High rate capability and long cycle stability of Fe2O3/MgFe2O4 anode material synthesized by gel-cast processing
Coralloid Fe2O3/MgFe2O4 composite were synthesized via a simple gel-cast method. The Fe2O3/MgFe2O4 composite exhibits much better electrochemical performance than pure Fe2O3 and MgFe2O4. Capacity of the Fe2O3/MgFe2O4 composite maintains an anomalous increase to1800mAhg−1 (at about the 300th cycles),...
Ausführliche Beschreibung
Autor*in: |
Yin, Yanhong [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Umfang: |
9 |
---|
Übergeordnetes Werk: |
Enthalten in: Nanoparticles assembled SnO - Zhao, Depeng ELSEVIER, 2017, Amsterdam |
---|---|
Übergeordnetes Werk: |
volume:307 ; year:2017 ; day:1 ; month:01 ; pages:999-1007 ; extent:9 |
Links: |
---|
DOI / URN: |
10.1016/j.cej.2016.09.025 |
---|
Katalog-ID: |
ELV01478730X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV01478730X | ||
003 | DE-627 | ||
005 | 20230623115633.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180602s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.cej.2016.09.025 |2 doi | |
028 | 5 | 2 | |a GBVA2017002000029.pica |
035 | |a (DE-627)ELV01478730X | ||
035 | |a (ELSEVIER)S1385-8947(16)31261-X | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 660 | |
082 | 0 | 4 | |a 660 |q DE-101 |
082 | 0 | 4 | |a 660 |q DE-600 |
082 | 0 | 4 | |a 530 |a 600 |a 670 |q VZ |
084 | |a 51.00 |2 bkl | ||
100 | 1 | |a Yin, Yanhong |e verfasserin |4 aut | |
245 | 1 | 0 | |a High rate capability and long cycle stability of Fe2O3/MgFe2O4 anode material synthesized by gel-cast processing |
264 | 1 | |c 2017 | |
300 | |a 9 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Coralloid Fe2O3/MgFe2O4 composite were synthesized via a simple gel-cast method. The Fe2O3/MgFe2O4 composite exhibits much better electrochemical performance than pure Fe2O3 and MgFe2O4. Capacity of the Fe2O3/MgFe2O4 composite maintains an anomalous increase to1800mAhg−1 (at about the 300th cycles), and stabilizes at 1700mAhg−1 until 500 cycles at a current density of 1Ag−1. Even cycled at a current density of 20Ag−1, a capacity of 760mAhg−1 can still be achieved. This report demonstrates the potential possibility for the practical application of bi-metal oxide as the anode material of LIBs. | ||
650 | 7 | |a Lithium ion batteries |2 Elsevier | |
650 | 7 | |a Anode |2 Elsevier | |
650 | 7 | |a Fe2O3/MgFe2O4 composite |2 Elsevier | |
650 | 7 | |a Rate capability |2 Elsevier | |
700 | 1 | |a Liu, Wenfeng |4 oth | |
700 | 1 | |a Huo, Ningning |4 oth | |
700 | 1 | |a Yang, Shuting |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Zhao, Depeng ELSEVIER |t Nanoparticles assembled SnO |d 2017 |g Amsterdam |w (DE-627)ELV000382604 |
773 | 1 | 8 | |g volume:307 |g year:2017 |g day:1 |g month:01 |g pages:999-1007 |g extent:9 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.cej.2016.09.025 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 51.00 |j Werkstoffkunde: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 307 |j 2017 |b 1 |c 0101 |h 999-1007 |g 9 | ||
953 | |2 045F |a 660 |
author_variant |
y y yy |
---|---|
matchkey_str |
yinyanhongliuwenfenghuoningningyangshuti:2017----:ihaeaaiiynlnccetbltof23geoaoeaeilyte |
hierarchy_sort_str |
2017 |
bklnumber |
51.00 |
publishDate |
2017 |
allfields |
10.1016/j.cej.2016.09.025 doi GBVA2017002000029.pica (DE-627)ELV01478730X (ELSEVIER)S1385-8947(16)31261-X DE-627 ger DE-627 rakwb eng 660 660 DE-101 660 DE-600 530 600 670 VZ 51.00 bkl Yin, Yanhong verfasserin aut High rate capability and long cycle stability of Fe2O3/MgFe2O4 anode material synthesized by gel-cast processing 2017 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Coralloid Fe2O3/MgFe2O4 composite were synthesized via a simple gel-cast method. The Fe2O3/MgFe2O4 composite exhibits much better electrochemical performance than pure Fe2O3 and MgFe2O4. Capacity of the Fe2O3/MgFe2O4 composite maintains an anomalous increase to1800mAhg−1 (at about the 300th cycles), and stabilizes at 1700mAhg−1 until 500 cycles at a current density of 1Ag−1. Even cycled at a current density of 20Ag−1, a capacity of 760mAhg−1 can still be achieved. This report demonstrates the potential possibility for the practical application of bi-metal oxide as the anode material of LIBs. Lithium ion batteries Elsevier Anode Elsevier Fe2O3/MgFe2O4 composite Elsevier Rate capability Elsevier Liu, Wenfeng oth Huo, Ningning oth Yang, Shuting oth Enthalten in Elsevier Zhao, Depeng ELSEVIER Nanoparticles assembled SnO 2017 Amsterdam (DE-627)ELV000382604 volume:307 year:2017 day:1 month:01 pages:999-1007 extent:9 https://doi.org/10.1016/j.cej.2016.09.025 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 51.00 Werkstoffkunde: Allgemeines VZ AR 307 2017 1 0101 999-1007 9 045F 660 |
