Self-regulating supply–demand systems
Supply–demand systems in Smart City sectors such as energy, transportation, telecommunication, are subject of unprecedented technological transformations by the Internet of Things. Usually, supply–demand systems involve actors that produce and consume resources, e.g. energy, and they are regulated s...
Ausführliche Beschreibung
Autor*in: |
Pournaras, Evangelos [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
19 |
---|
Übergeordnetes Werk: |
Enthalten in: Surgeon-patient matching based on pairwise comparisons information for elective surgery - Jiang, Yan-Ping ELSEVIER, 2020, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:76 ; year:2017 ; pages:73-91 ; extent:19 |
Links: |
---|
DOI / URN: |
10.1016/j.future.2017.05.018 |
---|
Katalog-ID: |
ELV014842572 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV014842572 | ||
003 | DE-627 | ||
005 | 20230625114148.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180602s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.future.2017.05.018 |2 doi | |
028 | 5 | 2 | |a GBV00000000000138A.pica |
035 | |a (DE-627)ELV014842572 | ||
035 | |a (ELSEVIER)S0167-739X(16)30394-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 004 | |
082 | 0 | 4 | |a 004 |q DE-600 |
082 | 0 | 4 | |a 004 |q VZ |
084 | |a 85.35 |2 bkl | ||
084 | |a 54.80 |2 bkl | ||
100 | 1 | |a Pournaras, Evangelos |e verfasserin |4 aut | |
245 | 1 | 0 | |a Self-regulating supply–demand systems |
264 | 1 | |c 2017transfer abstract | |
300 | |a 19 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Supply–demand systems in Smart City sectors such as energy, transportation, telecommunication, are subject of unprecedented technological transformations by the Internet of Things. Usually, supply–demand systems involve actors that produce and consume resources, e.g. energy, and they are regulated such that supply meets demand, or demand meets available supply. Mismatches of supply and demand may increase operational costs, can cause catastrophic damage in infrastructure, for instance power blackouts, and may even lead to social unrest and security threats. Long-term, operationally offline and top-down regulatory decision-making by governmental officers, policy makers or system operators may turn out to be ineffective for matching supply–demand under new dynamics and opportunities that Internet of Things technologies bring to supply–demand systems, for instance, interactive cyber–physical systems and software agents running locally in physical assets to monitor and apply automated control actions in real-time. e.g. power flow redistributions by smart transformers to improve the Smart Grid reliability. Existing work on online regulatory mechanisms of matching supply–demand either focuses on game-theoretic solutions with assumptions that cannot be easily met in real-world systems or assume centralized management entities and local access to global information. This paper contributes a generic decentralized self-regulatory framework, which, in contrast to related work, is shaped around standardized control system concepts and Internet of Things technologies for an easier adoption and applicability. The framework involves a decentralized combinatorial optimization mechanism that matches supply–demand under different regulatory scenarios. An evaluation methodology, integrated within this framework, is introduced that allows the systematic assessment of optimality and system constraints, resulting in more informative and meaningful comparisons of self-regulatory settings. Evidence using real-world datasets of energy supply–demand systems confirms the effectiveness and applicability of the self-regulatory framework. It is shown that a higher informational diversity in the options, from which agents make local selections, results in a higher system-wide performance. Several strategies with which agents make selections come along with measurable performance trade-offs creating a vast potential for online adjustments incentivized by utilities, system operators and p... | ||
520 | |a Supply–demand systems in Smart City sectors such as energy, transportation, telecommunication, are subject of unprecedented technological transformations by the Internet of Things. Usually, supply–demand systems involve actors that produce and consume resources, e.g. energy, and they are regulated such that supply meets demand, or demand meets available supply. Mismatches of supply and demand may increase operational costs, can cause catastrophic damage in infrastructure, for instance power blackouts, and may even lead to social unrest and security threats. Long-term, operationally offline and top-down regulatory decision-making by governmental officers, policy makers or system operators may turn out to be ineffective for matching supply–demand under new dynamics and opportunities that Internet of Things technologies bring to supply–demand systems, for instance, interactive cyber–physical systems and software agents running locally in physical assets to monitor and apply automated control actions in real-time. e.g. power flow redistributions by smart transformers to improve the Smart Grid reliability. Existing work on online regulatory mechanisms of matching supply–demand either focuses on game-theoretic solutions with assumptions that cannot be easily met in real-world systems or assume centralized management entities and local access to global information. This paper contributes a generic decentralized self-regulatory framework, which, in contrast to related work, is shaped around standardized control system concepts and Internet of Things technologies for an easier adoption and applicability. The framework involves a decentralized combinatorial optimization mechanism that matches supply–demand under different regulatory scenarios. An evaluation methodology, integrated within this framework, is introduced that allows the systematic assessment of optimality and system constraints, resulting in more informative and meaningful comparisons of self-regulatory settings. Evidence using real-world datasets of energy supply–demand systems confirms the effectiveness and applicability of the self-regulatory framework. It is shown that a higher informational diversity in the options, from which agents make local selections, results in a higher system-wide performance. Several strategies with which agents make selections come along with measurable performance trade-offs creating a vast potential for online adjustments incentivized by utilities, system operators and p... | ||
650 | 7 | |a Demand |2 Elsevier | |
650 | 7 | |a Internet of things |2 Elsevier | |
650 | 7 | |a Agent |2 Elsevier | |
650 | 7 | |a Supply |2 Elsevier | |
650 | 7 | |a Tree |2 Elsevier | |
650 | 7 | |a Smart city |2 Elsevier | |
650 | 7 | |a Smart grid |2 Elsevier | |
650 | 7 | |a Optimization |2 Elsevier | |
650 | 7 | |a Self-regulation |2 Elsevier | |
700 | 1 | |a Yao, Mark |4 oth | |
700 | 1 | |a Helbing, Dirk |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Jiang, Yan-Ping ELSEVIER |t Surgeon-patient matching based on pairwise comparisons information for elective surgery |d 2020 |g Amsterdam [u.a.] |w (DE-627)ELV004280385 |
773 | 1 | 8 | |g volume:76 |g year:2017 |g pages:73-91 |g extent:19 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.future.2017.05.018 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 85.35 |j Fertigung |q VZ |
936 | b | k | |a 54.80 |j Angewandte Informatik |q VZ |
951 | |a AR | ||
952 | |d 76 |j 2017 |h 73-91 |g 19 | ||
953 | |2 045F |a 004 |
author_variant |
e p ep |
---|---|
matchkey_str |
pournarasevangelosyaomarkhelbingdirk:2017----:efeuaigupyea |
hierarchy_sort_str |
2017transfer abstract |
bklnumber |
85.35 54.80 |
publishDate |
2017 |
allfields |
