 extent:8 https://doi.org/10.1016/j.jbiomech.2016.07.009 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 70.00 Sozialwissenschaften allgemein: Allgemeines VZ 71.00 Soziologie: Allgemeines VZ AR 49 2016 13 6 0906 2938-2945 8 045F 570 |
allfieldsSound |
10.1016/j.jbiomech.2016.07.009 doi GBVA2016022000001.pica (DE-627)ELV014635836 (ELSEVIER)S0021-9290(16)30755-2 DE-627 ger DE-627 rakwb eng 570 796 570 DE-600 796 DE-600 300 VZ 70.00 bkl 71.00 bkl Gagnon, Denis verfasserin aut A biomechanical comparison between expert and novice manual materials handlers using a multi-joint EMG-assisted optimization musculoskeletal model of the lumbar spine 2016transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Expertise is a key factor modulating the risk of low back disorders (LBD). Through years of practice in the workplace, the typical expert acquires high level specific skills and maintains a clean record of work-related injuries. Ergonomic observations of manual materials handling (MMH) tasks show that expert techniques differ from those of novices, leading to the idea that expert techniques are safer. Biomechanical studies of MMH tasks performed by experts/novices report mixed results for kinematic/kinetic variables, evoking potential internal effect of expertise. In the context of series of box transfers simulated by actual workers, detailed internal loads predicted by a multiple-joint EMG-assisted optimization lumbar spine model are compared between experts and novices. The results confirmed that the distribution of internal moments are modulated by worker expertise. Experts flexed less their lumbar spine and exerted more active muscle forces while novices relied more on passive resistance of the muscles and ligamentous spine. More specifically for novices, the passive contributions came from global extensor muscles, selected local extensor muscles, and passive structures of the lumbar spine (ligaments and discs). The distinctive distribution of internal forces was not concomitant with a similar effect on joint forces, these forces being dependent on external loading which was equivalent between experts and novices. From a safety standpoint, the present results suggest that experts were more efficient than novices in partitioning internal moment contributions to balance net (external) loading. Thus, safer handling practices might be seen as a result of experts׳ experience. Expertise is a key factor modulating the risk of low back disorders (LBD). Through years of practice in the workplace, the typical expert acquires high level specific skills and maintains a clean record of work-related injuries. Ergonomic observations of manual materials handling (MMH) tasks show that expert techniques differ from those of novices, leading to the idea that expert techniques are safer. Biomechanical studies of MMH tasks performed by experts/novices report mixed results for kinematic/kinetic variables, evoking potential internal effect of expertise. In the context of series of box transfers simulated by actual workers, detailed internal loads predicted by a multiple-joint EMG-assisted optimization lumbar spine model are compared between experts and novices. The results confirmed that the distribution of internal moments are modulated by worker expertise. Experts flexed less their lumbar spine and exerted more active muscle forces while novices relied more on passive resistance of the muscles and ligamentous spine. More specifically for novices, the passive contributions came from global extensor muscles, selected local extensor muscles, and passive structures of the lumbar spine (ligaments and discs). The distinctive distribution of internal forces was not concomitant with a similar effect on joint forces, these forces being dependent on external loading which was equivalent between experts and novices. From a safety standpoint, the present results suggest that experts were more efficient than novices in partitioning internal moment contributions to balance net (external) loading. Thus, safer handling practices might be seen as a result of experts׳ experience. Compression and shear Elsevier Lumbar spine Elsevier Dynamics Elsevier Manual materials handling Elsevier Trunk muscle forces Elsevier Expertise Elsevier EMG Elsevier Optimization Elsevier Plamondon, André oth Larivière, Christian oth Enthalten in Elsevier Science Halpern-Manners, Andrew ELSEVIER Measuring students' school context exposures: A trajectory-based approach 2016 affiliated with the American Society of Biomechanics, the European Society of Biomechanics, the International Society of Biomechanics, the Japanese Society for Clinical Biomechanics and Related Research and the Australian and New Zealand Society of Biomechanics Amsterdam [u.a.] (DE-627)ELV00201923X volume:49 year:2016 number:13 day:6 month:09 pages:2938-2945 extent:8 https://doi.org/10.1016/j.jbiomech.2016.07.009 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 70.00 Sozialwissenschaften allgemein: Allgemeines VZ 71.00 Soziologie: Allgemeines VZ AR 49 2016 13 6 0906 2938-2945 8 045F 570 |
language |
English |
source |
Enthalten in Measuring students' school context exposures: A trajectory-based approach Amsterdam [u.a.] volume:49 year:2016 number:13 day:6 month:09 pages:2938-2945 extent:8 |
sourceStr |
Enthalten in Measuring students' school context exposures: A trajectory-based approach Amsterdam [u.a.] volume:49 year:2016 number:13 day:6 month:09 pages:2938-2945 extent:8 |
format_phy_str_mv |
Article |
bklname |
Sozialwissenschaften allgemein: Allgemeines Soziologie: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Compression and shear Lumbar spine Dynamics Manual materials handling Trunk muscle forces Expertise EMG Optimization |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