spelling |
10.1016/j.cej.2016.09.025 doi GBVA2017002000029.pica (DE-627)ELV01478730X (ELSEVIER)S1385-8947(16)31261-X DE-627 ger DE-627 rakwb eng 660 660 DE-101 660 DE-600 530 600 670 VZ 51.00 bkl Yin, Yanhong verfasserin aut High rate capability and long cycle stability of Fe2O3/MgFe2O4 anode material synthesized by gel-cast processing 2017 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Coralloid Fe2O3/MgFe2O4 composite were synthesized via a simple gel-cast method. The Fe2O3/MgFe2O4 composite exhibits much better electrochemical performance than pure Fe2O3 and MgFe2O4. Capacity of the Fe2O3/MgFe2O4 composite maintains an anomalous increase to1800mAhg−1 (at about the 300th cycles), and stabilizes at 1700mAhg−1 until 500 cycles at a current density of 1Ag−1. Even cycled at a current density of 20Ag−1, a capacity of 760mAhg−1 can still be achieved. This report demonstrates the potential possibility for the practical application of bi-metal oxide as the anode material of LIBs. Lithium ion batteries Elsevier Anode Elsevier Fe2O3/MgFe2O4 composite Elsevier Rate capability Elsevier Liu, Wenfeng oth Huo, Ningning oth Yang, Shuting oth Enthalten in Elsevier Zhao, Depeng ELSEVIER Nanoparticles assembled SnO 2017 Amsterdam (DE-627)ELV000382604 volume:307 year:2017 day:1 month:01 pages:999-1007 extent:9 https://doi.org/10.1016/j.cej.2016.09.025 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 51.00 Werkstoffkunde: Allgemeines VZ AR 307 2017 1 0101 999-1007 9 045F 660 |
allfields_unstemmed |
10.1016/j.cej.2016.09.025 doi GBVA2017002000029.pica (DE-627)ELV01478730X (ELSEVIER)S1385-8947(16)31261-X DE-627 ger DE-627 rakwb eng 660 660 DE-101 660 DE-600 530 600 670 VZ 51.00 bkl Yin, Yanhong verfasserin aut High rate capability and long cycle stability of Fe2O3/MgFe2O4 anode material synthesized by gel-cast processing 2017 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Coralloid Fe2O3/MgFe2O4 composite were synthesized via a simple gel-cast method. The Fe2O3/MgFe2O4 composite exhibits much better electrochemical performance than pure Fe2O3 and MgFe2O4. Capacity of the Fe2O3/MgFe2O4 composite maintains an anomalous increase to1800mAhg−1 (at about the 300th cycles), and stabilizes at 1700mAhg−1 until 500 cycles at a current density of 1Ag−1. Even cycled at a current density of 20Ag−1, a capacity of 760mAhg−1 can still be achieved. This report demonstrates the potential possibility for the practical application of bi-metal oxide as the anode material of LIBs. Lithium ion batteries Elsevier Anode Elsevier Fe2O3/MgFe2O4 composite Elsevier Rate capability Elsevier Liu, Wenfeng oth Huo, Ningning oth Yang, Shuting oth Enthalten in Elsevier Zhao, Depeng ELSEVIER Nanoparticles assembled SnO 2017 Amsterdam (DE-627)ELV000382604 volume:307 year:2017 day:1 month:01 pages:999-1007 extent:9 https://doi.org/10.1016/j.cej.2016.09.025 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 51.00 Werkstoffkunde: Allgemeines VZ AR 307 2017 1 0101 999-1007 9 045F 660 |
allfieldsGer |
10.1016/j.cej.2016.09.025 doi GBVA2017002000029.pica (DE-627)ELV01478730X (ELSEVIER)S1385-8947(16)31261-X DE-627 ger DE-627 rakwb eng 660 660 DE-101 660 DE-600 530 600 670 VZ 51.00 bkl Yin, Yanhong verfasserin aut High rate capability and long cycle stability of Fe2O3/MgFe2O4 anode material synthesized by gel-cast processing 2017 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Coralloid Fe2O3/MgFe2O4 composite were synthesized via a simple gel-cast method. The Fe2O3/MgFe2O4 composite exhibits much better electrochemical performance than pure Fe2O3 and MgFe2O4. Capacity of the Fe2O3/MgFe2O4 composite maintains an anomalous increase to1800mAhg−1 (at about the 300th cycles), and stabilizes at 1700mAhg−1 until 500 cycles at a current density of 1Ag−1. Even cycled at a current density of 20Ag−1, a capacity of 760mAhg−1 can still be achieved. This report demonstrates the potential possibility for the practical application of bi-metal oxide as the anode material of LIBs. Lithium ion batteries Elsevier Anode Elsevier Fe2O3/MgFe2O4 composite Elsevier Rate capability Elsevier Liu, Wenfeng oth Huo, Ningning oth Yang, Shuting oth Enthalten in Elsevier Zhao, Depeng ELSEVIER Nanoparticles assembled SnO 2017 Amsterdam (DE-627)ELV000382604 volume:307 year:2017 day:1 month:01 pages:999-1007 extent:9 https://doi.org/10.1016/j.cej.2016.09.025 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 51.00 Werkstoffkunde: Allgemeines VZ AR 307 2017 1 0101 999-1007 9 045F 660 |
