A numerical and experimental investigation of heat transfer and fluid flow characteristics of a cross-connected alternating converging–diverging channel heat sink
• Repetitive thermal boundary layer disruption improves heat transfer performance. • A better fluid mixing enables a more uniform temperature build-up of the coolant. • The flow circulation regions could reduce the advection heat transfer efficiency. • The vortices absorb the kinetic energy of th...
Ausführliche Beschreibung
Autor*in: |
Kanargi, Omer Bugra [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Umfang: |
16 |
---|
Übergeordnetes Werk: |
Enthalten in: Analytical and computational investigation on host-guest interaction of cyclohexyl based thiosemicarbazones: Construction of molecular logic gates using multi-ion detection - Basheer, Sabeel M. ELSEVIER, 2019, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:106 ; year:2017 ; pages:449-464 ; extent:16 |
Links: |
---|
DOI / URN: |
10.1016/j.ijheatmasstransfer.2016.08.057 |
---|
Katalog-ID: |
ELV015459578 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV015459578 | ||
003 | DE-627 | ||
005 | 20230623122554.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180602s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ijheatmasstransfer.2016.08.057 |2 doi | |
028 | 5 | 2 | |a GBV00000000000120A.pica |
035 | |a (DE-627)ELV015459578 | ||
035 | |a (ELSEVIER)S0017-9310(16)30940-1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 620 | |
082 | 0 | 4 | |a 620 |q DE-600 |
082 | 0 | 4 | |a 600 |q VZ |
084 | |a 51.79 |2 bkl | ||
084 | |a 51.45 |2 bkl | ||
100 | 1 | |a Kanargi, Omer Bugra |e verfasserin |4 aut | |
245 | 1 | 0 | |a A numerical and experimental investigation of heat transfer and fluid flow characteristics of a cross-connected alternating converging–diverging channel heat sink |
264 | 1 | |c 2017 | |
300 | |a 16 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a • Repetitive thermal boundary layer disruption improves heat transfer performance. • A better fluid mixing enables a more uniform temperature build-up of the coolant. • The flow circulation regions could reduce the advection heat transfer efficiency. • The vortices absorb the kinetic energy of the flow to sustain their angular momentum. • Carefully tailored fin designs can provide reduced heat sink temperatures. | ||
650 | 7 | |a Air cooling |2 Elsevier | |
650 | 7 | |a Advection |2 Elsevier | |
650 | 7 | |a Pressure drop |2 Elsevier | |
650 | 7 | |a Fan power |2 Elsevier | |
650 | 7 | |a Secondary flow |2 Elsevier | |
650 | 7 | |a Heat transfer |2 Elsevier | |
700 | 1 | |a Lee, Poh Seng |4 oth | |
700 | 1 | |a Yap, Christopher |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Basheer, Sabeel M. ELSEVIER |t Analytical and computational investigation on host-guest interaction of cyclohexyl based thiosemicarbazones: Construction of molecular logic gates using multi-ion detection |d 2019 |g Amsterdam [u.a.] |w (DE-627)ELV002904500 |
773 | 1 | 8 | |g volume:106 |g year:2017 |g pages:449-464 |g extent:16 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.057 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 51.79 |j Sonstige Werkstoffe |q VZ |
936 | b | k | |a 51.45 |j Werkstoffe mit besonderen Eigenschaften |q VZ |
951 | |a AR | ||
952 | |d 106 |j 2017 |h 449-464 |g 16 | ||
953 | |2 045F |a 620 |
author_variant |
o b k ob obk |
---|---|
matchkey_str |
kanargiomerbugraleepohsengyapchristopher:2017----:nmrclneprmnaivsiainfetrnfrnfudlwhrceitcoarscnetdlent |
hierarchy_sort_str |
2017 |
bklnumber |
51.79 51.45 |
publishDate |
2017 |
allfields |
10.1016/j.ijheatmasstransfer.2016.08.057 doi GBV00000000000120A.pica (DE-627)ELV015459578 (ELSEVIER)S0017-9310(16)30940-1 DE-627 ger DE-627 rakwb eng 620 620 DE-600 600 VZ 51.79 bkl 51.45 bkl Kanargi, Omer Bugra verfasserin aut A numerical and experimental investigation of heat transfer and fluid flow characteristics of a cross-connected alternating converging–diverging channel heat sink 2017 16 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Repetitive thermal boundary layer disruption improves heat transfer performance. • A better fluid mixing enables a more uniform temperature build-up of the coolant. • The flow circulation regions could reduce the advection heat transfer efficiency. • The vortices absorb the kinetic energy of the flow to sustain their angular momentum. • Carefully tailored fin designs can provide reduced heat sink temperatures. Air