Measuring students' school context exposures: A trajectory-based approach |
authorswithroles_txt_mv |
Gagnon, Denis @@aut@@ Plamondon, André @@oth@@ Larivière, Christian @@oth@@ |
publishDateDaySort_date |
2016-01-06T00:00:00Z |
hierarchy_top_id |
ELV00201923X |
dewey-sort |
3570 |
id |
ELV014635836 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV014635836</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625113651.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jbiomech.2016.07.009</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2016022000001.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV014635836</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0021-9290(16)30755-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">570</subfield><subfield code="a">796</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">796</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">300</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">70.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">71.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gagnon, Denis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A biomechanical comparison between expert and novice manual materials handlers using a multi-joint EMG-assisted optimization musculoskeletal model of the lumbar spine</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Expertise is a key factor modulating the risk of low back disorders (LBD). Through years of practice in the workplace, the typical expert acquires high level specific skills and maintains a clean record of work-related injuries. Ergonomic observations of manual materials handling (MMH) tasks show that expert techniques differ from those of novices, leading to the idea that expert techniques are safer. Biomechanical studies of MMH tasks performed by experts/novices report mixed results for kinematic/kinetic variables, evoking potential internal effect of expertise. In the context of series of box transfers simulated by actual workers, detailed internal loads predicted by a multiple-joint EMG-assisted optimization lumbar spine model are compared between experts and novices. The results confirmed that the distribution of internal moments are modulated by worker expertise. Experts flexed less their lumbar spine and exerted more active muscle forces while novices relied more on passive resistance of the muscles and ligamentous spine. More specifically for novices, the passive contributions came from global extensor muscles, selected local extensor muscles, and passive structures of the lumbar spine (ligaments and discs). The distinctive distribution of internal forces was not concomitant with a similar effect on joint forces, these forces being dependent on external loading which was equivalent between experts and novices. From a safety standpoint, the present results suggest that experts were more efficient than novices in partitioning internal moment contributions to balance net (external) loading. Thus, safer handling practices might be seen as a result of experts׳ experience.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Expertise is a key factor modulating the risk of low back disorders (LBD). Through years of practice in the workplace, the typical expert acquires high level specific skills and maintains a clean record of work-related injuries. Ergonomic observations of manual materials handling (MMH) tasks show that expert techniques differ from those of novices, leading to the idea that expert techniques are safer. Biomechanical studies of MMH tasks performed by experts/novices report mixed results for kinematic/kinetic variables, evoking potential internal effect of expertise. In the context of series of box transfers simulated by actual workers, detailed internal loads predicted by a multiple-joint EMG-assisted optimization lumbar spine model are compared between experts and novices. The results confirmed that the distribution of internal moments are modulated by worker expertise. Experts flexed less their lumbar spine and exerted more active muscle forces while novices relied more on passive resistance of the muscles and ligamentous spine. More specifically for novices, the passive contributions came from global extensor muscles, selected local extensor muscles, and passive structures of the lumbar spine (ligaments and discs). The distinctive distribution of internal forces was not concomitant with a similar effect on joint forces, these forces being dependent on external loading which was equivalent between experts and novices. From a safety standpoint, the present results suggest that experts were more efficient than novices in partitioning internal moment contributions to balance net (external) loading. Thus, safer handling practices might be seen as a result of experts׳ experience.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Compression and shear</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lumbar spine</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Dynamics</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Manual materials handling</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Trunk muscle forces</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Expertise</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">EMG</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Optimization</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Plamondon, André</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Larivière, Christian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Halpern-Manners, Andrew ELSEVIER</subfield><subfield code="t">Measuring students' school context exposures: A trajectory-based approach</subfield><subfield code="d">2016</subfield><subfield code="d">affiliated with the American Society of Biomechanics, the European Society of