10.1016/j.future.2017.05.018 doi GBV00000000000138A.pica (DE-627)ELV014842572 (ELSEVIER)S0167-739X(16)30394-6 DE-627 ger DE-627 rakwb eng 004 004 DE-600 004 VZ 85.35 bkl 54.80 bkl Pournaras, Evangelos verfasserin aut Self-regulating supply–demand systems 2017transfer abstract 19 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Supply–demand systems in Smart City sectors such as energy, transportation, telecommunication, are subject of unprecedented technological transformations by the Internet of Things. Usually, supply–demand systems involve actors that produce and consume resources, e.g. energy, and they are regulated such that supply meets demand, or demand meets available supply. Mismatches of supply and demand may increase operational costs, can cause catastrophic damage in infrastructure, for instance power blackouts, and may even lead to social unrest and security threats. Long-term, operationally offline and top-down regulatory decision-making by governmental officers, policy makers or system operators may turn out to be ineffective for matching supply–demand under new dynamics and opportunities that Internet of Things technologies bring to supply–demand systems, for instance, interactive cyber–physical systems and software agents running locally in physical assets to monitor and apply automated control actions in real-time. e.g. power flow redistributions by smart transformers to improve the Smart Grid reliability. Existing work on online regulatory mechanisms of matching supply–demand either focuses on game-theoretic solutions with assumptions that cannot be easily met in real-world systems or assume centralized management entities and local access to global information. This paper contributes a generic decentralized self-regulatory framework, which, in contrast to related work, is shaped around standardized control system concepts and Internet of Things technologies for an easier adoption and applicability. The framework involves a decentralized combinatorial optimization mechanism that matches supply–demand under different regulatory scenarios. An evaluation methodology, integrated within this framework, is introduced that allows the systematic assessment of optimality and system constraints, resulting in more informative and meaningful comparisons of self-regulatory settings. Evidence using real-world datasets of energy supply–demand systems confirms the effectiveness and applicability of the self-regulatory framework. It is shown that a higher informational diversity in the options, from which agents make local selections, results in a higher system-wide performance. Several strategies with which agents make selections come along with measurable performance trade-offs creating a vast potential for online adjustments incentivized by utilities, system operators and p... Supply–demand systems in Smart City sectors such as energy, transportation, telecommunication, are subject of unprecedented technological transformations by the Internet of Things. Usually, supply–demand systems involve actors that produce and consume resources, e.g. energy, and they are regulated such that supply meets demand, or demand meets available supply. Mismatches of supply and demand may increase operational costs, can cause catastrophic damage in infrastructure, for instance power blackouts, and may even lead to social unrest and security threats. Long-term, operationally offline and top-down regulatory decision-making by governmental officers, policy makers or system operators may turn out to be ineffective for matching supply–demand under new dynamics and opportunities that Internet of Things technologies bring to supply–demand systems, for instance, interactive cyber–physical systems and software agents running locally in physical assets to monitor and apply automated control actions in real-time. e.g. power flow redistributions by smart transformers to improve the Smart Grid reliability. Existing work on online regulatory mechanisms of matching supply–demand either focuses on game-theoretic solutions with assumptions that cannot be easily met in real-world systems or assume centralized management entities and local access to global information. This paper contributes a generic decentralized self-regulatory framework, which, in contrast to related work, is shaped around standardized control system concepts and Internet of Things technologies for an easier adoption and applicability. The framework involves a decentralized combinatorial optimization mechanism that matches supply–demand under different regulatory scenarios. An evaluation methodology, integrated within this framework, is introduced that allows the systematic assessment of optimality and system constraints, resulting in more informative and meaningful comparisons of self-regulatory settings. Evidence using real-world datasets of energy supply–demand systems confirms the effectiveness and applicability of the self-regulatory framework. It is shown that a higher informational diversity in the options, from which agents make local selections, results in a higher system-wide performance. Several strategies with which agents make selections come along with measurable performance trade-offs creating a vast potential for online adjustments incentivized by utilities, system operators and p... Demand Elsevier Internet of things Elsevier Agent Elsevier Supply Elsevier Tree Elsevier Smart city Elsevier Smart grid Elsevier Optimization Elsevier Self-regulation Elsevier Yao, Mark oth Helbing, Dirk oth Enthalten in Elsevier Science Jiang, Yan-Ping ELSEVIER Surgeon-patient matching based on pairwise comparisons information for elective surgery 2020 Amsterdam [u.a.] (DE-627)ELV004280385 volume:76 year:2017 pages:73-91 extent:19 https://doi.org/10.1016/j.future.2017.05.018 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 85.35 Fertigung VZ 54.80 Angewandte Informatik VZ AR 76 2017 73-91 19 045F 004 |
spelling |
10.1016/j.future.2017.05.018 doi GBV00000000000138A.pica (DE-627)ELV014842572 (ELSEVIER)S0167-739X(16)30394-6 DE-627 ger DE-627 rakwb eng 004 004 DE-600 004 VZ 85.35 bkl 54.80 bkl Pournaras, Evangelos verfasserin aut Self-regulating supply–demand systems 2017transfer abstract 19 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Supply–demand systems in Smart City sectors such as energy, transportation, telecommunication, are subject of unprecedented technological transformations by the Internet of Things. Usually, supply–demand systems involve actors that produce and consume resources, e.g. energy, and they are regulated such that supply meets demand, or demand meets available supply. Mismatches of supply and demand may increase operational costs, can cause catastrophic damage in infrastructure, for instance power blackouts, and may even lead to social unrest and security threats. Long-term, operationally offline and top-down regulatory decision-making by governmental officers, policy makers or system operators may turn out to be ineffective for matching supply–demand under new dynamics and opportunities that Internet of Things technologies bring to supply–demand systems, for instance, interactive cyber–physical systems and software agents running locally in physical assets to monitor and apply automated control actions in real-time. e.g. power flow redistributions by smart transformers to improve the Smart Grid reliability. Existing work on online regulatory mechanisms of matching supply–demand either focuses on game-theoretic solutions with assumptions that cannot be easily met in real-world systems or assume centralized management entities and local access to global information. This paper contributes a generic decentralized self-regulatory framework, which, in contrast to related work, is shaped around standardized control system concepts and Internet of Things technologies for an easier adoption and applicability. The framework involves a decentralized combinatorial optimization mechanism that matches supply–demand under different regulatory scenarios. An evaluation methodology, integrated within this framework, is introduced that allows the systematic assessment of optimality and system constraints, resulting in more informative and meaningful