allfieldsSound |
10.1016/j.cej.2016.09.025 doi GBVA2017002000029.pica (DE-627)ELV01478730X (ELSEVIER)S1385-8947(16)31261-X DE-627 ger DE-627 rakwb eng 660 660 DE-101 660 DE-600 530 600 670 VZ 51.00 bkl Yin, Yanhong verfasserin aut High rate capability and long cycle stability of Fe2O3/MgFe2O4 anode material synthesized by gel-cast processing 2017 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Coralloid Fe2O3/MgFe2O4 composite were synthesized via a simple gel-cast method. The Fe2O3/MgFe2O4 composite exhibits much better electrochemical performance than pure Fe2O3 and MgFe2O4. Capacity of the Fe2O3/MgFe2O4 composite maintains an anomalous increase to1800mAhg−1 (at about the 300th cycles), and stabilizes at 1700mAhg−1 until 500 cycles at a current density of 1Ag−1. Even cycled at a current density of 20Ag−1, a capacity of 760mAhg−1 can still be achieved. This report demonstrates the potential possibility for the practical application of bi-metal oxide as the anode material of LIBs. Lithium ion batteries Elsevier Anode Elsevier Fe2O3/MgFe2O4 composite Elsevier Rate capability Elsevier Liu, Wenfeng oth Huo, Ningning oth Yang, Shuting oth Enthalten in Elsevier Zhao, Depeng ELSEVIER Nanoparticles assembled SnO 2017 Amsterdam (DE-627)ELV000382604 volume:307 year:2017 day:1 month:01 pages:999-1007 extent:9 https://doi.org/10.1016/j.cej.2016.09.025 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 51.00 Werkstoffkunde: Allgemeines VZ AR 307 2017 1 0101 999-1007 9 045F 660 |
language |
English |
source |
Enthalten in Nanoparticles assembled SnO Amsterdam volume:307 year:2017 day:1 month:01 pages:999-1007 extent:9 |
sourceStr |
Enthalten in Nanoparticles assembled SnO Amsterdam volume:307 year:2017 day:1 month:01 pages:999-1007 extent:9 |
format_phy_str_mv |
Article |
bklname |
Werkstoffkunde: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Lithium ion batteries Anode Fe2O3/MgFe2O4 composite Rate capability |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
Nanoparticles assembled SnO |
authorswithroles_txt_mv |
Yin, Yanhong @@aut@@ Liu, Wenfeng @@oth@@ Huo, Ningning @@oth@@ Yang, Shuting @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
ELV000382604 |
dewey-sort |
3660 |
id |
ELV01478730X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV01478730X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230623115633.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cej.2016.09.025</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2017002000029.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV01478730X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1385-8947(16)31261-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">660</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-101</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">600</subfield><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yin, Yanhong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">High rate capability and long cycle stability of Fe2O3/MgFe2O4 anode material synthesized by gel-cast processing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">9</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Coralloid Fe2O3/MgFe2O4 composite were synthesized via a simple gel-cast method. The Fe2O3/MgFe2O4 composite exhibits much better electrochemical performance than pure Fe2O3 and MgFe2O4. Capacity of the Fe2O3/MgFe2O4 composite maintains an anomalous increase to1800mAhg−1 (at about the 300th cycles), and stabilizes at 1700mAhg−1 until 500 cycles at a current density of 1Ag−1. Even cycled at a current density of 20Ag−1, a capacity of 760mAhg−1 can still be achieved. This report demonstrates the potential possibility for the practical application of bi-metal oxide as the anode material of LIBs.