Biomechanics, the International Society of Biomechanics, the Japanese Society for Clinical Biomechanics and Related Research and the Australian and New Zealand Society of Biomechanics</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV00201923X</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:49</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:13</subfield><subfield code="g">day:6</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:2938-2945</subfield><subfield code="g">extent:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jbiomech.2016.07.009</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">70.00</subfield><subfield code="j">Sozialwissenschaften allgemein: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">71.00</subfield><subfield code="j">Soziologie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">49</subfield><subfield code="j">2016</subfield><subfield code="e">13</subfield><subfield code="b">6</subfield><subfield code="c">0906</subfield><subfield code="h">2938-2945</subfield><subfield code="g">8</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">570</subfield></datafield></record></collection>
|
author |
Gagnon, Denis |
spellingShingle |
Gagnon, Denis ddc 570 ddc 796 ddc 300 bkl 70.00 bkl 71.00 Elsevier Compression and shear Elsevier Lumbar spine Elsevier Dynamics Elsevier Manual materials handling Elsevier Trunk muscle forces Elsevier Expertise Elsevier EMG Elsevier Optimization A biomechanical comparison between expert and novice manual materials handlers using a multi-joint EMG-assisted optimization musculoskeletal model of the lumbar spine |
authorStr |
Gagnon, Denis |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV00201923X |
format |
electronic Article |
dewey-ones |
570 - Life sciences; biology 796 - Athletic & outdoor sports & games 300 - Social sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
570 796 570 DE-600 796 DE-600 300 VZ 70.00 bkl 71.00 bkl A biomechanical comparison between expert and novice manual materials handlers using a multi-joint EMG-assisted optimization musculoskeletal model of the lumbar spine Compression and shear Elsevier Lumbar spine Elsevier Dynamics Elsevier Manual materials handling Elsevier Trunk muscle forces Elsevier Expertise Elsevier EMG Elsevier Optimization Elsevier |
topic |
ddc 570 ddc 796 ddc 300 bkl 70.00 bkl 71.00 Elsevier Compression and shear Elsevier Lumbar spine Elsevier Dynamics Elsevier Manual materials handling Elsevier Trunk muscle forces Elsevier Expertise Elsevier EMG Elsevier Optimization |
topic_unstemmed |
ddc 570 ddc 796 ddc 300 bkl 70.00 bkl 71.00 Elsevier Compression and shear Elsevier Lumbar spine Elsevier Dynamics Elsevier Manual materials handling Elsevier Trunk muscle forces Elsevier Expertise Elsevier EMG Elsevier Optimization |
topic_browse |
ddc 570 ddc 796 ddc 300 bkl 70.00 bkl 71.00 Elsevier Compression and shear Elsevier Lumbar spine Elsevier Dynamics Elsevier Manual materials handling Elsevier Trunk muscle forces Elsevier Expertise Elsevier EMG Elsevier Optimization |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
a p ap c l cl |
hierarchy_parent_title |
Measuring students' school context exposures: A trajectory-based approach |
hierarchy_parent_id |
ELV00201923X |
dewey-tens |
570 - Life sciences; biology 790 - Sports, games & entertainment 300 - Social sciences, sociology & anthropology |
hierarchy_top_title |
Measuring students' school context exposures: A trajectory-based approach |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV00201923X |
title |
A biomechanical comparison between expert and novice manual materials handlers using a multi-joint EMG-assisted optimization musculoskeletal model of the lumbar spine |
ctrlnum |
(DE-627)ELV014635836 (ELSEVIER)S0021-9290(16)30755-2 |
title_full |
A biomechanical comparison between expert and novice manual materials handlers using a multi-joint EMG-assisted optimization musculoskeletal model of the lumbar spine |
author_sort |
Gagnon, Denis |
journal |
Measuring students' school context exposures: A trajectory-based approach |
journalStr |
Measuring students' school context exposures: A trajectory-based approach |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 700 - Arts & recreation 300 - Social sciences |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
zzz |
container_start_page |
2938 |
author_browse |
Gagnon, Denis |
container_volume |
49 |
physical |
8 |
class |
570 796 570 DE-600 796 DE-600 300 VZ 70.00 bkl 71.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Gagnon, Denis |
doi_str_mv |
10.1016/j.jbiomech.2016.07.009 |
dewey-full |
570 796 300 |
title_sort |
a biomechanical comparison between expert and novice manual materials handlers using a multi-joint emg-assisted optimization musculoskeletal model of the lumbar spine |
title_auth |
A biomechanical comparison between expert and novice manual materials handlers using a multi-joint EMG-assisted optimization musculoskeletal model of the lumbar spine |
abstract |