comparisons of self-regulatory settings. Evidence using real-world datasets of energy supply–demand systems confirms the effectiveness and applicability of the self-regulatory framework. It is shown that a higher informational diversity in the options, from which agents make local selections, results in a higher system-wide performance. Several strategies with which agents make selections come along with measurable performance trade-offs creating a vast potential for online adjustments incentivized by utilities, system operators and p... Supply–demand systems in Smart City sectors such as energy, transportation, telecommunication, are subject of unprecedented technological transformations by the Internet of Things. Usually, supply–demand systems involve actors that produce and consume resources, e.g. energy, and they are regulated such that supply meets demand, or demand meets available supply. Mismatches of supply and demand may increase operational costs, can cause catastrophic damage in infrastructure, for instance power blackouts, and may even lead to social unrest and security threats. Long-term, operationally offline and top-down regulatory decision-making by governmental officers, policy makers or system operators may turn out to be ineffective for matching supply–demand under new dynamics and opportunities that Internet of Things technologies bring to supply–demand systems, for instance, interactive cyber–physical systems and software agents running locally in physical assets to monitor and apply automated control actions in real-time. e.g. power flow redistributions by smart transformers to improve the Smart Grid reliability. Existing work on online regulatory mechanisms of matching supply–demand either focuses on game-theoretic solutions with assumptions that cannot be easily met in real-world systems or assume centralized management entities and local access to global information. This paper contributes a generic decentralized self-regulatory framework, which, in contrast to related work, is shaped around standardized control system concepts and Internet of Things technologies for an easier adoption and applicability. The framework involves a decentralized combinatorial optimization mechanism that matches supply–demand under different regulatory scenarios. An evaluation methodology, integrated within this framework, is introduced that allows the systematic assessment of optimality and system constraints, resulting in more informative and meaningful comparisons of self-regulatory settings. Evidence using real-world datasets of energy supply–demand systems confirms the effectiveness and applicability of the self-regulatory framework. It is shown that a higher informational diversity in the options, from which agents make local selections, results in a higher system-wide performance. Several strategies with which agents make selections come along with measurable performance trade-offs creating a vast potential for online adjustments incentivized by utilities, system operators and p... Demand Elsevier Internet of things Elsevier Agent Elsevier Supply Elsevier Tree Elsevier Smart city Elsevier Smart grid Elsevier Optimization Elsevier Self-regulation Elsevier Yao, Mark oth Helbing, Dirk oth Enthalten in Elsevier Science Jiang, Yan-Ping ELSEVIER Surgeon-patient matching based on pairwise comparisons information for elective surgery 2020 Amsterdam [u.a.] (DE-627)ELV004280385 volume:76 year:2017 pages:73-91 extent:19 https://doi.org/10.1016/j.future.2017.05.018 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 85.35 Fertigung VZ 54.80 Angewandte Informatik VZ AR 76 2017 73-91 19 045F 004 |
allfields_unstemmed |
10.1016/j.future.2017.05.018 doi GBV00000000000138A.pica (DE-627)ELV014842572 (ELSEVIER)S0167-739X(16)30394-6 DE-627 ger DE-627 rakwb eng 004 004 DE-600 004 VZ 85.35 bkl 54.80 bkl Pournaras, Evangelos verfasserin aut Self-regulating supply–demand systems 2017transfer abstract 19 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Supply–demand systems in Smart City sectors such as energy, transportation, telecommunication, are subject of unprecedented technological transformations by the Internet of Things. Usually, supply–demand systems involve actors that produce and consume resources, e.g. energy, and they are regulated such that supply meets demand, or demand meets available supply. Mismatches of supply and demand may increase operational costs, can cause catastrophic damage in infrastructure, for instance power blackouts, and may even lead to social unrest and security threats. Long-term, operationally offline and top-down regulatory decision-making by governmental officers, policy makers or system operators may turn out to be ineffective for matching supply–demand under new dynamics and opportunities that Internet of Things technologies bring to supply–demand systems, for instance, interactive cyber–physical systems and software agents running locally in physical assets to monitor and apply automated control actions in real-time. e.g. power flow redistributions by smart transformers to improve the Smart Grid reliability. Existing work on online regulatory mechanisms of matching supply–demand either focuses on game-theoretic solutions with assumptions that cannot be easily met in real-world systems or assume centralized management entities and local access to global information. This paper contributes a generic decentralized self-regulatory framework, which, in contrast to related work, is shaped around standardized control system concepts and Internet of Things technologies for an easier adoption and applicability. The framework involves a decentralized combinatorial optimization mechanism that matches supply–demand under different regulatory scenarios. An evaluation methodology, integrated within this framework, is introduced that allows the systematic assessment of optimality and system constraints, resulting in more informative and meaningful comparisons of self-regulatory settings. Evidence using real-world datasets of energy supply–demand systems confirms the effectiveness and applicability of the self-regulatory framework. It is shown that a higher informational diversity in the options, from which agents make local selections, results in a higher system-wide performance. Several strategies with which agents make selections come along with measurable performance trade-offs creating a vast potential for online adjustments incentivized by utilities, system operators and p... Supply–demand systems in Smart City sectors such as energy, transportation, telecommunication, are subject of unprecedented technological transformations by the Internet of Things. Usually, supply–demand systems involve actors that produce and consume resources, e.g. energy, and they are regulated such that supply meets demand, or demand meets available supply. Mismatches of supply and demand may increase operational costs, can cause catastrophic damage in infrastructure, for instance power blackouts, and may even lead to social unrest and security threats. Long-term, operationally offline and top-down regulatory decision-making by governmental officers, policy makers or system operators may turn out to be ineffective for matching supply–demand under new dynamics and opportunities that Internet of Things technologies bring to supply–demand systems, for instance, interactive cyber–physical systems and software agents running locally in physical assets to monitor and apply automated control actions in real-time. e.g. power flow redistributions by smart transformers to improve the Smart Grid reliability. Existing work on online regulatory mechanisms of matching supply–demand either focuses on game-theoretic solutions with assumptions that cannot be easily met in real-world systems or assume centralized management entities and local access to global information. This paper contributes a generic decentralized self-regulatory framework, which, in contrast to related work, is shaped around