Gold nanoparticles modified by new conjugated S=C=N terminal and its biological imaging application
Gold nanostructures had recently become the most interesting areas of scientific endeavor. Herein, a novel nanostructure material was designed by S1 (2, 2': 6′, 2″-terpyridyl derivative Zn(SCN)2 complex) modified gold nanoparticles with obvious improving two photon absorption (TPA) cross sectio...
Ausführliche Beschreibung
Autor*in: |
Wang, Anran [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017transfer abstract |
---|
Schlagwörter: |
Two sulfur-terminal Zn(SCN)2 complexes |
---|
Umfang: |
8 |
---|
Übergeordnetes Werk: |
Enthalten in: A multiscale analysis for free vibration of fuzzy fiber-reinforced nanocomposite conical shells - Haghgoo, M. ELSEVIER, 2020, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:141 ; year:2017 ; pages:13-20 ; extent:8 |
Links: |
---|
DOI / URN: |
10.1016/j.dyepig.2017.02.004 |
---|
Katalog-ID: |
ELV014835517 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV014835517 | ||
003 | DE-627 | ||
005 | 20230625114134.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180602s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.dyepig.2017.02.004 |2 doi | |
028 | 5 | 2 | |a GBV00000000000049A.pica |
035 | |a (DE-627)ELV014835517 | ||
035 | |a (ELSEVIER)S0143-7208(16)31249-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 660 | |
082 | 0 | 4 | |a 660 |q DE-600 |
082 | 0 | 4 | |a 690 |q VZ |
084 | |a 50.31 |2 bkl | ||
084 | |a 56.11 |2 bkl | ||
100 | 1 | |a Wang, Anran |e verfasserin |4 aut | |
245 | 1 | 0 | |a Gold nanoparticles modified by new conjugated S=C=N terminal and its biological imaging application |
264 | 1 | |c 2017transfer abstract | |
300 | |a 8 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Gold nanostructures had recently become the most interesting areas of scientific endeavor. Herein, a novel nanostructure material was designed by S1 (2, 2': 6′, 2″-terpyridyl derivative Zn(SCN)2 complex) modified gold nanoparticles with obvious improving two photon absorption (TPA) cross section (σ), the fluorescence intensity, lifetime, fluorescence quantum yield due to the enhancement of intramolecular charge transfer (ICT) process. Compared with R1 (3-([2, 2': 6′, 2″-terpyridin]-4'-yl) -9-hexyl-9H-carbazole), a conjugated ligand of carbazolyl styryl terpyridine derivatives, capping with Ag nanoparticles, photon induced electron transfer (PET) process led to the fluorescence quenching. The 1H NMR study on the coordination reaction mechanism provided a new insight into the great mystery of nanoscience. Other related characterizations, such as IR and Far IR, could also prove the interaction of Au NPs and S1. The composite material with good nonlinear optical properties had potential applications in vitro cellular imaging. | ||
520 | |a Gold nanostructures had recently become the most interesting areas of scientific endeavor. Herein, a novel nanostructure material was designed by S1 (2, 2': 6′, 2″-terpyridyl derivative Zn(SCN)2 complex) modified gold nanoparticles with obvious improving two photon absorption (TPA) cross section (σ), the fluorescence intensity, lifetime, fluorescence quantum yield due to the enhancement of intramolecular charge transfer (ICT) process. Compared with R1 (3-([2, 2': 6′, 2″-terpyridin]-4'-yl) -9-hexyl-9H-carbazole), a conjugated ligand of carbazolyl styryl terpyridine derivatives, capping with Ag nanoparticles, photon induced electron transfer (PET) process led to the fluorescence quenching. The 1H NMR study on the coordination reaction mechanism provided a new insight into the great mystery of nanoscience. Other related characterizations, such as IR and Far IR, could also prove the interaction of Au NPs and S1. The composite material with good nonlinear optical properties had potential applications in vitro cellular imaging. | ||
650 | 7 | |a Gold nanoparticles |2 Elsevier | |
650 | 7 | |a Two sulfur-terminal Zn(SCN)2 complexes |2 Elsevier | |
650 | 7 | |a Two-photon excited fluorescence |2 Elsevier | |
650 | 7 | |a Biological imaging |2 Elsevier | |
700 | 1 | |a Sun, Wan |4 oth | |
700 | 1 | |a Wang, Cong |4 oth | |
700 | 1 | |a Xu, Min |4 oth | |
700 | 1 | |a Lu, Xin |4 oth | |
700 | 1 | |a Tian, Xiaohe |4 oth | |
700 | 1 | |a Li, Shengli |4 oth | |
700 | 1 | |a Wu, Jieying |4 oth | |
700 | 1 | |a Tian, Yupeng |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Haghgoo, M. ELSEVIER |t A multiscale analysis for free vibration of fuzzy fiber-reinforced nanocomposite conical shells |d 2020 |g Amsterdam [u.a.] |w (DE-627)ELV004269640 |
773 | 1 | 8 | |g volume:141 |g year:2017 |g pages:13-20 |g extent:8 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.dyepig.2017.02.004 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 50.31 |j Technische Mechanik |q VZ |
