Iron fluoride microspheres by titanium dioxide surface modification as high capacity cathode of Li-ion batteries
The spherical FeF3·0.33H2O cathode material is successfully modified with a TiO2 coating via a simple solvothermal method. The effects of nanosized TiO2 coating on the morphology structure, and electrochemical performance of spherical FeF3·0.33H2O cathode material are characterized by scanning elect...
Ausführliche Beschreibung
Autor*in: |
Zhang, Rui [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017transfer abstract |
---|
Schlagwörter: |
Spherical FeF3·0.33H2O particles |
---|
Umfang: |
10 |
---|
Übergeordnetes Werk: |
Enthalten in: Factors associated with canine resource guarding behaviour in the presence of people: A cross-sectional survey of dog owners - Jacobs, Jacquelyn A. ELSEVIER, 2017, JAL : an interdisciplinary journal of materials science and solid-state chemistry and physics, Lausanne |
---|---|
Übergeordnetes Werk: |
volume:719 ; year:2017 ; day:30 ; month:09 ; pages:331-340 ; extent:10 |
Links: |
---|
DOI / URN: |
10.1016/j.jallcom.2017.05.185 |
---|
Katalog-ID: |
ELV015300765 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV015300765 | ||
003 | DE-627 | ||
005 | 20230625114946.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180602s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jallcom.2017.05.185 |2 doi | |
028 | 5 | 2 | |a GBV00000000000097A.pica |
035 | |a (DE-627)ELV015300765 | ||
035 | |a (ELSEVIER)S0925-8388(17)31802-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 670 |a 540 | |
082 | 0 | 4 | |a 670 |q DE-600 |
082 | 0 | 4 | |a 540 |q DE-600 |
082 | 0 | 4 | |a 630 |q VZ |
100 | 1 | |a Zhang, Rui |e verfasserin |4 aut | |
245 | 1 | 0 | |a Iron fluoride microspheres by titanium dioxide surface modification as high capacity cathode of Li-ion batteries |
264 | 1 | |c 2017transfer abstract | |
300 | |a 10 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a The spherical FeF3·0.33H2O cathode material is successfully modified with a TiO2 coating via a simple solvothermal method. The effects of nanosized TiO2 coating on the morphology structure, and electrochemical performance of spherical FeF3·0.33H2O cathode material are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and electrochemical test, respectively. The results demonstrate that FeF3·0.33H2O sample is spherical morphology with the average particle size of about 1.0 μm and good dispersity, as well as the nanosized TiO2 layer is uniformly coated on the surface of the FeF3·0.33H2O spheres. Besides, the nanosized TiO2-coated FeF3·0.33H2O sample exhibits a high initial discharge capacity of 654 mAh g−1 and the corresponding charge capacity of 522 mAh g−1 at 0.1 C between 1.5 V and 4.5 V. Especially, the nanosized TiO2-coated FeF3·0.33H2O sample still possesses good cycling stability of 264 mAh g−1 after 200 cycles at 0.2 C. Thus, the modification of spherical FeF3·0.33H2O with nanosized TiO2 layer will be a promising strategy for improving cycle life and structure stability, and promoting its wide application in high performance LIBs. | ||
520 | |a The spherical FeF3·0.33H2O cathode material is successfully modified with a TiO2 coating via a simple solvothermal method. The effects of nanosized TiO2 coating on the morphology structure, and electrochemical performance of spherical FeF3·0.33H2O cathode material are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and electrochemical test, respectively. The results demonstrate that FeF3·0.33H2O sample is spherical morphology with the average particle size of about 1.0 μm and good dispersity, as well as the nanosized TiO2 layer is uniformly coated on the surface of the FeF3·0.33H2O spheres. Besides, the nanosized TiO2-coated FeF3·0.33H2O sample exhibits a high initial discharge capacity of 654 mAh g−1 and the corresponding charge capacity of 522 mAh g−1 at 0.1 C between 1.5 V and 4.5 V. Especially, the nanosized TiO2-coated FeF3·0.33H2O sample still possesses good cycling stability of 264 mAh g−1 after 200 cycles at 0.2 C. Thus, the modification of spherical FeF3·0.33H2O with nanosized TiO2 layer will be a promising strategy for improving cycle life and structure stability, and promoting its wide application in high performance LIBs. | ||
650 | 7 | |a Cycling stability |2 Elsevier | |
650 | 7 | |a Spherical FeF3·0.33H2O particles |2 Elsevier | |
650 | 7 | |a Modification of nanosized TiO2- coating |2 Elsevier | |
650 | 7 | |a Li-ion batteries |2 Elsevier | |
700 | 1 | |a Wang, Xianyou |4 oth | |
700 | 1 | |a Wei, Shuangying |4 oth | |
700 | 1 | |a Wang, Xuan |4 oth | |
700 | 1 | |a Liu, Min |4 oth | |
700 | 1 | |a Hu, Hai |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Jacobs, Jacquelyn A. ELSEVIER |t Factors associated with canine resource guarding behaviour in the presence of people: A cross-sectional survey of dog owners |d 2017 |d JAL : an interdisciplinary journal of materials science and solid-state chemistry and physics |g Lausanne |w (DE-627)ELV001115774 |