standardized control system concepts and Internet of Things technologies for an easier adoption and applicability. The framework involves a decentralized combinatorial optimization mechanism that matches supply–demand under different regulatory scenarios. An evaluation methodology, integrated within this framework, is introduced that allows the systematic assessment of optimality and system constraints, resulting in more informative and meaningful comparisons of self-regulatory settings. Evidence using real-world datasets of energy supply–demand systems confirms the effectiveness and applicability of the self-regulatory framework. It is shown that a higher informational diversity in the options, from which agents make local selections, results in a higher system-wide performance. Several strategies with which agents make selections come along with measurable performance trade-offs creating a vast potential for online adjustments incentivized by utilities, system operators and p... Demand Elsevier Internet of things Elsevier Agent Elsevier Supply Elsevier Tree Elsevier Smart city Elsevier Smart grid Elsevier Optimization Elsevier Self-regulation Elsevier Yao, Mark oth Helbing, Dirk oth Enthalten in Elsevier Science Jiang, Yan-Ping ELSEVIER Surgeon-patient matching based on pairwise comparisons information for elective surgery 2020 Amsterdam [u.a.] (DE-627)ELV004280385 volume:76 year:2017 pages:73-91 extent:19 https://doi.org/10.1016/j.future.2017.05.018 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 85.35 Fertigung VZ 54.80 Angewandte Informatik VZ AR 76 2017 73-91 19 045F 004 |
allfieldsGer |
10.1016/j.future.2017.05.018 doi GBV00000000000138A.pica (DE-627)ELV014842572 (ELSEVIER)S0167-739X(16)30394-6 DE-627 ger DE-627 rakwb eng 004 004 DE-600 004 VZ 85.35 bkl 54.80 bkl Pournaras, Evangelos verfasserin aut Self-regulating supply–demand systems 2017transfer abstract 19 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Supply–demand systems in Smart City sectors such as energy, transportation, telecommunication, are subject of unprecedented technological transformations by the Internet of Things. Usually, supply–demand systems involve actors that produce and consume resources, e.g. energy, and they are regulated such that supply meets demand, or demand meets available supply. Mismatches of supply and demand may increase operational costs, can cause catastrophic damage in infrastructure, for instance power blackouts, and may even lead to social unrest and security threats. Long-term, operationally offline and top-down regulatory decision-making by governmental officers, policy makers or system operators may turn out to be ineffective for matching supply–demand under new dynamics and opportunities that Internet of Things technologies bring to supply–demand systems, for instance, interactive cyber–physical systems and software agents running locally in physical assets to monitor and apply automated control actions in real-time. e.g. power flow redistributions by smart transformers to improve the Smart Grid reliability. Existing work on online regulatory mechanisms of matching supply–demand either focuses on game-theoretic solutions with assumptions that cannot be easily met in real-world systems or assume centralized management entities and local access to global information. This paper contributes a generic decentralized self-regulatory framework, which, in contrast to related work, is shaped around standardized control system concepts and Internet of Things technologies for an easier adoption and applicability. The framework involves a decentralized combinatorial optimization mechanism that matches supply–demand under different regulatory scenarios. An evaluation methodology, integrated within this framework, is introduced that allows the systematic assessment of optimality and system constraints, resulting in more informative and meaningful comparisons of self-regulatory settings. Evidence using real-world datasets of energy supply–demand systems confirms the effectiveness and applicability of the self-regulatory framework. It is shown that a higher informational diversity in the options, from which agents make local selections, results in a higher system-wide performance. Several strategies with which agents make selections come along with measurable performance trade-offs creating a vast potential for online adjustments incentivized by utilities, system operators and p... Supply–demand systems in Smart City sectors such as energy, transportation, telecommunication, are subject of unprecedented technological transformations by the Internet of Things. Usually, supply–demand systems involve actors that produce and consume resources, e.g. energy, and they are regulated such that supply meets demand, or demand meets available supply. Mismatches of supply and demand may increase operational costs, can cause catastrophic damage in infrastructure, for instance power blackouts, and may even lead to social unrest and security threats. Long-term, operationally offline and top-down regulatory decision-making by governmental officers, policy makers or system operators may turn out to be ineffective for matching supply–demand under new dynamics and opportunities that Internet of Things technologies bring to supply–demand systems, for instance, interactive cyber–physical systems and software agents running locally in physical assets to monitor and apply automated control actions in real-time. e.g. power flow redistributions by smart transformers to improve the Smart Grid reliability. Existing work on online regulatory mechanisms of matching supply–demand either focuses on game-theoretic solutions with assumptions that cannot be easily met in real-world systems or assume centralized management entities and local access to global information. This paper contributes a generic decentralized self-regulatory framework, which, in contrast to related work, is shaped around standardized control system concepts and Internet of Things technologies for an easier adoption and applicability. The framework involves a decentralized combinatorial optimization mechanism that matches supply–demand under different regulatory scenarios. An evaluation methodology, integrated within this framework, is introduced that allows the systematic assessment of optimality and system constraints, resulting in more informative and meaningful comparisons of self-regulatory settings. Evidence using real-world datasets of energy supply–demand systems confirms the effectiveness and applicability of the self-regulatory framework. It is shown that a higher informational diversity in the options, from which agents make local selections, results in a higher system-wide performance. Several strategies with which agents make selections come along with measurable performance trade-offs creating a vast potential for online adjustments incentivized by utilities, system operators and p... Demand Elsevier Internet of things Elsevier Agent Elsevier Supply Elsevier Tree Elsevier Smart city Elsevier Smart grid Elsevier Optimization Elsevier Self-regulation Elsevier Yao, Mark oth Helbing, Dirk oth Enthalten in Elsevier Science Jiang, Yan-Ping ELSEVIER Surgeon-patient matching based on pairwise comparisons information for elective surgery 2020 Amsterdam [u.a.] (DE-627)ELV004280385 volume:76 year:2017 pages:73-91 extent:19 https://doi.org/10.1016/j.future.2017.05.018 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 85.35 Fertigung VZ 54.80 Angewandte Informatik VZ AR 76 2017 73-91 19 045F 004 |
allfieldsSound |