936 | b | k | |a 56.11 |j Baukonstruktion |q VZ |
951 | |a AR | ||
952 | |d 141 |j 2017 |h 13-20 |g 8 | ||
953 | |2 045F |a 660 |
author_variant |
a w aw |
---|---|
matchkey_str |
wanganransunwanwangcongxuminluxintianxia:2017----:odaoatcemdfebnwojgtdctriaadtboo |
hierarchy_sort_str |
2017transfer abstract |
bklnumber |
50.31 56.11 |
publishDate |
2017 |
allfields |
10.1016/j.dyepig.2017.02.004 doi GBV00000000000049A.pica (DE-627)ELV014835517 (ELSEVIER)S0143-7208(16)31249-9 DE-627 ger DE-627 rakwb eng 660 660 DE-600 690 VZ 50.31 bkl 56.11 bkl Wang, Anran verfasserin aut Gold nanoparticles modified by new conjugated S=C=N terminal and its biological imaging application 2017transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Gold nanostructures had recently become the most interesting areas of scientific endeavor. Herein, a novel nanostructure material was designed by S1 (2, 2': 6′, 2″-terpyridyl derivative Zn(SCN)2 complex) modified gold nanoparticles with obvious improving two photon absorption (TPA) cross section (σ), the fluorescence intensity, lifetime, fluorescence quantum yield due to the enhancement of intramolecular charge transfer (ICT) process. Compared with R1 (3-([2, 2': 6′, 2″-terpyridin]-4'-yl) -9-hexyl-9H-carbazole), a conjugated ligand of carbazolyl styryl terpyridine derivatives, capping with Ag nanoparticles, photon induced electron transfer (PET) process led to the fluorescence quenching. The 1H NMR study on the coordination reaction mechanism provided a new insight into the great mystery of nanoscience. Other related characterizations, such as IR and Far IR, could also prove the interaction of Au NPs and S1. The composite material with good nonlinear optical properties had potential applications in vitro cellular imaging. Gold nanostructures had recently become the most interesting areas of scientific endeavor. Herein, a novel nanostructure material was designed by S1 (2, 2': 6′, 2″-terpyridyl derivative Zn(SCN)2 complex) modified gold nanoparticles with obvious improving two photon absorption (TPA) cross section (σ), the fluorescence intensity, lifetime, fluorescence quantum yield due to the enhancement of intramolecular charge transfer (ICT) process. Compared with R1 (3-([2, 2': 6′, 2″-terpyridin]-4'-yl) -9-hexyl-9H-carbazole), a conjugated ligand of carbazolyl styryl terpyridine derivatives, capping with Ag nanoparticles, photon induced electron transfer (PET) process led to the fluorescence quenching. The 1H NMR study on the coordination reaction mechanism provided a new insight into the great mystery of nanoscience. Other related characterizations, such as IR and Far IR, could also prove the interaction of Au NPs and S1. The composite material with good nonlinear optical properties had potential applications in vitro cellular imaging. Gold nanoparticles Elsevier Two sulfur-terminal Zn(SCN)2 complexes Elsevier Two-photon excited fluorescence Elsevier Biological imaging Elsevier Sun, Wan oth Wang, Cong oth Xu, Min oth Lu, Xin oth Tian, Xiaohe oth Li, Shengli oth Wu, Jieying oth Tian, Yupeng oth Enthalten in Elsevier Science Haghgoo, M. ELSEVIER A multiscale analysis for free vibration of fuzzy fiber-reinforced nanocomposite conical shells 2020 Amsterdam [u.a.] (DE-627)ELV004269640 volume:141 year:2017 pages:13-20 extent:8 https://doi.org/10.1016/j.dyepig.2017.02.004 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.31 Technische Mechanik VZ 56.11 Baukonstruktion VZ AR 141 2017 13-20 8 045F 660 |
spelling |
10.1016/j.dyepig.2017.02.004 doi GBV00000000000049A.pica (DE-627)ELV014835517 (ELSEVIER)S0143-7208(16)31249-9 DE-627 ger DE-627 rakwb eng 660 660 DE-600 690 VZ 50.31 bkl 56.11 bkl Wang, Anran verfasserin aut Gold nanoparticles modified by new conjugated S=C=N terminal and its biological imaging application 2017transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Gold nanostructures had recently become the most interesting areas of scientific endeavor. Herein, a novel nanostructure material was designed by S1 (2, 2': 6′, 2″-terpyridyl derivative Zn(SCN)2 complex) modified gold nanoparticles with obvious improving two photon absorption (TPA) cross section (σ), the fluorescence intensity, lifetime, fluorescence quantum yield due to the enhancement of intramolecular charge transfer (ICT) process. Compared with R1 (3-([2, 2': 6′, 2″-terpyridin]-4'-yl) -9-hexyl-9H-carbazole), a conjugated ligand of carbazolyl styryl terpyridine derivatives, capping with Ag nanoparticles, photon induced electron transfer (PET) process led to the fluorescence quenching. The 1H NMR study on the coordination reaction mechanism provided a new insight into the great mystery of nanoscience. Other related characterizations, such as IR and Far IR, could also prove the interaction of