cooling Elsevier Advection Elsevier Pressure drop Elsevier Fan power Elsevier Secondary flow Elsevier Heat transfer Elsevier Lee, Poh Seng oth Yap, Christopher oth Enthalten in Elsevier Basheer, Sabeel M. ELSEVIER Analytical and computational investigation on host-guest interaction of cyclohexyl based thiosemicarbazones: Construction of molecular logic gates using multi-ion detection 2019 Amsterdam [u.a.] (DE-627)ELV002904500 volume:106 year:2017 pages:449-464 extent:16 https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.057 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 51.79 Sonstige Werkstoffe VZ 51.45 Werkstoffe mit besonderen Eigenschaften VZ AR 106 2017 449-464 16 045F 620 |
spelling |
10.1016/j.ijheatmasstransfer.2016.08.057 doi GBV00000000000120A.pica (DE-627)ELV015459578 (ELSEVIER)S0017-9310(16)30940-1 DE-627 ger DE-627 rakwb eng 620 620 DE-600 600 VZ 51.79 bkl 51.45 bkl Kanargi, Omer Bugra verfasserin aut A numerical and experimental investigation of heat transfer and fluid flow characteristics of a cross-connected alternating converging–diverging channel heat sink 2017 16 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Repetitive thermal boundary layer disruption improves heat transfer performance. • A better fluid mixing enables a more uniform temperature build-up of the coolant. • The flow circulation regions could reduce the advection heat transfer efficiency. • The vortices absorb the kinetic energy of the flow to sustain their angular momentum. • Carefully tailored fin designs can provide reduced heat sink temperatures. Air cooling Elsevier Advection Elsevier Pressure drop Elsevier Fan power Elsevier Secondary flow Elsevier Heat transfer Elsevier Lee, Poh Seng oth Yap, Christopher oth Enthalten in Elsevier Basheer, Sabeel M. ELSEVIER Analytical and computational investigation on host-guest interaction of cyclohexyl based thiosemicarbazones: Construction of molecular logic gates using multi-ion detection 2019 Amsterdam [u.a.] (DE-627)ELV002904500 volume:106 year:2017 pages:449-464 extent:16 https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.057 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 51.79 Sonstige Werkstoffe VZ 51.45 Werkstoffe mit besonderen Eigenschaften VZ AR 106 2017 449-464 16 045F 620 |
allfields_unstemmed |
10.1016/j.ijheatmasstransfer.2016.08.057 doi GBV00000000000120A.pica (DE-627)ELV015459578 (ELSEVIER)S0017-9310(16)30940-1 DE-627 ger DE-627 rakwb eng 620 620 DE-600 600 VZ 51.79 bkl 51.45 bkl Kanargi, Omer Bugra verfasserin aut A numerical and experimental investigation of heat transfer and fluid flow characteristics of a cross-connected alternating converging–diverging channel heat sink 2017 16 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Repetitive thermal boundary layer disruption improves heat transfer performance. • A better fluid mixing enables a more uniform temperature build-up of the coolant. • The flow circulation regions could reduce the advection heat transfer efficiency. • The vortices absorb the kinetic energy of the flow to sustain their angular momentum. • Carefully tailored fin designs can provide reduced heat sink temperatures. Air cooling Elsevier Advection Elsevier Pressure drop Elsevier Fan power Elsevier Secondary flow Elsevier Heat transfer Elsevier Lee, Poh Seng oth Yap, Christopher oth Enthalten in Elsevier Basheer, Sabeel M. ELSEVIER Analytical and computational investigation on host-guest interaction of cyclohexyl based thiosemicarbazones: Construction of molecular logic gates using multi-ion detection 2019 Amsterdam [u.a.] (DE-627)ELV002904500 volume:106 year:2017 pages:449-464 extent:16 https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.057 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 51.79 Sonstige Werkstoffe VZ 51.45 Werkstoffe mit besonderen Eigenschaften VZ AR 106 2017 449-464 16 045F 620 |
allfieldsGer |