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lithium ion batteries</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Anode</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fe2O3/MgFe2O4 composite</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Rate capability</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Wenfeng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huo, Ningning</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Shuting</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Zhao, Depeng ELSEVIER</subfield><subfield code="t">Nanoparticles assembled SnO</subfield><subfield code="d">2017</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV000382604</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:307</subfield><subfield code="g">year:2017</subfield><subfield code="g">day:1</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:999-1007</subfield><subfield code="g">extent:9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.cej.2016.09.025</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.00</subfield><subfield code="j">Werkstoffkunde: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">307</subfield><subfield code="j">2017</subfield><subfield code="b">1</subfield><subfield code="c">0101</subfield><subfield code="h">999-1007</subfield><subfield code="g">9</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">660</subfield></datafield></record></collection>
|
author |
Yin, Yanhong |
spellingShingle |
Yin, Yanhong ddc 660 ddc 530 bkl 51.00 Elsevier Lithium ion batteries Elsevier Anode Elsevier Fe2O3/MgFe2O4 composite Elsevier Rate capability High rate capability and long cycle stability of Fe2O3/MgFe2O4 anode material synthesized by gel-cast processing |
authorStr |
Yin, Yanhong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV000382604 |
format |
electronic Article |
dewey-ones |
660 - Chemical engineering 530 - Physics 600 - Technology 670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
660 660 DE-101 660 DE-600 530 600 670 VZ 51.00 bkl High rate capability and long cycle stability of Fe2O3/MgFe2O4 anode material synthesized by gel-cast processing Lithium ion batteries Elsevier Anode Elsevier Fe2O3/MgFe2O4 composite Elsevier Rate capability Elsevier |
topic |
ddc 660 ddc 530 bkl 51.00 Elsevier Lithium ion batteries Elsevier Anode Elsevier Fe2O3/MgFe2O4 composite Elsevier Rate capability |
topic_unstemmed |
ddc 660 ddc 530 bkl 51.00 Elsevier Lithium ion batteries Elsevier Anode Elsevier Fe2O3/MgFe2O4 composite Elsevier Rate capability |
topic_browse |
ddc 660 ddc 530 bkl 51.00 Elsevier Lithium ion batteries Elsevier Anode Elsevier Fe2O3/MgFe2O4 composite Elsevier Rate capability |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
w l wl n h nh s y sy |
hierarchy_parent_title |
Nanoparticles assembled SnO |
hierarchy_parent_id |
ELV000382604 |
dewey-tens |
660 - Chemical engineering 530 - Physics 600 - Technology 670 - Manufacturing |
hierarchy_top_title |
Nanoparticles assembled SnO |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV000382604 |
title |
High rate capability and long cycle stability of Fe2O3/MgFe2O4 anode material synthesized by gel-cast processing |
ctrlnum |
(DE-627)ELV01478730X (ELSEVIER)S1385-8947(16)31261-X |
title_full |
High rate capability and long cycle stability of Fe2O3/MgFe2O4 anode material synthesized by gel-cast processing |
author_sort |
Yin, Yanhong |
journal |
Nanoparticles assembled SnO |
journalStr |
Nanoparticles assembled SnO |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
zzz |
container_start_page |
999 |
author_browse |
Yin, Yanhong |
container_volume |
307 |
physical |
9 |
class |
660 660 DE-101 660 DE-600 530 600 670 VZ 51.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Yin, Yanhong |
doi_str_mv |
10.1016/j.cej.2016.09.025 |
dewey-full |
660 530 600 670 |
title_sort |
high rate capability and long cycle stability of fe2o3/mgfe2o4 anode material synthesized by gel-cast processing |
title_auth |
High rate capability and long cycle stability of Fe2O3/MgFe2O4 anode material synthesized by gel-cast processing |
abstract |
Coralloid Fe2O3/MgFe2O4 composite were synthesized via a simple gel-cast method. The Fe2O3/MgFe2O4 composite exhibits much better electrochemical performance than pure Fe2O3 and MgFe2O4. Capacity of the Fe2O3/MgFe2O4 composite maintains an anomalous increase to1800mAhg−1 (at about the 300th cycles), and stabilizes at 1700mAhg−1 until 500 cycles at a current density of 1Ag−1. Even cycled at a current density of 20Ag−1, a capacity of 760mAhg−1 can still be achieved. This report demonstrates the potential possibility for the practical application of bi-metal oxide as the anode material of LIBs. |
abstractGer |