Au NPs and S1. The composite material with good nonlinear optical properties had potential applications in vitro cellular imaging. Gold nanostructures had recently become the most interesting areas of scientific endeavor. Herein, a novel nanostructure material was designed by S1 (2, 2': 6′, 2″-terpyridyl derivative Zn(SCN)2 complex) modified gold nanoparticles with obvious improving two photon absorption (TPA) cross section (σ), the fluorescence intensity, lifetime, fluorescence quantum yield due to the enhancement of intramolecular charge transfer (ICT) process. Compared with R1 (3-([2, 2': 6′, 2″-terpyridin]-4'-yl) -9-hexyl-9H-carbazole), a conjugated ligand of carbazolyl styryl terpyridine derivatives, capping with Ag nanoparticles, photon induced electron transfer (PET) process led to the fluorescence quenching. The 1H NMR study on the coordination reaction mechanism provided a new insight into the great mystery of nanoscience. Other related characterizations, such as IR and Far IR, could also prove the interaction of Au NPs and S1. The composite material with good nonlinear optical properties had potential applications in vitro cellular imaging. Gold nanoparticles Elsevier Two sulfur-terminal Zn(SCN)2 complexes Elsevier Two-photon excited fluorescence Elsevier Biological imaging Elsevier Sun, Wan oth Wang, Cong oth Xu, Min oth Lu, Xin oth Tian, Xiaohe oth Li, Shengli oth Wu, Jieying oth Tian, Yupeng oth Enthalten in Elsevier Science Haghgoo, M. ELSEVIER A multiscale analysis for free vibration of fuzzy fiber-reinforced nanocomposite conical shells 2020 Amsterdam [u.a.] (DE-627)ELV004269640 volume:141 year:2017 pages:13-20 extent:8 https://doi.org/10.1016/j.dyepig.2017.02.004 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.31 Technische Mechanik VZ 56.11 Baukonstruktion VZ AR 141 2017 13-20 8 045F 660 |
allfields_unstemmed |
10.1016/j.dyepig.2017.02.004 doi GBV00000000000049A.pica (DE-627)ELV014835517 (ELSEVIER)S0143-7208(16)31249-9 DE-627 ger DE-627 rakwb eng 660 660 DE-600 690 VZ 50.31 bkl 56.11 bkl Wang, Anran verfasserin aut Gold nanoparticles modified by new conjugated S=C=N terminal and its biological imaging application 2017transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Gold nanostructures had recently become the most interesting areas of scientific endeavor. Herein, a novel nanostructure material was designed by S1 (2, 2': 6′, 2″-terpyridyl derivative Zn(SCN)2 complex) modified gold nanoparticles with obvious improving two photon absorption (TPA) cross section (σ), the fluorescence intensity, lifetime, fluorescence quantum yield due to the enhancement of intramolecular charge transfer (ICT) process. Compared with R1 (3-([2, 2': 6′, 2″-terpyridin]-4'-yl) -9-hexyl-9H-carbazole), a conjugated ligand of carbazolyl styryl terpyridine derivatives, capping with Ag nanoparticles, photon induced electron transfer (PET) process led to the fluorescence quenching. The 1H NMR study on the coordination reaction mechanism provided a new insight into the great mystery of nanoscience. Other related characterizations, such as IR and Far IR, could also prove the interaction of Au NPs and S1. The composite material with good nonlinear optical properties had potential applications in vitro cellular imaging. Gold nanostructures had recently become the most interesting areas of scientific endeavor. Herein, a novel nanostructure material was designed by S1 (2, 2': 6′, 2″-terpyridyl derivative Zn(SCN)2 complex) modified gold nanoparticles with obvious improving two photon absorption (TPA) cross section (σ), the fluorescence intensity, lifetime, fluorescence quantum yield due to the enhancement of intramolecular charge transfer (ICT) process. Compared with R1 (3-([2, 2': 6′, 2″-terpyridin]-4'-yl) -9-hexyl-9H-carbazole), a conjugated ligand of carbazolyl styryl terpyridine derivatives, capping with Ag nanoparticles, photon induced electron transfer (PET) process led to the fluorescence quenching. The 1H NMR study on the coordination reaction mechanism provided a new insight into the great mystery of nanoscience. Other related characterizations, such as IR and Far IR, could also prove the interaction of Au NPs and S1. The composite material with good nonlinear optical properties had potential applications in vitro cellular imaging. Gold nanoparticles Elsevier Two sulfur-terminal Zn(SCN)2 complexes Elsevier Two-photon excited fluorescence Elsevier Biological imaging Elsevier Sun, Wan oth Wang, Cong oth Xu, Min oth Lu, Xin oth Tian, Xiaohe oth Li, Shengli oth Wu, Jieying oth Tian, Yupeng oth Enthalten in Elsevier Science Haghgoo, M. ELSEVIER A multiscale analysis for free vibration of fuzzy fiber-reinforced nanocomposite conical shells 2020 Amsterdam [u.a.] (DE-627)ELV004269640 volume:141 year:2017 pages:13-20 extent:8 https://doi.org/10.1016/j.dyepig.2017.02.004 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.31 Technische Mechanik VZ 56.11 Baukonstruktion VZ AR 141 2017 13-20 8 045F 660 |