10.1016/j.future.2017.05.018 doi GBV00000000000138A.pica (DE-627)ELV014842572 (ELSEVIER)S0167-739X(16)30394-6 DE-627 ger DE-627 rakwb eng 004 004 DE-600 004 VZ 85.35 bkl 54.80 bkl Pournaras, Evangelos verfasserin aut Self-regulating supply–demand systems 2017transfer abstract 19 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Supply–demand systems in Smart City sectors such as energy, transportation, telecommunication, are subject of unprecedented technological transformations by the Internet of Things. Usually, supply–demand systems involve actors that produce and consume resources, e.g. energy, and they are regulated such that supply meets demand, or demand meets available supply. Mismatches of supply and demand may increase operational costs, can cause catastrophic damage in infrastructure, for instance power blackouts, and may even lead to social unrest and security threats. Long-term, operationally offline and top-down regulatory decision-making by governmental officers, policy makers or system operators may turn out to be ineffective for matching supply–demand under new dynamics and opportunities that Internet of Things technologies bring to supply–demand systems, for instance, interactive cyber–physical systems and software agents running locally in physical assets to monitor and apply automated control actions in real-time. e.g. power flow redistributions by smart transformers to improve the Smart Grid reliability. Existing work on online regulatory mechanisms of matching supply–demand either focuses on game-theoretic solutions with assumptions that cannot be easily met in real-world systems or assume centralized management entities and local access to global information. This paper contributes a generic decentralized self-regulatory framework, which, in contrast to related work, is shaped around standardized control system concepts and Internet of Things technologies for an easier adoption and applicability. The framework involves a decentralized combinatorial optimization mechanism that matches supply–demand under different regulatory scenarios. An evaluation methodology, integrated within this framework, is introduced that allows the systematic assessment of optimality and system constraints, resulting in more informative and meaningful comparisons of self-regulatory settings. Evidence using real-world datasets of energy supply–demand systems confirms the effectiveness and applicability of the self-regulatory framework. It is shown that a higher informational diversity in the options, from which agents make local selections, results in a higher system-wide performance. Several strategies with which agents make selections come along with measurable performance trade-offs creating a vast potential for online adjustments incentivized by utilities, system operators and p... Supply–demand systems in Smart City sectors such as energy, transportation, telecommunication, are subject of unprecedented technological transformations by the Internet of Things. Usually, supply–demand systems involve actors that produce and consume resources, e.g. energy, and they are regulated such that supply meets demand, or demand meets available supply. Mismatches of supply and demand may increase operational costs, can cause catastrophic damage in infrastructure, for instance power blackouts, and may even lead to social unrest and security threats. Long-term, operationally offline and top-down regulatory decision-making by governmental officers, policy makers or system operators may turn out to be ineffective for matching supply–demand under new dynamics and opportunities that Internet of Things technologies bring to supply–demand systems, for instance, interactive cyber–physical systems and software agents running locally in physical assets to monitor and apply automated control actions in real-time. e.g. power flow redistributions by smart transformers to improve the Smart Grid reliability. Existing work on online regulatory mechanisms of matching supply–demand either focuses on game-theoretic solutions with assumptions that cannot be easily met in real-world systems or assume centralized management entities and local access to global information. This paper contributes a generic decentralized self-regulatory framework, which, in contrast to related work, is shaped around standardized control system concepts and Internet of Things technologies for an easier adoption and applicability. The framework involves a decentralized combinatorial optimization mechanism that matches supply–demand under different regulatory scenarios. An evaluation methodology, integrated within this framework, is introduced that allows the systematic assessment of optimality and system constraints, resulting in more informative and meaningful comparisons of self-regulatory settings. Evidence using real-world datasets of energy supply–demand systems confirms the effectiveness and applicability of the self-regulatory framework. It is shown that a higher informational diversity in the options, from which agents make local selections, results in a higher system-wide performance. Several strategies with which agents make selections come along with measurable performance trade-offs creating a vast potential for online adjustments incentivized by utilities, system operators and p... Demand Elsevier Internet of things Elsevier Agent Elsevier Supply Elsevier Tree Elsevier Smart city Elsevier Smart grid Elsevier Optimization Elsevier Self-regulation Elsevier Yao, Mark oth Helbing, Dirk oth Enthalten in Elsevier Science Jiang, Yan-Ping ELSEVIER Surgeon-patient matching based on pairwise comparisons information for elective surgery 2020 Amsterdam [u.a.] (DE-627)ELV004280385 volume:76 year:2017 pages:73-91 extent:19 https://doi.org/10.1016/j.future.2017.05.018 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 85.35 Fertigung VZ 54.80 Angewandte Informatik VZ AR 76 2017 73-91 19 045F 004 |
language |
English |
source |
Enthalten in Surgeon-patient matching based on pairwise comparisons information for elective surgery Amsterdam [u.a.] volume:76 year:2017 pages:73-91 extent:19 |
sourceStr |
Enthalten in Surgeon-patient matching based on pairwise comparisons information for elective surgery Amsterdam [u.a.] volume:76 year:2017 pages:73-91 extent:19 |
format_phy_str_mv |
Article |
bklname |
Fertigung Angewandte Informatik |
institution |
findex.gbv.de |
topic_facet |
Demand Internet of things Agent Supply Tree Smart city Smart grid Optimization Self-regulation |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Surgeon-patient matching based on pairwise comparisons information for elective surgery |
authorswithroles_txt_mv |
Pournaras, Evangelos @@aut@@ Yao, Mark @@oth@@ Helbing, Dirk @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
ELV004280385 |
dewey-sort |
14 |
id |
ELV014842572 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV014842572</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625114148.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.future.2017.05.018</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000138A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV014842572</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0167-739X(16)30394-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">85.35</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pournaras, Evangelos</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Self-regulating supply–demand systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">19</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Supply–demand systems in Smart City sectors such as energy, transportation, telecommunication, are subject of unprecedented technological transformations by the Internet of Things. Usually, supply–demand systems involve actors that produce and consume resources, e.g. energy, and they are regulated such that supply meets demand, or demand meets available supply. Mismatches of supply and demand may increase operational costs, can cause catastrophic damage in infrastructure, for instance power blackouts, and may even lead to social unrest and security threats. Long-term, operationally offline and top-down regulatory decision-making by governmental officers, policy makers or system operators may turn out to be ineffective for matching supply–demand under new dynamics and opportunities that Internet of Things technologies bring to supply–demand systems, for