Coralloid Fe2O3/MgFe2O4 composite were synthesized via a simple gel-cast method. The Fe2O3/MgFe2O4 composite exhibits much better electrochemical performance than pure Fe2O3 and MgFe2O4. Capacity of the Fe2O3/MgFe2O4 composite maintains an anomalous increase to1800mAhg−1 (at about the 300th cycles), and stabilizes at 1700mAhg−1 until 500 cycles at a current density of 1Ag−1. Even cycled at a current density of 20Ag−1, a capacity of 760mAhg−1 can still be achieved. This report demonstrates the potential possibility for the practical application of bi-metal oxide as the anode material of LIBs. |
abstract_unstemmed |
Coralloid Fe2O3/MgFe2O4 composite were synthesized via a simple gel-cast method. The Fe2O3/MgFe2O4 composite exhibits much better electrochemical performance than pure Fe2O3 and MgFe2O4. Capacity of the Fe2O3/MgFe2O4 composite maintains an anomalous increase to1800mAhg−1 (at about the 300th cycles), and stabilizes at 1700mAhg−1 until 500 cycles at a current density of 1Ag−1. Even cycled at a current density of 20Ag−1, a capacity of 760mAhg−1 can still be achieved. This report demonstrates the potential possibility for the practical application of bi-metal oxide as the anode material of LIBs. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
High rate capability and long cycle stability of Fe2O3/MgFe2O4 anode material synthesized by gel-cast processing |
url |
https://doi.org/10.1016/j.cej.2016.09.025 |
remote_bool |
true |
author2 |
Liu, Wenfeng Huo, Ningning Yang, Shuting |
author2Str |
Liu, Wenfeng Huo, Ningning Yang, Shuting |
ppnlink |
ELV000382604 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1016/j.cej.2016.09.025 |
up_date |
2024-07-06T22:28:49.671Z |
_version_ |
1803870461936795648 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV01478730X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230623115633.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cej.2016.09.025</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2017002000029.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV01478730X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1385-8947(16)31261-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">660</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-101</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">600</subfield><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yin, Yanhong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">High rate capability and long cycle stability of Fe2O3/MgFe2O4 anode material synthesized by gel-cast processing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">9</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Coralloid Fe2O3/MgFe2O4 composite were synthesized via a simple gel-cast method. The Fe2O3/MgFe2O4 composite exhibits much better electrochemical performance than pure Fe2O3 and MgFe2O4. Capacity of the Fe2O3/MgFe2O4 composite maintains an anomalous increase to1800mAhg−1 (at about the 300th cycles), and stabilizes at 1700mAhg−1 until 500 cycles at a current density of 1Ag−1. Even cycled at a current density of 20Ag−1, a capacity of 760mAhg−1 can still be achieved. This report demonstrates the potential possibility for the practical application of bi-metal oxide as the anode material of LIBs.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lithium ion batteries</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Anode</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fe2O3/MgFe2O4 composite</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Rate capability</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Wenfeng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huo, Ningning</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Shuting</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Zhao, Depeng ELSEVIER</subfield><subfield code="t">Nanoparticles assembled SnO</subfield><subfield code="d">2017</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV000382604</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:307</subfield><subfield code="g">year:2017</subfield><subfield code="g">day:1</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:999-1007</subfield><subfield code="g">extent:9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.cej.2016.09.025</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.00</subfield><subfield code="j">Werkstoffkunde: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">307</subfield><subfield code="j">2017</subfield><subfield code="b">1</subfield><subfield code="c">0101</subfield><subfield code="h">999-1007</subfield><subfield code="g">9</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">660</subfield></datafield></record></collection>
|
score |
7.401642 |