allfieldsGer |
10.1016/j.dyepig.2017.02.004 doi GBV00000000000049A.pica (DE-627)ELV014835517 (ELSEVIER)S0143-7208(16)31249-9 DE-627 ger DE-627 rakwb eng 660 660 DE-600 690 VZ 50.31 bkl 56.11 bkl Wang, Anran verfasserin aut Gold nanoparticles modified by new conjugated S=C=N terminal and its biological imaging application 2017transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Gold nanostructures had recently become the most interesting areas of scientific endeavor. Herein, a novel nanostructure material was designed by S1 (2, 2': 6′, 2″-terpyridyl derivative Zn(SCN)2 complex) modified gold nanoparticles with obvious improving two photon absorption (TPA) cross section (σ), the fluorescence intensity, lifetime, fluorescence quantum yield due to the enhancement of intramolecular charge transfer (ICT) process. Compared with R1 (3-([2, 2': 6′, 2″-terpyridin]-4'-yl) -9-hexyl-9H-carbazole), a conjugated ligand of carbazolyl styryl terpyridine derivatives, capping with Ag nanoparticles, photon induced electron transfer (PET) process led to the fluorescence quenching. The 1H NMR study on the coordination reaction mechanism provided a new insight into the great mystery of nanoscience. Other related characterizations, such as IR and Far IR, could also prove the interaction of Au NPs and S1. The composite material with good nonlinear optical properties had potential applications in vitro cellular imaging. Gold nanostructures had recently become the most interesting areas of scientific endeavor. Herein, a novel nanostructure material was designed by S1 (2, 2': 6′, 2″-terpyridyl derivative Zn(SCN)2 complex) modified gold nanoparticles with obvious improving two photon absorption (TPA) cross section (σ), the fluorescence intensity, lifetime, fluorescence quantum yield due to the enhancement of intramolecular charge transfer (ICT) process. Compared with R1 (3-([2, 2': 6′, 2″-terpyridin]-4'-yl) -9-hexyl-9H-carbazole), a conjugated ligand of carbazolyl styryl terpyridine derivatives, capping with Ag nanoparticles, photon induced electron transfer (PET) process led to the fluorescence quenching. The 1H NMR study on the coordination reaction mechanism provided a new insight into the great mystery of nanoscience. Other related characterizations, such as IR and Far IR, could also prove the interaction of Au NPs and S1. The composite material with good nonlinear optical properties had potential applications in vitro cellular imaging. Gold nanoparticles Elsevier Two sulfur-terminal Zn(SCN)2 complexes Elsevier Two-photon excited fluorescence Elsevier Biological imaging Elsevier Sun, Wan oth Wang, Cong oth Xu, Min oth Lu, Xin oth Tian, Xiaohe oth Li, Shengli oth Wu, Jieying oth Tian, Yupeng oth Enthalten in Elsevier Science Haghgoo, M. ELSEVIER A multiscale analysis for free vibration of fuzzy fiber-reinforced nanocomposite conical shells 2020 Amsterdam [u.a.] (DE-627)ELV004269640 volume:141 year:2017 pages:13-20 extent:8 https://doi.org/10.1016/j.dyepig.2017.02.004 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.31 Technische Mechanik VZ 56.11 Baukonstruktion VZ AR 141 2017 13-20 8 045F 660 |
allfieldsSound |
10.1016/j.dyepig.2017.02.004 doi GBV00000000000049A.pica (DE-627)ELV014835517 (ELSEVIER)S0143-7208(16)31249-9 DE-627 ger DE-627 rakwb eng 660 660 DE-600 690 VZ 50.31 bkl 56.11 bkl Wang, Anran verfasserin aut Gold nanoparticles modified by new conjugated S=C=N terminal and its biological imaging application 2017transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Gold nanostructures had recently become the most interesting areas of scientific endeavor. Herein, a novel nanostructure material was designed by S1 (2, 2': 6′, 2″-terpyridyl derivative Zn(SCN)2 complex) modified gold nanoparticles with obvious improving two photon absorption (TPA) cross section (σ), the fluorescence intensity, lifetime, fluorescence quantum yield due to the enhancement of intramolecular charge transfer (ICT) process. Compared with R1 (3-([2, 2': 6′, 2″-terpyridin]-4'-yl) -9-hexyl-9H-carbazole), a conjugated ligand of carbazolyl styryl terpyridine derivatives, capping with Ag nanoparticles, photon induced electron transfer (PET) process led to the fluorescence quenching. The 1H NMR study on the coordination reaction mechanism provided a new insight into the great mystery of nanoscience. Other related characterizations, such as IR and Far IR, could also prove the interaction of Au NPs and S1. The composite material with good nonlinear optical properties had potential applications in vitro cellular imaging. Gold nanostructures had recently become the most