773 | 1 | 8 | |g volume:719 |g year:2017 |g day:30 |g month:09 |g pages:331-340 |g extent:10 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jallcom.2017.05.185 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
951 | |a AR | ||
952 | |d 719 |j 2017 |b 30 |c 0930 |h 331-340 |g 10 | ||
953 | |2 045F |a 670 |
author_variant |
r z rz |
---|---|
matchkey_str |
zhangruiwangxianyouweishuangyingwangxuan:2017----:rnloieirshrsyiaimixdsraeoiiainsihaai |
hierarchy_sort_str |
2017transfer abstract |
publishDate |
2017 |
allfields |
10.1016/j.jallcom.2017.05.185 doi GBV00000000000097A.pica (DE-627)ELV015300765 (ELSEVIER)S0925-8388(17)31802-9 DE-627 ger DE-627 rakwb eng 670 540 670 DE-600 540 DE-600 630 VZ Zhang, Rui verfasserin aut Iron fluoride microspheres by titanium dioxide surface modification as high capacity cathode of Li-ion batteries 2017transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The spherical FeF3·0.33H2O cathode material is successfully modified with a TiO2 coating via a simple solvothermal method. The effects of nanosized TiO2 coating on the morphology structure, and electrochemical performance of spherical FeF3·0.33H2O cathode material are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and electrochemical test, respectively. The results demonstrate that FeF3·0.33H2O sample is spherical morphology with the average particle size of about 1.0 μm and good dispersity, as well as the nanosized TiO2 layer is uniformly coated on the surface of the FeF3·0.33H2O spheres. Besides, the nanosized TiO2-coated FeF3·0.33H2O sample exhibits a high initial discharge capacity of 654 mAh g−1 and the corresponding charge capacity of 522 mAh g−1 at 0.1 C between 1.5 V and 4.5 V. Especially, the nanosized TiO2-coated FeF3·0.33H2O sample still possesses good cycling stability of 264 mAh g−1 after 200 cycles at 0.2 C. Thus, the modification of spherical FeF3·0.33H2O with nanosized TiO2 layer will be a promising strategy for improving cycle life and structure stability, and promoting its wide application in high performance LIBs. The spherical FeF3·0.33H2O cathode material is successfully modified with a TiO2 coating via a simple solvothermal method. The effects of nanosized TiO2 coating on the morphology structure, and electrochemical performance of spherical FeF3·0.33H2O cathode material are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and electrochemical test, respectively. The results demonstrate that FeF3·0.33H2O sample is spherical morphology with the average particle size of about 1.0 μm and good dispersity, as well as the nanosized TiO2 layer is uniformly coated on the surface of the FeF3·0.33H2O spheres. Besides, the nanosized TiO2-coated FeF3·0.33H2O sample exhibits a high initial discharge capacity of 654 mAh g−1 and the corresponding charge capacity of 522 mAh g−1 at 0.1 C between 1.5 V and 4.5 V. Especially, the nanosized TiO2-coated FeF3·0.33H2O sample still possesses good cycling stability of 264 mAh g−1 after 200 cycles at 0.2 C. Thus, the modification of spherical FeF3·0.33H2O with nanosized TiO2 layer will be a promising strategy for improving cycle life and structure stability, and promoting its wide application in high performance LIBs. Cycling stability Elsevier Spherical FeF3·0.33H2O particles Elsevier Modification of nanosized TiO2- coating Elsevier Li-ion batteries Elsevier Wang, Xianyou oth Wei, Shuangying oth Wang, Xuan oth Liu, Min oth Hu, Hai oth Enthalten in Elsevier Jacobs, Jacquelyn A. ELSEVIER Factors associated with canine resource guarding behaviour in the presence of people: A cross-sectional survey of dog owners 2017 JAL : an interdisciplinary journal of materials science and solid-state chemistry and physics Lausanne (DE-627)ELV001115774 volume:719 year:2017 day:30 month:09 pages:331-340 extent:10 https://doi.org/10.1016/j.jallcom.2017.05.185 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA AR 719 2017 30 0930 331-340 10 045F 670 |
spelling |
10.1016/j.jallcom.2017.05.185 doi GBV00000000000097A.pica (DE-627)ELV015300765 (ELSEVIER)S0925-8388(17)31802-9 DE-627 ger DE-627 rakwb eng 670 540 670 DE-600 540 DE-600 630 VZ Zhang, Rui verfasserin aut Iron fluoride microspheres by titanium dioxide surface modification as high capacity cathode of Li-ion batteries 2017transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The spherical FeF3·0.33H2O cathode material is successfully modified with a TiO2 coating via a simple solvothermal method. The effects of nanosized TiO2 coating on the morphology structure, and electrochemical performance of spherical FeF3·0.33H2O cathode material are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and electrochemical test, respectively. The results demonstrate that FeF3·0.33H2O sample is spherical morphology with the average particle size of about 1.0 μm and good dispersity, as well as the nanosized TiO2 layer is uniformly coated on the surface of the FeF3·0.33H2O spheres. Besides, the nanosized TiO2-coated FeF3·0.33H2O sample exhibits a high initial discharge capacity of 654 mAh g−1 and the corresponding charge capacity of 522 mAh g−1 at 0.1 C between 1.5 V and 4.5 V. Especially, the nanosized TiO2-coated FeF3·0.33H2O sample still