instance, interactive cyber–physical systems and software agents running locally in physical assets to monitor and apply automated control actions in real-time. e.g. power flow redistributions by smart transformers to improve the Smart Grid reliability. Existing work on online regulatory mechanisms of matching supply–demand either focuses on game-theoretic solutions with assumptions that cannot be easily met in real-world systems or assume centralized management entities and local access to global information. This paper contributes a generic decentralized self-regulatory framework, which, in contrast to related work, is shaped around standardized control system concepts and Internet of Things technologies for an easier adoption and applicability. The framework involves a decentralized combinatorial optimization mechanism that matches supply–demand under different regulatory scenarios. An evaluation methodology, integrated within this framework, is introduced that allows the systematic assessment of optimality and system constraints, resulting in more informative and meaningful comparisons of self-regulatory settings. Evidence using real-world datasets of energy supply–demand systems confirms the effectiveness and applicability of the self-regulatory framework. It is shown that a higher informational diversity in the options, from which agents make local selections, results in a higher system-wide performance. Several strategies with which agents make selections come along with measurable performance trade-offs creating a vast potential for online adjustments incentivized by utilities, system operators and p...</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Supply–demand systems in Smart City sectors such as energy, transportation, telecommunication, are subject of unprecedented technological transformations by the Internet of Things. Usually, supply–demand systems involve actors that produce and consume resources, e.g. energy, and they are regulated such that supply meets demand, or demand meets available supply. Mismatches of supply and demand may increase operational costs, can cause catastrophic damage in infrastructure, for instance power blackouts, and may even lead to social unrest and security threats. Long-term, operationally offline and top-down regulatory decision-making by governmental officers, policy makers or system operators may turn out to be ineffective for matching supply–demand under new dynamics and opportunities that Internet of Things technologies bring to supply–demand systems, for instance, interactive cyber–physical systems and software agents running locally in physical assets to monitor and apply automated control actions in real-time. e.g. power flow redistributions by smart transformers to improve the Smart Grid reliability. Existing work on online regulatory mechanisms of matching supply–demand either focuses on game-theoretic solutions with assumptions that cannot be easily met in real-world systems or assume centralized management entities and local access to global information. This paper contributes a generic decentralized self-regulatory framework, which, in contrast to related work, is shaped around standardized control system concepts and Internet of Things technologies for an easier adoption and applicability. The framework involves a decentralized combinatorial optimization mechanism that matches supply–demand under different regulatory scenarios. An evaluation methodology, integrated within this framework, is introduced that allows the systematic assessment of optimality and system constraints, resulting in more informative and meaningful comparisons of self-regulatory settings. Evidence using real-world datasets of energy supply–demand systems confirms the effectiveness and applicability of the self-regulatory framework. It is shown that a higher informational diversity in the options, from which agents make local selections, results in a higher system-wide performance. Several strategies with which agents make selections come along with measurable performance trade-offs creating a vast potential for online adjustments incentivized by utilities, system operators and p...</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Demand</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Internet of things</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Agent</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Supply</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Tree</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Smart city</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Smart grid</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Optimization</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Self-regulation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yao, Mark</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Helbing, Dirk</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Jiang, Yan-Ping ELSEVIER</subfield><subfield code="t">Surgeon-patient matching based on pairwise comparisons information for elective surgery</subfield><subfield code="d">2020</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV004280385</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:76</subfield><subfield code="g">year:2017</subfield><subfield code="g">pages:73-91</subfield><subfield code="g">extent:19</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.future.2017.05.018</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">85.35</subfield><subfield code="j">Fertigung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.80</subfield><subfield code="j">Angewandte Informatik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">76</subfield><subfield code="j">2017</subfield><subfield code="h">73-91</subfield><subfield code="g">19</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">004</subfield></datafield></record></collection>
|
author |
Pournaras, Evangelos |
spellingShingle |
Pournaras, Evangelos ddc 004 bkl 85.35 bkl 54.80 Elsevier Demand Elsevier Internet of things Elsevier Agent Elsevier Supply Elsevier Tree Elsevier Smart city Elsevier Smart grid Elsevier Optimization Elsevier Self-regulation Self-regulating supply–demand systems |
authorStr |
Pournaras, Evangelos |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV004280385 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
004 004 DE-600 004 VZ 85.35 bkl 54.80 bkl Self-regulating supply–demand systems Demand Elsevier Internet of things Elsevier Agent Elsevier Supply Elsevier Tree Elsevier Smart city Elsevier Smart grid Elsevier Optimization Elsevier Self-regulation Elsevier |
topic |
ddc 004 bkl 85.35 bkl 54.80 Elsevier Demand Elsevier Internet of things Elsevier Agent Elsevier Supply Elsevier Tree Elsevier Smart city Elsevier Smart grid Elsevier Optimization Elsevier Self-regulation |
topic_unstemmed |
ddc 004 bkl 85.35 bkl 54.80 Elsevier Demand Elsevier Internet of things Elsevier Agent Elsevier Supply Elsevier Tree Elsevier Smart city Elsevier Smart grid Elsevier Optimization Elsevier Self-regulation |
topic_browse |
ddc 004 bkl 85.35 bkl 54.80 Elsevier Demand Elsevier Internet of things Elsevier Agent Elsevier Supply Elsevier Tree Elsevier Smart city Elsevier Smart grid Elsevier Optimization Elsevier Self-regulation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
m y my d h dh |
hierarchy_parent_title |
Surgeon-patient matching based on pairwise comparisons information for elective surgery |
hierarchy_parent_id |
ELV004280385 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Surgeon-patient matching based on pairwise comparisons information for elective surgery |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV004280385 |
title |
Self-regulating supply–demand systems |
ctrlnum |
(DE-627)ELV014842572 (ELSEVIER)S0167-739X(16)30394-6 |
title_full |
Self-regulating supply–demand systems |
author_sort |
Pournaras, Evangelos |
journal |
Surgeon-patient matching based on pairwise comparisons information for elective surgery |
journalStr |