interesting areas of scientific endeavor. Herein, a novel nanostructure material was designed by S1 (2, 2': 6′, 2″-terpyridyl derivative Zn(SCN)2 complex) modified gold nanoparticles with obvious improving two photon absorption (TPA) cross section (σ), the fluorescence intensity, lifetime, fluorescence quantum yield due to the enhancement of intramolecular charge transfer (ICT) process. Compared with R1 (3-([2, 2': 6′, 2″-terpyridin]-4'-yl) -9-hexyl-9H-carbazole), a conjugated ligand of carbazolyl styryl terpyridine derivatives, capping with Ag nanoparticles, photon induced electron transfer (PET) process led to the fluorescence quenching. The 1H NMR study on the coordination reaction mechanism provided a new insight into the great mystery of nanoscience. Other related characterizations, such as IR and Far IR, could also prove the interaction of Au NPs and S1. The composite material with good nonlinear optical properties had potential applications in vitro cellular imaging. Gold nanoparticles Elsevier Two sulfur-terminal Zn(SCN)2 complexes Elsevier Two-photon excited fluorescence Elsevier Biological imaging Elsevier Sun, Wan oth Wang, Cong oth Xu, Min oth Lu, Xin oth Tian, Xiaohe oth Li, Shengli oth Wu, Jieying oth Tian, Yupeng oth Enthalten in Elsevier Science Haghgoo, M. ELSEVIER A multiscale analysis for free vibration of fuzzy fiber-reinforced nanocomposite conical shells 2020 Amsterdam [u.a.] (DE-627)ELV004269640 volume:141 year:2017 pages:13-20 extent:8 https://doi.org/10.1016/j.dyepig.2017.02.004 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.31 Technische Mechanik VZ 56.11 Baukonstruktion VZ AR 141 2017 13-20 8 045F 660 |
language |
English |
source |
Enthalten in A multiscale analysis for free vibration of fuzzy fiber-reinforced nanocomposite conical shells Amsterdam [u.a.] volume:141 year:2017 pages:13-20 extent:8 |
sourceStr |
Enthalten in A multiscale analysis for free vibration of fuzzy fiber-reinforced nanocomposite conical shells Amsterdam [u.a.] volume:141 year:2017 pages:13-20 extent:8 |
format_phy_str_mv |
Article |
bklname |
Technische Mechanik Baukonstruktion |
institution |
findex.gbv.de |
topic_facet |
Gold nanoparticles Two sulfur-terminal Zn(SCN)2 complexes Two-photon excited fluorescence Biological imaging |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
A multiscale analysis for free vibration of fuzzy fiber-reinforced nanocomposite conical shells |
authorswithroles_txt_mv |
Wang, Anran @@aut@@ Sun, Wan @@oth@@ Wang, Cong @@oth@@ Xu, Min @@oth@@ Lu, Xin @@oth@@ Tian, Xiaohe @@oth@@ Li, Shengli @@oth@@ Wu, Jieying @@oth@@ Tian, Yupeng @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
ELV004269640 |
dewey-sort |
3660 |
id |
ELV014835517 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV014835517</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625114134.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.dyepig.2017.02.004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000049A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV014835517</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0143-7208(16)31249-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">660</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.31</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">56.11</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Anran</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Gold nanoparticles modified by new conjugated S=C=N terminal and its biological imaging application</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Gold nanostructures had recently become the most interesting areas of scientific endeavor. Herein, a novel nanostructure material was designed by S1 (2, 2': 6′, 2″-terpyridyl derivative Zn(SCN)2 complex) modified gold nanoparticles with obvious improving two photon absorption (TPA) cross section (σ), the fluorescence intensity, lifetime, fluorescence quantum yield due to the enhancement of intramolecular charge transfer (ICT) process. Compared with R1 (3-([2, 2': 6′, 2″-terpyridin]-4'-yl) -9-hexyl-9H-carbazole), a conjugated ligand of carbazolyl styryl terpyridine derivatives, capping with Ag nanoparticles, photon induced electron transfer (PET) process led to the fluorescence quenching. The 1H NMR study on the coordination reaction mechanism provided a new insight into the great mystery of nanoscience. Other related characterizations, such as IR and Far IR, could also prove the interaction of Au NPs and S1. The composite material with good nonlinear optical properties had potential applications in vitro cellular imaging.