Expertise is a key factor modulating the risk of low back disorders (LBD). Through years of practice in the workplace, the typical expert acquires high level specific skills and maintains a clean record of work-related injuries. Ergonomic observations of manual materials handling (MMH) tasks show that expert techniques differ from those of novices, leading to the idea that expert techniques are safer. Biomechanical studies of MMH tasks performed by experts/novices report mixed results for kinematic/kinetic variables, evoking potential internal effect of expertise. In the context of series of box transfers simulated by actual workers, detailed internal loads predicted by a multiple-joint EMG-assisted optimization lumbar spine model are compared between experts and novices. The results confirmed that the distribution of internal moments are modulated by worker expertise. Experts flexed less their lumbar spine and exerted more active muscle forces while novices relied more on passive resistance of the muscles and ligamentous spine. More specifically for novices, the passive contributions came from global extensor muscles, selected local extensor muscles, and passive structures of the lumbar spine (ligaments and discs). The distinctive distribution of internal forces was not concomitant with a similar effect on joint forces, these forces being dependent on external loading which was equivalent between experts and novices. From a safety standpoint, the present results suggest that experts were more efficient than novices in partitioning internal moment contributions to balance net (external) loading. Thus, safer handling practices might be seen as a result of experts׳ experience. |
abstractGer |
Expertise is a key factor modulating the risk of low back disorders (LBD). Through years of practice in the workplace, the typical expert acquires high level specific skills and maintains a clean record of work-related injuries. Ergonomic observations of manual materials handling (MMH) tasks show that expert techniques differ from those of novices, leading to the idea that expert techniques are safer. Biomechanical studies of MMH tasks performed by experts/novices report mixed results for kinematic/kinetic variables, evoking potential internal effect of expertise. In the context of series of box transfers simulated by actual workers, detailed internal loads predicted by a multiple-joint EMG-assisted optimization lumbar spine model are compared between experts and novices. The results confirmed that the distribution of internal moments are modulated by worker expertise. Experts flexed less their lumbar spine and exerted more active muscle forces while novices relied more on passive resistance of the muscles and ligamentous spine. More specifically for novices, the passive contributions came from global extensor muscles, selected local extensor muscles, and passive structures of the lumbar spine (ligaments and discs). The distinctive distribution of internal forces was not concomitant with a similar effect on joint forces, these forces being dependent on external loading which was equivalent between experts and novices. From a safety standpoint, the present results suggest that experts were more efficient than novices in partitioning internal moment contributions to balance net (external) loading. Thus, safer handling practices might be seen as a result of experts׳ experience. |
abstract_unstemmed |
Expertise is a key factor modulating the risk of low back disorders (LBD). Through years of practice in the workplace, the typical expert acquires high level specific skills and maintains a clean record of work-related injuries. Ergonomic observations of manual materials handling (MMH) tasks show that expert techniques differ from those of novices, leading to the idea that expert techniques are safer. Biomechanical studies of MMH tasks performed by experts/novices report mixed results for kinematic/kinetic variables, evoking potential internal effect of expertise. In the context of series of box transfers simulated by actual workers, detailed internal loads predicted by a multiple-joint EMG-assisted optimization lumbar spine model are compared between experts and novices. The results confirmed that the distribution of internal moments are modulated by worker expertise. Experts flexed less their lumbar spine and exerted more active muscle forces while novices relied more on passive resistance of the muscles and ligamentous spine. More specifically for novices, the passive contributions came from global extensor muscles, selected local extensor muscles, and passive structures of the lumbar spine (ligaments and discs). The distinctive distribution of internal forces was not concomitant with a similar effect on joint forces, these forces being dependent on external loading which was equivalent between experts and novices. From a safety standpoint, the present results suggest that experts were more efficient than novices in partitioning internal moment contributions to balance net (external) loading. Thus, safer handling practices might be seen as a result of experts׳ experience. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
container_issue |
13 |
title_short |
A biomechanical comparison between expert and novice manual materials handlers using a multi-joint EMG-assisted optimization musculoskeletal model of the lumbar spine |
url |
https://doi.org/10.1016/j.jbiomech.2016.07.009 |
remote_bool |
true |
author2 |
Plamondon, André Larivière, Christian |
author2Str |
Plamondon, André Larivière, Christian |
ppnlink |
ELV00201923X |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1016/j.jbiomech.2016.07.009 |
up_date |
2024-07-06T22:01:01.551Z |
_version_ |
1803868712786198528 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV014635836</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625113651.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jbiomech.2016.07.009</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2016022000001.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV014635836</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0021-9290(16)30755-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">570</subfield><subfield code="a">796</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">796</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">300</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">70.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">71.