possesses good cycling stability of 264 mAh g−1 after 200 cycles at 0.2 C. Thus, the modification of spherical FeF3·0.33H2O with nanosized TiO2 layer will be a promising strategy for improving cycle life and structure stability, and promoting its wide application in high performance LIBs. The spherical FeF3·0.33H2O cathode material is successfully modified with a TiO2 coating via a simple solvothermal method. The effects of nanosized TiO2 coating on the morphology structure, and electrochemical performance of spherical FeF3·0.33H2O cathode material are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and electrochemical test, respectively. The results demonstrate that FeF3·0.33H2O sample is spherical morphology with the average particle size of about 1.0 μm and good dispersity, as well as the nanosized TiO2 layer is uniformly coated on the surface of the FeF3·0.33H2O spheres. Besides, the nanosized TiO2-coated FeF3·0.33H2O sample exhibits a high initial discharge capacity of 654 mAh g−1 and the corresponding charge capacity of 522 mAh g−1 at 0.1 C between 1.5 V and 4.5 V. Especially, the nanosized TiO2-coated FeF3·0.33H2O sample still possesses good cycling stability of 264 mAh g−1 after 200 cycles at 0.2 C. Thus, the modification of spherical FeF3·0.33H2O with nanosized TiO2 layer will be a promising strategy for improving cycle life and structure stability, and promoting its wide application in high performance LIBs. Cycling stability Elsevier Spherical FeF3·0.33H2O particles Elsevier Modification of nanosized TiO2- coating Elsevier Li-ion batteries Elsevier Wang, Xianyou oth Wei, Shuangying oth Wang, Xuan oth Liu, Min oth Hu, Hai oth Enthalten in Elsevier Jacobs, Jacquelyn A. ELSEVIER Factors associated with canine resource guarding behaviour in the presence of people: A cross-sectional survey of dog owners 2017 JAL : an interdisciplinary journal of materials science and solid-state chemistry and physics Lausanne (DE-627)ELV001115774 volume:719 year:2017 day:30 month:09 pages:331-340 extent:10 https://doi.org/10.1016/j.jallcom.2017.05.185 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA AR 719 2017 30 0930 331-340 10 045F 670 |
allfields_unstemmed |
10.1016/j.jallcom.2017.05.185 doi GBV00000000000097A.pica (DE-627)ELV015300765 (ELSEVIER)S0925-8388(17)31802-9 DE-627 ger DE-627 rakwb eng 670 540 670 DE-600 540 DE-600 630 VZ Zhang, Rui verfasserin aut Iron fluoride microspheres by titanium dioxide surface modification as high capacity cathode of Li-ion batteries 2017transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The spherical FeF3·0.33H2O cathode material is successfully modified with a TiO2 coating via a simple solvothermal method. The effects of nanosized TiO2 coating on the morphology structure, and electrochemical performance of spherical FeF3·0.33H2O cathode material are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and electrochemical test, respectively. The results demonstrate that FeF3·0.33H2O sample is spherical morphology with the average particle size of about 1.0 μm and good dispersity, as well as the nanosized TiO2 layer is uniformly coated on the surface of the FeF3·0.33H2O spheres. Besides, the nanosized TiO2-coated FeF3·0.33H2O sample exhibits a high initial discharge capacity of 654 mAh g−1 and the corresponding charge capacity of 522 mAh g−1 at 0.1 C between 1.5 V and 4.5 V. Especially, the nanosized TiO2-coated FeF3·0.33H2O sample still possesses good cycling stability of 264 mAh g−1 after 200 cycles at 0.2 C. Thus, the modification of spherical FeF3·0.33H2O with nanosized TiO2 layer will be a promising strategy for improving cycle life and structure stability, and promoting its wide application in high performance LIBs. The spherical FeF3·0.33H2O cathode material is successfully modified with a TiO2 coating via a simple solvothermal method. The effects of nanosized TiO2 coating on the morphology structure, and electrochemical performance of spherical FeF3·0.33H2O cathode material are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and electrochemical test, respectively. The results demonstrate that FeF3·0.33H2O sample is spherical morphology with the average particle size of about 1.0 μm and good dispersity, as well as the nanosized TiO2 layer is uniformly coated on the surface of the FeF3·0.33H2O spheres. Besides, the nanosized TiO2-coated FeF3·0.33H2O sample exhibits a high initial discharge capacity of 654 mAh g−1 and the corresponding charge capacity of 522 mAh g−1 at 0.1 C between 1.5 V and 4.5 V. Especially, the nanosized TiO2-coated FeF3·0.33H2O sample still possesses good cycling stability of 264 mAh g−1 after 200 cycles at 0.2 C. Thus, the modification of spherical FeF3·0.33H2O with nanosized TiO2 layer will be a promising strategy for improving cycle life and structure stability, and promoting its wide application in high performance LIBs. Cycling stability Elsevier Spherical FeF3·0.33H2O particles Elsevier Modification of nanosized TiO2- coating Elsevier Li-ion batteries Elsevier Wang, Xianyou oth Wei, Shuangying oth Wang, Xuan oth Liu, Min oth Hu, Hai oth Enthalten in Elsevier Jacobs, Jacquelyn A. ELSEVIER Factors associated with canine resource guarding behaviour in the presence of people: A cross-sectional survey of dog owners 2017 JAL : an interdisciplinary journal of materials science and solid-state chemistry and physics Lausanne (DE-627)ELV001115774 volume:719 year:2017 day:30 month:09 pages:331-340 extent:10 https://doi.org/10.1016/j.jallcom.2017.05.185 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA AR 719 2017 30 0930 331-340 10 045F 670 |