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Gold nanostructures had recently become the most interesting areas of scientific endeavor. Herein, a novel nanostructure material was designed by S1 (2, 2': 6′, 2″-terpyridyl derivative Zn(SCN)2 complex) modified gold nanoparticles with obvious improving two photon absorption (TPA) cross section (σ), the fluorescence intensity, lifetime, fluorescence quantum yield due to the enhancement of intramolecular charge transfer (ICT) process. Compared with R1 (3-([2, 2': 6′, 2″-terpyridin]-4'-yl) -9-hexyl-9H-carbazole), a conjugated ligand of carbazolyl styryl terpyridine derivatives, capping with Ag nanoparticles, photon induced electron transfer (PET) process led to the fluorescence quenching. The 1H NMR study on the coordination reaction mechanism provided a new insight into the great mystery of nanoscience. Other related characterizations, such as IR and Far IR, could also prove the interaction of Au NPs and S1. The composite material with good nonlinear optical properties had potential applications in vitro cellular imaging.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Gold nanoparticles</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Two sulfur-terminal Zn(SCN)2 complexes</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Two-photon excited fluorescence</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Biological imaging</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Wan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Cong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Min</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lu, Xin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tian, Xiaohe</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Shengli</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Jieying</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tian, Yupeng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Haghgoo, M. ELSEVIER</subfield><subfield code="t">A multiscale analysis for free vibration of fuzzy fiber-reinforced nanocomposite conical shells</subfield><subfield code="d">2020</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV004269640</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:141</subfield><subfield code="g">year:2017</subfield><subfield code="g">pages:13-20</subfield><subfield code="g">extent:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.dyepig.2017.02.004</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.31</subfield><subfield code="j">Technische Mechanik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">56.11</subfield><subfield code="j">Baukonstruktion</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">141</subfield><subfield code="j">2017</subfield><subfield code="h">13-20</subfield><subfield code="g">8</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">660</subfield></datafield></record></collection>
|
author |
Wang, Anran |
spellingShingle |
Wang, Anran ddc 660 ddc 690 bkl 50.31 bkl 56.11 Elsevier Gold nanoparticles Elsevier Two sulfur-terminal Zn(SCN)2 complexes Elsevier Two-photon excited fluorescence Elsevier Biological imaging Gold nanoparticles modified by new conjugated S=C=N terminal and its biological imaging application |
authorStr |
Wang, Anran |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV004269640 |
format |
electronic Article |
dewey-ones |
660 - Chemical engineering 690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
660 660 DE-600 690 VZ 50.31 bkl 56.11 bkl Gold nanoparticles modified by new conjugated S=C=N terminal and its biological imaging application Gold nanoparticles Elsevier Two sulfur-terminal Zn(SCN)2 complexes Elsevier Two-photon excited fluorescence Elsevier Biological imaging Elsevier |
topic |
ddc 660 ddc 690 bkl 50.31 bkl 56.11 Elsevier Gold nanoparticles Elsevier Two sulfur-terminal Zn(SCN)2 complexes Elsevier Two-photon excited fluorescence Elsevier Biological imaging |
topic_unstemmed |
ddc 660 ddc 690 bkl 50.31 bkl 56.11 Elsevier Gold nanoparticles Elsevier Two sulfur-terminal Zn(SCN)2 complexes Elsevier Two-photon excited fluorescence Elsevier Biological imaging |
topic_browse |
ddc 660 ddc 690 bkl 50.31 bkl 56.11 Elsevier Gold nanoparticles Elsevier Two sulfur-terminal Zn(SCN)2 complexes Elsevier Two-photon excited fluorescence Elsevier Biological imaging |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
w s ws c w cw m x mx x l xl x t xt s l sl j w jw y t yt |
hierarchy_parent_title |
A multiscale analysis for free vibration of fuzzy fiber-reinforced nanocomposite conical shells |
hierarchy_parent_id |
ELV004269640 |
dewey-tens |
660 - Chemical engineering 690 - Building & construction |
hierarchy_top_title |
A multiscale analysis for free vibration of fuzzy fiber-reinforced nanocomposite conical shells |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV004269640 |
title |
Gold nanoparticles modified by new conjugated S=C=N terminal and its biological imaging application |