Surgeon-patient matching based on pairwise comparisons information for elective surgery |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
zzz |
container_start_page |
73 |
author_browse |
Pournaras, Evangelos |
container_volume |
76 |
physical |
19 |
class |
004 004 DE-600 004 VZ 85.35 bkl 54.80 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Pournaras, Evangelos |
doi_str_mv |
10.1016/j.future.2017.05.018 |
dewey-full |
004 |
title_sort |
self-regulating supply–demand systems |
title_auth |
Self-regulating supply–demand systems |
abstract |
Supply–demand systems in Smart City sectors such as energy, transportation, telecommunication, are subject of unprecedented technological transformations by the Internet of Things. Usually, supply–demand systems involve actors that produce and consume resources, e.g. energy, and they are regulated such that supply meets demand, or demand meets available supply. Mismatches of supply and demand may increase operational costs, can cause catastrophic damage in infrastructure, for instance power blackouts, and may even lead to social unrest and security threats. Long-term, operationally offline and top-down regulatory decision-making by governmental officers, policy makers or system operators may turn out to be ineffective for matching supply–demand under new dynamics and opportunities that Internet of Things technologies bring to supply–demand systems, for instance, interactive cyber–physical systems and software agents running locally in physical assets to monitor and apply automated control actions in real-time. e.g. power flow redistributions by smart transformers to improve the Smart Grid reliability. Existing work on online regulatory mechanisms of matching supply–demand either focuses on game-theoretic solutions with assumptions that cannot be easily met in real-world systems or assume centralized management entities and local access to global information. This paper contributes a generic decentralized self-regulatory framework, which, in contrast to related work, is shaped around standardized control system concepts and Internet of Things technologies for an easier adoption and applicability. The framework involves a decentralized combinatorial optimization mechanism that matches supply–demand under different regulatory scenarios. An evaluation methodology, integrated within this framework, is introduced that allows the systematic assessment of optimality and system constraints, resulting in more informative and meaningful comparisons of self-regulatory settings. Evidence using real-world datasets of energy supply–demand systems confirms the effectiveness and applicability of the self-regulatory framework. It is shown that a higher informational diversity in the options, from which agents make local selections, results in a higher system-wide performance. Several strategies with which agents make selections come along with measurable performance trade-offs creating a vast potential for online adjustments incentivized by utilities, system operators and p... |
abstractGer |
Supply–demand systems in Smart City sectors such as energy, transportation, telecommunication, are subject of unprecedented technological transformations by the Internet of Things. Usually, supply–demand systems involve actors that produce and consume resources, e.g. energy, and they are regulated such that supply meets demand, or demand meets available supply. Mismatches of supply and demand may increase operational costs, can cause catastrophic damage in infrastructure, for instance power blackouts, and may even lead to social unrest and security threats. Long-term, operationally offline and top-down regulatory decision-making by governmental officers, policy makers or system operators may turn out to be ineffective for matching supply–demand under new dynamics and opportunities that Internet of Things technologies bring to supply–demand systems, for instance, interactive cyber–physical systems and software agents running locally in physical assets to monitor and apply automated control actions in real-time. e.g. power flow redistributions by smart transformers to improve the Smart Grid reliability. Existing work on online regulatory mechanisms of matching supply–demand either focuses on game-theoretic solutions with assumptions that cannot be easily met in real-world systems or assume centralized management entities and local access to global information. This paper contributes a generic decentralized self-regulatory framework, which, in contrast to related work, is shaped around standardized control system concepts and Internet of Things technologies for an easier adoption and applicability. The framework involves a decentralized combinatorial optimization mechanism that matches supply–demand under different regulatory scenarios. An evaluation methodology, integrated within this framework, is introduced that allows the systematic assessment of optimality and system constraints, resulting in more informative and meaningful comparisons of self-regulatory settings. Evidence using real-world datasets of energy supply–demand systems confirms the effectiveness and applicability of the self-regulatory framework. It is shown that a higher informational diversity in the options, from which agents make local selections, results in a higher system-wide performance. Several strategies with which agents make selections come along with measurable performance trade-offs creating a vast potential for online adjustments incentivized by utilities, system operators and p... |
abstract_unstemmed |
Supply–demand systems in Smart City sectors such as energy, transportation, telecommunication, are subject of unprecedented technological transformations by the Internet of Things. Usually, supply–demand systems involve actors that produce and consume resources, e.g. energy, and they are regulated such that supply meets demand, or demand meets available supply. Mismatches of supply and demand may increase operational costs, can cause catastrophic damage in infrastructure, for instance power blackouts, and may even lead to social unrest and security threats. Long-term, operationally offline and top-down regulatory decision-making by governmental officers, policy makers or system operators may turn out to be ineffective for matching supply–demand under new dynamics and opportunities that Internet of Things technologies bring to supply–demand systems, for instance, interactive cyber–physical systems and software agents running locally in physical assets to monitor and apply automated control actions in real-time. e.g. power flow redistributions by smart transformers to improve the Smart Grid reliability. Existing work on online regulatory mechanisms of matching supply–demand either focuses on game-theoretic solutions with assumptions that cannot be easily met in real-world systems or assume centralized management entities and local access to global information. This paper contributes a generic decentralized self-regulatory framework, which, in contrast to related work, is shaped around standardized control system concepts and Internet of Things technologies for an easier adoption and applicability. The framework involves a decentralized combinatorial optimization mechanism that matches supply–demand under different regulatory scenarios. An evaluation methodology, integrated within this framework, is introduced that allows the systematic assessment of optimality and system constraints, resulting in more informative and meaningful comparisons of self-regulatory settings. Evidence using real-world datasets of energy supply–demand systems confirms the effectiveness and applicability of the self-regulatory framework. It is shown that a higher informational diversity in the options, from which agents make local selections, results in a higher system-wide performance. Several strategies with which agents make selections come along with measurable performance trade-offs creating a vast potential for online adjustments incentivized by utilities, system operators and p... |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