allfieldsGer |
10.1016/j.jallcom.2017.05.185 doi GBV00000000000097A.pica (DE-627)ELV015300765 (ELSEVIER)S0925-8388(17)31802-9 DE-627 ger DE-627 rakwb eng 670 540 670 DE-600 540 DE-600 630 VZ Zhang, Rui verfasserin aut Iron fluoride microspheres by titanium dioxide surface modification as high capacity cathode of Li-ion batteries 2017transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The spherical FeF3·0.33H2O cathode material is successfully modified with a TiO2 coating via a simple solvothermal method. The effects of nanosized TiO2 coating on the morphology structure, and electrochemical performance of spherical FeF3·0.33H2O cathode material are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and electrochemical test, respectively. The results demonstrate that FeF3·0.33H2O sample is spherical morphology with the average particle size of about 1.0 μm and good dispersity, as well as the nanosized TiO2 layer is uniformly coated on the surface of the FeF3·0.33H2O spheres. Besides, the nanosized TiO2-coated FeF3·0.33H2O sample exhibits a high initial discharge capacity of 654 mAh g−1 and the corresponding charge capacity of 522 mAh g−1 at 0.1 C between 1.5 V and 4.5 V. Especially, the nanosized TiO2-coated FeF3·0.33H2O sample still possesses good cycling stability of 264 mAh g−1 after 200 cycles at 0.2 C. Thus, the modification of spherical FeF3·0.33H2O with nanosized TiO2 layer will be a promising strategy for improving cycle life and structure stability, and promoting its wide application in high performance LIBs. The spherical FeF3·0.33H2O cathode material is successfully modified with a TiO2 coating via a simple solvothermal method. The effects of nanosized TiO2 coating on the morphology structure, and electrochemical performance of spherical FeF3·0.33H2O cathode material are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and electrochemical test, respectively. The results demonstrate that FeF3·0.33H2O sample is spherical morphology with the average particle size of about 1.0 μm and good dispersity, as well as the nanosized TiO2 layer is uniformly coated on the surface of the FeF3·0.33H2O spheres. Besides, the nanosized TiO2-coated FeF3·0.33H2O sample exhibits a high initial discharge capacity of 654 mAh g−1 and the corresponding charge capacity of 522 mAh g−1 at 0.1 C between 1.5 V and 4.5 V. Especially, the nanosized TiO2-coated FeF3·0.33H2O sample still possesses good cycling stability of 264 mAh g−1 after 200 cycles at 0.2 C. Thus, the modification of spherical FeF3·0.33H2O with nanosized TiO2 layer will be a promising strategy for improving cycle life and structure stability, and promoting its wide application in high performance LIBs. Cycling stability Elsevier Spherical FeF3·0.33H2O particles Elsevier Modification of nanosized TiO2- coating Elsevier Li-ion batteries Elsevier Wang, Xianyou oth Wei, Shuangying oth Wang, Xuan oth Liu, Min oth Hu, Hai oth Enthalten in Elsevier Jacobs, Jacquelyn A. ELSEVIER Factors associated with canine resource guarding behaviour in the presence of people: A cross-sectional survey of dog owners 2017 JAL : an interdisciplinary journal of materials science and solid-state chemistry and physics Lausanne (DE-627)ELV001115774 volume:719 year:2017 day:30 month:09 pages:331-340 extent:10 https://doi.org/10.1016/j.jallcom.2017.05.185 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA AR 719 2017 30 0930 331-340 10 045F 670 |
allfieldsSound |
10.1016/j.jallcom.2017.05.185 doi GBV00000000000097A.pica (DE-627)ELV015300765 (ELSEVIER)S0925-8388(17)31802-9 DE-627 ger DE-627 rakwb eng 670 540 670 DE-600 540 DE-600 630 VZ Zhang, Rui verfasserin aut Iron fluoride microspheres by titanium dioxide surface modification as high capacity cathode of Li-ion batteries 2017transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The spherical FeF3·0.33H2O cathode material is successfully modified with a TiO2 coating via a simple solvothermal method. The effects of nanosized TiO2 coating on the morphology structure, and electrochemical performance of spherical FeF3·0.33H2O cathode material are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and electrochemical test, respectively. The results demonstrate that FeF3·0.33H2O sample is spherical morphology with the average particle size of about 1.0 μm and good dispersity, as well as the nanosized TiO2 layer is uniformly coated on the surface of the FeF3·0.33H2O spheres. Besides, the nanosized TiO2-coated FeF3·0.33H2O sample exhibits a high initial discharge capacity of 654 mAh g−1 and the corresponding charge capacity of 522 mAh g−1 at 0.1 C between 