ctrlnum |
(DE-627)ELV014835517 (ELSEVIER)S0143-7208(16)31249-9 |
title_full |
Gold nanoparticles modified by new conjugated S=C=N terminal and its biological imaging application |
author_sort |
Wang, Anran |
journal |
A multiscale analysis for free vibration of fuzzy fiber-reinforced nanocomposite conical shells |
journalStr |
A multiscale analysis for free vibration of fuzzy fiber-reinforced nanocomposite conical shells |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
zzz |
container_start_page |
13 |
author_browse |
Wang, Anran |
container_volume |
141 |
physical |
8 |
class |
660 660 DE-600 690 VZ 50.31 bkl 56.11 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Wang, Anran |
doi_str_mv |
10.1016/j.dyepig.2017.02.004 |
dewey-full |
660 690 |
title_sort |
gold nanoparticles modified by new conjugated s=c=n terminal and its biological imaging application |
title_auth |
Gold nanoparticles modified by new conjugated S=C=N terminal and its biological imaging application |
abstract |
Gold nanostructures had recently become the most interesting areas of scientific endeavor. Herein, a novel nanostructure material was designed by S1 (2, 2': 6′, 2″-terpyridyl derivative Zn(SCN)2 complex) modified gold nanoparticles with obvious improving two photon absorption (TPA) cross section (σ), the fluorescence intensity, lifetime, fluorescence quantum yield due to the enhancement of intramolecular charge transfer (ICT) process. Compared with R1 (3-([2, 2': 6′, 2″-terpyridin]-4'-yl) -9-hexyl-9H-carbazole), a conjugated ligand of carbazolyl styryl terpyridine derivatives, capping with Ag nanoparticles, photon induced electron transfer (PET) process led to the fluorescence quenching. The 1H NMR study on the coordination reaction mechanism provided a new insight into the great mystery of nanoscience. Other related characterizations, such as IR and Far IR, could also prove the interaction of Au NPs and S1. The composite material with good nonlinear optical properties had potential applications in vitro cellular imaging. |
abstractGer |
Gold nanostructures had recently become the most interesting areas of scientific endeavor. Herein, a novel nanostructure material was designed by S1 (2, 2': 6′, 2″-terpyridyl derivative Zn(SCN)2 complex) modified gold nanoparticles with obvious improving two photon absorption (TPA) cross section (σ), the fluorescence intensity, lifetime, fluorescence quantum yield due to the enhancement of intramolecular charge transfer (ICT) process. Compared with R1 (3-([2, 2': 6′, 2″-terpyridin]-4'-yl) -9-hexyl-9H-carbazole), a conjugated ligand of carbazolyl styryl terpyridine derivatives, capping with Ag nanoparticles, photon induced electron transfer (PET) process led to the fluorescence quenching. The 1H NMR study on the coordination reaction mechanism provided a new insight into the great mystery of nanoscience. Other related characterizations, such as IR and Far IR, could also prove the interaction of Au NPs and S1. The composite material with good nonlinear optical properties had potential applications in vitro cellular imaging. |
abstract_unstemmed |
Gold nanostructures had recently become the most interesting areas of scientific endeavor. Herein, a novel nanostructure material was designed by S1 (2, 2': 6′, 2″-terpyridyl derivative Zn(SCN)2 complex) modified gold nanoparticles with obvious improving two photon absorption (TPA) cross section (σ), the fluorescence intensity, lifetime, fluorescence quantum yield due to the enhancement of intramolecular charge transfer (ICT) process. Compared with R1 (3-([2, 2': 6′, 2″-terpyridin]-4'-yl) -9-hexyl-9H-carbazole), a conjugated ligand of carbazolyl styryl terpyridine derivatives, capping with Ag nanoparticles, photon induced electron transfer (PET) process led to the fluorescence quenching. The 1H NMR study on the coordination reaction mechanism provided a new insight into the great mystery of nanoscience. Other related characterizations, such as IR and Far IR, could also prove the interaction of Au NPs and S1. The composite material with good nonlinear optical properties had potential applications in vitro cellular imaging. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
Gold nanoparticles modified by new conjugated S=C=N terminal and its biological imaging application |
url |
https://doi.org/10.1016/j.dyepig.2017.02.004 |
remote_bool |
true |
author2 |
Sun, Wan Wang, Cong Xu, Min Lu, Xin Tian, Xiaohe Li, Shengli Wu, Jieying Tian, Yupeng |
author2Str |
Sun, Wan Wang, Cong Xu, Min Lu, Xin Tian, Xiaohe Li, Shengli Wu, Jieying Tian, Yupeng |
ppnlink |
ELV004269640 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth oth |
doi_str |
10.1016/j.dyepig.2017.02.004 |
up_date |
2024-07-06T22:36:30.053Z |
_version_ |