Self-regulating supply–demand systems |
url |
https://doi.org/10.1016/j.future.2017.05.018 |
remote_bool |
true |
author2 |
Yao, Mark Helbing, Dirk |
author2Str |
Yao, Mark Helbing, Dirk |
ppnlink |
ELV004280385 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1016/j.future.2017.05.018 |
up_date |
2024-07-06T22:37:55.320Z |
_version_ |
1803871034091241472 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV014842572</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625114148.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.future.2017.05.018</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000138A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV014842572</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0167-739X(16)30394-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">85.35</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pournaras, Evangelos</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Self-regulating supply–demand systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">19</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Supply–demand systems in Smart City sectors such as energy, transportation, telecommunication, are subject of unprecedented technological transformations by the Internet of Things. Usually, supply–demand systems involve actors that produce and consume resources, e.g. energy, and they are regulated such that supply meets demand, or demand meets available supply. Mismatches of supply and demand may increase operational costs, can cause catastrophic damage in infrastructure, for instance power blackouts, and may even lead to social unrest and security threats. Long-term, operationally offline and top-down regulatory decision-making by governmental officers, policy makers or system operators may turn out to be ineffective for matching supply–demand under new dynamics and opportunities that Internet of Things technologies bring to supply–demand systems, for instance, interactive cyber–physical systems and software agents running locally in physical assets to monitor and apply automated control actions in real-time. e.g. power flow redistributions by smart transformers to improve the Smart Grid reliability. Existing work on online regulatory mechanisms of matching supply–demand either focuses on game-theoretic solutions with assumptions that cannot be easily met in real-world systems or assume centralized management entities and local access to global information. This paper contributes a generic decentralized self-regulatory framework, which, in contrast to related work, is shaped around standardized control system concepts and Internet of Things technologies for an easier adoption and applicability. The framework involves a decentralized combinatorial optimization mechanism that matches supply–demand under different regulatory scenarios. An evaluation methodology, integrated within this framework, is introduced that allows the systematic assessment of optimality and system constraints, resulting in more informative and meaningful comparisons of self-regulatory settings. Evidence using real-world datasets of energy supply–demand systems confirms the effectiveness and applicability of the self-regulatory framework. It is shown that a higher informational diversity in the options, from which agents make local selections, results in a higher system-wide performance. Several strategies with which agents make selections come along with measurable performance trade-offs creating a vast potential for online adjustments incentivized by utilities, system operators and p...</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Supply–demand systems in Smart City sectors such as energy, transportation, telecommunication, are subject of unprecedented technological transformations by the Internet of Things. Usually, supply–demand systems involve actors that produce and consume resources, e.g. energy, and they are regulated such that supply meets demand, or demand meets available supply. Mismatches of supply and demand may increase operational costs, can cause catastrophic damage in infrastructure, for instance power blackouts, and may even lead to social unrest and security threats. Long-term, operationally offline and top-down regulatory decision-making by governmental officers, policy makers or system operators may turn out to be ineffective for matching supply–demand under new dynamics and opportunities that Internet of Things technologies bring to supply–demand systems, for instance, interactive cyber–physical systems and software agents running locally in physical assets to monitor and apply automated control actions in real-time. e.g. power flow redistributions by smart transformers to improve the Smart Grid reliability. Existing work on online regulatory mechanisms of matching supply–demand either focuses on game-theoretic solutions with assumptions that cannot be easily met in real-world systems or assume centralized management entities and local access to global information. This paper contributes a generic decentralized self-regulatory framework, which, in contrast to related work, is shaped around standardized control system concepts and Internet of Things technologies for an easier adoption and applicability. The framework involves a decentralized combinatorial optimization mechanism that matches supply–demand under different regulatory scenarios. An evaluation methodology, integrated within this framework, is introduced that allows the systematic assessment of optimality and system constraints, resulting in more informative and meaningful comparisons of self-regulatory settings. Evidence using real-world datasets of energy supply–demand systems confirms the effectiveness and applicability of the self-regulatory framework. It is shown that a higher informational diversity in the options, from which agents make local selections, results in a higher system-wide performance. Several strategies with which agents make selections come along with measurable performance trade-offs creating a vast potential for online adjustments incentivized by utilities, system operators and p...</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Demand</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Internet of things</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Agent</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Supply</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Tree</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Smart city</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Smart grid</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Optimization</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Self-regulation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yao, Mark</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Helbing, Dirk</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Jiang, Yan-Ping ELSEVIER</subfield><subfield code="t">Surgeon-patient matching based on pairwise comparisons information for elective surgery</subfield><subfield code="d">2020</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV004280385</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:76</subfield><subfield code="g">year:2017</subfield><subfield code="g">pages:73-91</subfield><subfield code="g">extent:19</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.future.2017.05.018</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">85.35</subfield><subfield code="j">Fertigung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.80</subfield><subfield code="j">Angewandte Informatik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">76</subfield><subfield code="j">2017</subfield><subfield code="h">73-91</subfield><subfield code="g">19</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">004</subfield></datafield></record></collection>
|
score |
7.401374 |