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gagnon, Denis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A biomechanical comparison between expert and novice manual materials handlers using a multi-joint EMG-assisted optimization musculoskeletal model of the lumbar spine</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Expertise is a key factor modulating the risk of low back disorders (LBD). Through years of practice in the workplace, the typical expert acquires high level specific skills and maintains a clean record of work-related injuries. Ergonomic observations of manual materials handling (MMH) tasks show that expert techniques differ from those of novices, leading to the idea that expert techniques are safer. Biomechanical studies of MMH tasks performed by experts/novices report mixed results for kinematic/kinetic variables, evoking potential internal effect of expertise. In the context of series of box transfers simulated by actual workers, detailed internal loads predicted by a multiple-joint EMG-assisted optimization lumbar spine model are compared between experts and novices. The results confirmed that the distribution of internal moments are modulated by worker expertise. Experts flexed less their lumbar spine and exerted more active muscle forces while novices relied more on passive resistance of the muscles and ligamentous spine. More specifically for novices, the passive contributions came from global extensor muscles, selected local extensor muscles, and passive structures of the lumbar spine (ligaments and discs). The distinctive distribution of internal forces was not concomitant with a similar effect on joint forces, these forces being dependent on external loading which was equivalent between experts and novices. From a safety standpoint, the present results suggest that experts were more efficient than novices in partitioning internal moment contributions to balance net (external) loading. Thus, safer handling practices might be seen as a result of experts׳ experience.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Expertise is a key factor modulating the risk of low back disorders (LBD). Through years of practice in the workplace, the typical expert acquires high level specific skills and maintains a clean record of work-related injuries. Ergonomic observations of manual materials handling (MMH) tasks show that expert techniques differ from those of novices, leading to the idea that expert techniques are safer. Biomechanical studies of MMH tasks performed by experts/novices report mixed results for kinematic/kinetic variables, evoking potential internal effect of expertise. In the context of series of box transfers simulated by actual workers, detailed internal loads predicted by a multiple-joint EMG-assisted optimization lumbar spine model are compared between experts and novices. The results confirmed that the distribution of internal moments are modulated by worker expertise. Experts flexed less their lumbar spine and exerted more active muscle forces while novices relied more on passive resistance of the muscles and ligamentous spine. More specifically for novices, the passive contributions came from global extensor muscles, selected local extensor muscles, and passive structures of the lumbar spine (ligaments and discs). The distinctive distribution of internal forces was not concomitant with a similar effect on joint forces, these forces being dependent on external loading which was equivalent between experts and novices. From a safety standpoint, the present results suggest that experts were more efficient than novices in partitioning internal moment contributions to balance net (external) loading. Thus, safer handling practices might be seen as a result of experts׳ experience.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Compression and shear</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lumbar spine</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Dynamics</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Manual materials handling</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Trunk muscle forces</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Expertise</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">EMG</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Optimization</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Plamondon, André</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Larivière, Christian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Halpern-Manners, Andrew ELSEVIER</subfield><subfield code="t">Measuring students' school context exposures: A trajectory-based approach</subfield><subfield code="d">2016</subfield><subfield code="d">affiliated with the American Society of Biomechanics, the European Society of Biomechanics, the International Society of Biomechanics, the Japanese Society for Clinical Biomechanics and Related Research and the Australian and New Zealand Society of Biomechanics</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV00201923X</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:49</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:13</subfield><subfield code="g">day:6</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:2938-2945</subfield><subfield code="g">extent:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jbiomech.2016.07.009</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">70.00</subfield><subfield code="j">Sozialwissenschaften allgemein: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">71.00</subfield><subfield code="j">Soziologie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">49</subfield><subfield code="j">2016</subfield><subfield code="e">13</subfield><subfield code="b">6</subfield><subfield code="c">0906</subfield><subfield code="h">2938-2945</subfield><subfield code="g">8</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">570</subfield></datafield></record></collection>
|
score |
7.401534 |