1803870944681263104 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV014835517</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625114134.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.dyepig.2017.02.004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000049A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV014835517</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0143-7208(16)31249-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">660</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.31</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">56.11</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Anran</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Gold nanoparticles modified by new conjugated S=C=N terminal and its biological imaging application</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Gold nanostructures had recently become the most interesting areas of scientific endeavor. Herein, a novel nanostructure material was designed by S1 (2, 2': 6′, 2″-terpyridyl derivative Zn(SCN)2 complex) modified gold nanoparticles with obvious improving two photon absorption (TPA) cross section (σ), the fluorescence intensity, lifetime, fluorescence quantum yield due to the enhancement of intramolecular charge transfer (ICT) process. Compared with R1 (3-([2, 2': 6′, 2″-terpyridin]-4'-yl) -9-hexyl-9H-carbazole), a conjugated ligand of carbazolyl styryl terpyridine derivatives, capping with Ag nanoparticles, photon induced electron transfer (PET) process led to the fluorescence quenching. The 1H NMR study on the coordination reaction mechanism provided a new insight into the great mystery of nanoscience. Other related characterizations, such as IR and Far IR, could also prove the interaction of Au NPs and S1. The composite material with good nonlinear optical properties had potential applications in vitro cellular imaging.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Gold nanostructures had recently become the most interesting areas of scientific endeavor. Herein, a novel nanostructure material was designed by S1 (2, 2': 6′, 2″-terpyridyl derivative Zn(SCN)2 complex) modified gold nanoparticles with obvious improving two photon absorption (TPA) cross section (σ), the fluorescence intensity, lifetime, fluorescence quantum yield due to the enhancement of intramolecular charge transfer (ICT) process. Compared with R1 (3-([2, 2': 6′, 2″-terpyridin]-4'-yl) -9-hexyl-9H-carbazole), a conjugated ligand of carbazolyl styryl terpyridine derivatives, capping with Ag nanoparticles, photon induced electron transfer (PET) process led to the fluorescence quenching. The 1H NMR study on the coordination reaction mechanism provided a new insight into the great mystery of nanoscience. Other related characterizations, such as IR and Far IR, could also prove the interaction of Au NPs and S1. The composite material with good nonlinear optical properties had potential applications in vitro cellular imaging.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Gold nanoparticles</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Two sulfur-terminal Zn(SCN)2 complexes</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Two-photon excited fluorescence</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Biological imaging</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Wan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Cong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Min</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lu, Xin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tian, Xiaohe</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Shengli</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Jieying</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tian, Yupeng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Haghgoo, M. ELSEVIER</subfield><subfield code="t">A multiscale analysis for free vibration of fuzzy fiber-reinforced nanocomposite conical shells</subfield><subfield code="d">2020</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV004269640</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:141</subfield><subfield code="g">year:2017</subfield><subfield code="g">pages:13-20</subfield><subfield code="g">extent:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.dyepig.2017.02.004</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.31</subfield><subfield code="j">Technische Mechanik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">56.11</subfield><subfield code="j">Baukonstruktion</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">141</subfield><subfield code="j">2017</subfield><subfield code="h">13-20</subfield><subfield code="g">8</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">660</subfield></datafield></record></collection>
|
score |
7.4010057 |