1.5 V and 4.5 V. Especially, the nanosized TiO2-coated FeF3·0.33H2O sample still possesses good cycling stability of 264 mAh g−1 after 200 cycles at 0.2 C. Thus, the modification of spherical FeF3·0.33H2O with nanosized TiO2 layer will be a promising strategy for improving cycle life and structure stability, and promoting its wide application in high performance LIBs. The spherical FeF3·0.33H2O cathode material is successfully modified with a TiO2 coating via a simple solvothermal method. The effects of nanosized TiO2 coating on the morphology structure, and electrochemical performance of spherical FeF3·0.33H2O cathode material are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and electrochemical test, respectively. The results demonstrate that FeF3·0.33H2O sample is spherical morphology with the average particle size of about 1.0 μm and good dispersity, as well as the nanosized TiO2 layer is uniformly coated on the surface of the FeF3·0.33H2O spheres. Besides, the nanosized TiO2-coated FeF3·0.33H2O sample exhibits a high initial discharge capacity of 654 mAh g−1 and the corresponding charge capacity of 522 mAh g−1 at 0.1 C between 1.5 V and 4.5 V. Especially, the nanosized TiO2-coated FeF3·0.33H2O sample still possesses good cycling stability of 264 mAh g−1 after 200 cycles at 0.2 C. Thus, the modification of spherical FeF3·0.33H2O with nanosized TiO2 layer will be a promising strategy for improving cycle life and structure stability, and promoting its wide application in high performance LIBs. Cycling stability Elsevier Spherical FeF3·0.33H2O particles Elsevier Modification of nanosized TiO2- coating Elsevier Li-ion batteries Elsevier Wang, Xianyou oth Wei, Shuangying oth Wang, Xuan oth Liu, Min oth Hu, Hai oth Enthalten in Elsevier Jacobs, Jacquelyn A. ELSEVIER Factors associated with canine resource guarding behaviour in the presence of people: A cross-sectional survey of dog owners 2017 JAL : an interdisciplinary journal of materials science and solid-state chemistry and physics Lausanne (DE-627)ELV001115774 volume:719 year:2017 day:30 month:09 pages:331-340 extent:10 https://doi.org/10.1016/j.jallcom.2017.05.185 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA AR 719 2017 30 0930 331-340 10 045F 670 |
language |
English |
source |
Enthalten in Factors associated with canine resource guarding behaviour in the presence of people: A cross-sectional survey of dog owners Lausanne volume:719 year:2017 day:30 month:09 pages:331-340 extent:10 |
sourceStr |
Enthalten in Factors associated with canine resource guarding behaviour in the presence of people: A cross-sectional survey of dog owners Lausanne volume:719 year:2017 day:30 month:09 pages:331-340 extent:10 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Cycling stability Spherical FeF3·0.33H2O particles Modification of nanosized TiO2- coating Li-ion batteries |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Factors associated with canine resource guarding behaviour in the presence of people: A cross-sectional survey of dog owners |
authorswithroles_txt_mv |
Zhang, Rui @@aut@@ Wang, Xianyou @@oth@@ Wei, Shuangying @@oth@@ Wang, Xuan @@oth@@ Liu, Min @@oth@@ Hu, Hai @@oth@@ |
publishDateDaySort_date |
2017-01-30T00:00:00Z |
hierarchy_top_id |
ELV001115774 |
dewey-sort |
3670 |
id |
ELV015300765 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV015300765</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625114946.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jallcom.2017.05.185</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000097A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV015300765</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0925-8388(17)31802-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">670</subfield><subfield code="a">540</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Rui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Iron fluoride microspheres by titanium dioxide surface modification as high capacity cathode of Li-ion batteries</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The spherical FeF3·0.33H2O cathode material is successfully modified with a TiO2 coating via a simple solvothermal method. The effects of nanosized TiO2 coating on the morphology structure, and electrochemical performance of spherical FeF3·0.33H2O cathode material are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and electrochemical test, respectively. The results demonstrate that FeF3·0.33H2O sample is spherical morphology with the average particle size of about 1.0 μm and good dispersity, as well as the nanosized TiO2 layer is uniformly coated on the surface of the FeF3·0.33H2O spheres. Besides, the nanosized TiO2-coated FeF3·0.33H2O sample exhibits a high initial discharge capacity of 654 mAh g−1 and the corresponding charge capacity of 522 mAh g−1 at 0.1 C between 1.5 V and 4.5 V. Especially, the nanosized TiO2-coated FeF3·0.33H2O sample still possesses good cycling stability of 264 mAh g−1 after 200 cycles at 0.2 C. Thus, the modification of spherical FeF3·0.33H2O with nanosized TiO2 layer will be a promising strategy for improving cycle life and structure stability, and promoting its wide application in high performance LIBs.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The spherical FeF3·0.33H2O cathode material is successfully modified with a TiO2 coating via a simple solvothermal method. The effects of nanosized TiO2 coating on the morphology structure, and electrochemical performance of spherical FeF3·0.33H2O cathode material are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and electrochemical test, respectively. The results demonstrate that FeF3·0.33H2O sample is spherical morphology with the average particle size of about 1.0 μm and good dispersity, as well as the nanosized TiO2 layer is uniformly coated on the surface of the FeF3·0.33H2O spheres. Besides, the nanosized TiO2-coated FeF3·0.33H2O sample exhibits a high initial discharge capacity of 654 mAh g−1 and the corresponding charge capacity of 522 mAh g−1 at 0.1 C between 1.5 V and 4.5 V. Especially, the nanosized TiO2-coated FeF3·0.33H2O sample still possesses good cycling stability of 264 mAh g−1 after 200 cycles at 0.2 C. Thus, the modification of spherical FeF3·0.33H2O with nanosized TiO2 layer will be a promising strategy for improving cycle life and structure stability, and promoting its wide application in high performance LIBs.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cycling stability</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Spherical FeF3·0.33H2O particles</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Modification of nanosized TiO2- coating</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Li-ion batteries</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Xianyou</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wei, Shuangying</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Xuan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Min</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Hai</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Jacobs, Jacquelyn A. ELSEVIER</subfield><subfield code="t">Factors associated with canine resource guarding behaviour in the presence of people: A cross-sectional survey of dog owners</subfield><subfield code="d">2017</subfield><subfield code="d">JAL : an interdisciplinary journal of materials science and solid-state chemistry and physics</subfield><subfield code="g">Lausanne</subfield><subfield code="w">(DE-627)ELV001115774</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:719</subfield><subfield code="g">year:2017</subfield><subfield code="g">day:30</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:331-340</subfield><subfield code="g">extent:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jallcom.2017.05.185</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">719</subfield><subfield code="j">2017</subfield><subfield code="b">30</subfield><subfield code="c">0930</subfield><subfield code="h">331-340</subfield><subfield code="g">10</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">670</subfield></datafield></record></collection>
|
author |
Zhang, Rui |
spellingShingle |
Zhang, Rui ddc 670 ddc 540 ddc 630 Elsevier Cycling stability Elsevier Spherical FeF3·0.33H2O particles Elsevier Modification of nanosized TiO2- coating Elsevier Li-ion batteries Iron fluoride microspheres by titanium dioxide surface modification as high capacity cathode of Li-ion batteries |
authorStr |
Zhang, Rui |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV001115774 |
format |
electronic Article |
dewey-ones |
670 - Manufacturing 540 - Chemistry & allied sciences 630 - Agriculture & related technologies |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
670 540 670 DE-600 540 DE-600 630 VZ Iron fluoride microspheres by titanium dioxide surface modification as high capacity cathode of Li-ion batteries Cycling stability Elsevier Spherical FeF3·0.33H2O particles Elsevier Modification of nanosized TiO2- coating Elsevier Li-ion batteries Elsevier |
topic |
ddc 670 ddc 540 ddc 630 Elsevier Cycling stability Elsevier Spherical FeF3·0.33H2O particles Elsevier Modification of nanosized TiO2- coating Elsevier Li-ion batteries |
topic_unstemmed |
ddc 670 ddc 540 ddc 630 Elsevier Cycling stability Elsevier Spherical FeF3·0.33H2O particles Elsevier Modification of nanosized TiO2- coating Elsevier Li-ion batteries |
topic_browse |
ddc 670 ddc 540 ddc 630 Elsevier Cycling stability Elsevier Spherical FeF3·0.33H2O particles Elsevier Modification of nanosized TiO2- coating Elsevier Li-ion batteries |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
x w xw s w sw x w xw m l ml h h hh |
hierarchy_parent_title |
Factors associated with canine resource guarding behaviour in the presence of people: A cross-sectional survey of dog owners |
hierarchy_parent_id |
ELV001115774 |
dewey-tens |
670 - Manufacturing 540 - Chemistry 630 - Agriculture |
hierarchy_top_title |
Factors associated with canine resource guarding behaviour in the presence of people: A cross-sectional survey of dog owners |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV001115774 |
title |
Iron fluoride microspheres by titanium dioxide surface modification as high capacity cathode of Li-ion batteries |
ctrlnum |
(DE-627)ELV015300765 (ELSEVIER)S0925-8388(17)31802-9 |
title_full |
Iron fluoride microspheres by titanium dioxide surface modification as high capacity cathode of Li-ion batteries |
author_sort |
Zhang, Rui |
journal |
Factors associated with canine resource guarding behaviour in the presence of people: A cross-sectional survey of dog owners |
journalStr |
Factors associated with canine resource guarding behaviour in the presence of people: A cross-sectional survey of dog owners |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
zzz |
container_start_page |
331 |
author_browse |
Zhang, Rui |
container_volume |
719 |
physical |
10 |
class |
670 540 670 DE-600 540 DE-600 630 VZ |
format_se |
Elektronische Aufsätze |
author-letter |
Zhang, Rui |
doi_str_mv |
10.1016/j.jallcom.2017.05.185 |
dewey-full |
670 540 630 |
title_sort |
iron fluoride microspheres by titanium dioxide surface modification as high capacity cathode of li-ion batteries |
title_auth |
Iron fluoride microspheres by titanium dioxide surface modification as high capacity cathode of Li-ion batteries |
abstract |
The spherical FeF3·0.33H2O cathode material is successfully modified with a TiO2 coating via a simple solvothermal method. The effects of nanosized TiO2 coating on the morphology structure, and electrochemical performance of spherical FeF3·0.33H2O cathode material are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and electrochemical test, respectively. The results demonstrate that FeF3·0.33H2O sample is spherical morphology with the average particle size of about 1.0 μm and good dispersity, as well as the nanosized TiO2 layer is uniformly coated on the surface of the FeF3·0.33H2O spheres. Besides, the nanosized TiO2-coated FeF3·0.33H2O sample exhibits a high initial discharge capacity of 654 mAh g−1 and the corresponding charge capacity of 522 mAh g−1 at 0.1 C between 1.5 V and 4.5 V. Especially, the nanosized TiO2-coated FeF3·0.33H2O sample still possesses good cycling stability of 264 mAh g−1 after 200 cycles at 0.2 C. Thus, the modification of spherical FeF3·0.33H2O with nanosized TiO2 layer will be a promising strategy for improving cycle life and structure stability, and promoting its wide application in high performance LIBs. |
abstractGer |
The spherical FeF3·0.33H2O cathode material is successfully modified with a TiO2 coating via a simple solvothermal method. The effects of nanosized TiO2 coating on the morphology structure, and electrochemical performance of spherical FeF3·0.33H2O cathode material are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and electrochemical test, respectively. The results demonstrate that FeF3·0.33H2O sample is spherical morphology with the average particle size of about 1.0 μm and good dispersity, as well as the nanosized TiO2 layer is uniformly coated on the surface of the FeF3·0.33H2O spheres. Besides, the nanosized TiO2-coated FeF3·0.33H2O sample exhibits a high initial discharge capacity of 654 mAh g−1 and the corresponding charge capacity of 522 mAh g−1 at 0.1 C between 1.5 V and 4.5 V. Especially, the nanosized TiO2-coated FeF3·0.33H2O sample still possesses good cycling stability of 264 mAh g−1 after 200 cycles at 0.2 C. Thus, the modification of spherical FeF3·0.33H2O with nanosized TiO2 layer will be a promising strategy for improving cycle life and structure stability, and promoting its wide application in high performance LIBs. |
abstract_unstemmed |
The spherical FeF3·0.33H2O cathode material is successfully modified with a TiO2 coating via a simple solvothermal method. The effects of nanosized TiO2 coating on the morphology structure, and electrochemical performance of spherical FeF3·0.33H2O cathode material are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and electrochemical test, respectively. The results demonstrate that FeF3·0.33H2O sample is spherical morphology with the average particle size of about 1.0 μm and good dispersity, as well as the nanosized TiO2 layer is uniformly coated on the surface of the FeF3·0.33H2O spheres. Besides, the nanosized TiO2-coated FeF3·0.33H2O sample exhibits a high initial discharge capacity of 654 mAh g−1 and the corresponding charge capacity of 522 mAh g−1 at 0.1 C between 1.5 V and 4.5 V. Especially, the nanosized TiO2-coated FeF3·0.33H2O sample still possesses good cycling stability of 264 mAh g−1 after 200 cycles at 0.2 C. Thus, the modification of spherical FeF3·0.33H2O with nanosized TiO2 layer will be a promising strategy for improving cycle life and structure stability, and promoting its wide application in high performance LIBs. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
title_short |
Iron fluoride microspheres by titanium dioxide surface modification as high capacity cathode of Li-ion batteries |
url |
https://doi.org/10.1016/j.jallcom.2017.05.185 |
remote_bool |
true |
author2 |
Wang, Xianyou Wei, Shuangying Wang, Xuan Liu, Min Hu, Hai |
author2Str |
Wang, Xianyou Wei, Shuangying Wang, Xuan Liu, Min Hu, Hai |
ppnlink |
ELV001115774 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth |
doi_str |
10.1016/j.jallcom.2017.05.185 |
up_date |
2024-07-06T17:20:33.201Z |
_version_ |
1803851066983317504 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV015300765</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625114946.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jallcom.2017.05.185</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000097A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV015300765</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0925-8388(17)31802-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">670</subfield><subfield code="a">540</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Rui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Iron fluoride microspheres by titanium dioxide surface modification as high capacity cathode of Li-ion batteries</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The spherical FeF3·0.33H2O cathode material is successfully modified with a TiO2 coating via a simple solvothermal method. The effects of nanosized TiO2 coating on the morphology structure, and electrochemical performance of spherical FeF3·0.33H2O cathode material are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and electrochemical test, respectively. The results demonstrate that FeF3·0.33H2O sample is spherical morphology with the average particle size of about 1.0 μm and good dispersity, as well as the nanosized TiO2 layer is uniformly coated on the surface of the FeF3·0.33H2O spheres. Besides, the nanosized TiO2-coated FeF3·0.33H2O sample exhibits a high initial discharge capacity of 654 mAh g−1 and the corresponding charge capacity of 522 mAh g−1 at 0.1 C between 1.5 V and 4.5 V. Especially, the nanosized TiO2-coated FeF3·0.33H2O sample still possesses good cycling stability of 264 mAh g−1 after 200 cycles at 0.2 C. Thus, the modification of spherical FeF3·0.33H2O with nanosized TiO2 layer will be a promising strategy for improving cycle life and structure stability, and promoting its wide application in high performance LIBs.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The spherical FeF3·0.33H2O cathode material is successfully modified with a TiO2 coating via a simple solvothermal method. The effects of nanosized TiO2 coating on the morphology structure, and electrochemical performance of spherical FeF3·0.33H2O cathode material are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and electrochemical test, respectively. The results demonstrate that FeF3·0.33H2O sample is spherical morphology with the average particle size of about 1.0 μm and good dispersity, as well as the nanosized TiO2 layer is uniformly coated on the surface of the FeF3·0.33H2O spheres. Besides, the nanosized TiO2-coated FeF3·0.33H2O sample exhibits a high initial discharge capacity of 654 mAh g−1 and the corresponding charge capacity of 522 mAh g−1 at 0.1 C between 1.5 V and 4.5 V. Especially, the nanosized TiO2-coated FeF3·0.33H2O sample still possesses good cycling stability of 264 mAh g−1 after 200 cycles at 0.2 C. Thus, the modification of spherical FeF3·0.33H2O with nanosized TiO2 layer will be a promising strategy for improving cycle life and structure stability, and promoting its wide application in high performance LIBs.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cycling stability</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Spherical FeF3·0.33H2O particles</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Modification of nanosized TiO2- coating</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Li-ion batteries</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Xianyou</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wei, Shuangying</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Xuan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Min</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Hai</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Jacobs, Jacquelyn A. ELSEVIER</subfield><subfield code="t">Factors associated with canine resource guarding behaviour in the presence of people: A cross-sectional survey of dog owners</subfield><subfield code="d">2017</subfield><subfield code="d">JAL : an interdisciplinary journal of materials science and solid-state chemistry and physics</subfield><subfield code="g">Lausanne</subfield><subfield code="w">(DE-627)ELV001115774</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:719</subfield><subfield code="g">year:2017</subfield><subfield code="g">day:30</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:331-340</subfield><subfield code="g">extent:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jallcom.2017.05.185</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">719</subfield><subfield code="j">2017</subfield><subfield code="b">30</subfield><subfield code="c">0930</subfield><subfield code="h">331-340</subfield><subfield code="g">10</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">670</subfield></datafield></record></collection>
|
score |
7.4013834 |