10.1016/j.ijheatmasstransfer.2016.08.057 doi GBV00000000000120A.pica (DE-627)ELV015459578 (ELSEVIER)S0017-9310(16)30940-1 DE-627 ger DE-627 rakwb eng 620 620 DE-600 600 VZ 51.79 bkl 51.45 bkl Kanargi, Omer Bugra verfasserin aut A numerical and experimental investigation of heat transfer and fluid flow characteristics of a cross-connected alternating converging–diverging channel heat sink 2017 16 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Repetitive thermal boundary layer disruption improves heat transfer performance. • A better fluid mixing enables a more uniform temperature build-up of the coolant. • The flow circulation regions could reduce the advection heat transfer efficiency. • The vortices absorb the kinetic energy of the flow to sustain their angular momentum. • Carefully tailored fin designs can provide reduced heat sink temperatures. Air cooling Elsevier Advection Elsevier Pressure drop Elsevier Fan power Elsevier Secondary flow Elsevier Heat transfer Elsevier Lee, Poh Seng oth Yap, Christopher oth Enthalten in Elsevier Basheer, Sabeel M. ELSEVIER Analytical and computational investigation on host-guest interaction of cyclohexyl based thiosemicarbazones: Construction of molecular logic gates using multi-ion detection 2019 Amsterdam [u.a.] (DE-627)ELV002904500 volume:106 year:2017 pages:449-464 extent:16 https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.057 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 51.79 Sonstige Werkstoffe VZ 51.45 Werkstoffe mit besonderen Eigenschaften VZ AR 106 2017 449-464 16 045F 620 |
allfieldsSound |
10.1016/j.ijheatmasstransfer.2016.08.057 doi GBV00000000000120A.pica (DE-627)ELV015459578 (ELSEVIER)S0017-9310(16)30940-1 DE-627 ger DE-627 rakwb eng 620 620 DE-600 600 VZ 51.79 bkl 51.45 bkl Kanargi, Omer Bugra verfasserin aut A numerical and experimental investigation of heat transfer and fluid flow characteristics of a cross-connected alternating converging–diverging channel heat sink 2017 16 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Repetitive thermal boundary layer disruption improves heat transfer performance. • A better fluid mixing enables a more uniform temperature build-up of the coolant. • The flow circulation regions could reduce the advection heat transfer efficiency. • The vortices absorb the kinetic energy of the flow to sustain their angular momentum. • Carefully tailored fin designs can provide reduced heat sink temperatures. Air cooling Elsevier Advection Elsevier Pressure drop Elsevier Fan power Elsevier Secondary flow Elsevier Heat transfer Elsevier Lee, Poh Seng oth Yap, Christopher oth Enthalten in Elsevier Basheer, Sabeel M. ELSEVIER Analytical and computational investigation on host-guest interaction of cyclohexyl based thiosemicarbazones: Construction of molecular logic gates using multi-ion detection 2019 Amsterdam [u.a.] (DE-627)ELV002904500 volume:106 year:2017 pages:449-464 extent:16 https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.057 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 51.79 Sonstige Werkstoffe VZ 51.45 Werkstoffe mit besonderen Eigenschaften VZ AR 106 2017 449-464 16 045F 620 |
language |
English |
source |
Enthalten in Analytical and computational investigation on host-guest interaction of cyclohexyl based thiosemicarbazones: Construction of molecular logic gates using multi-ion detection Amsterdam [u.a.] volume:106 year:2017 pages:449-464 extent:16 |
sourceStr |
Enthalten in Analytical and computational investigation on host-guest interaction of cyclohexyl based thiosemicarbazones: Construction of molecular logic gates using multi-ion detection Amsterdam [u.a.] volume:106 year:2017 pages:449-464 extent:16 |
format_phy_str_mv |
Article |
bklname |
Sonstige Werkstoffe Werkstoffe mit besonderen Eigenschaften |
institution |
findex.gbv.de |
topic_facet |
Air cooling Advection Pressure drop Fan power Secondary flow Heat transfer |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Analytical and computational investigation on host-guest interaction of cyclohexyl based thiosemicarbazones: Construction of molecular logic gates using multi-ion detection |
authorswithroles_txt_mv |
Kanargi, Omer Bugra @@aut@@ Lee, Poh Seng @@oth@@ Yap, Christopher @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
ELV002904500 |
dewey-sort |
3620 |
id |
ELV015459578 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV015459578</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230623122554.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijheatmasstransfer.2016.08.057</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000120A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV015459578</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0017-9310(16)30940-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.79</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.45</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kanargi, Omer Bugra</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A numerical and experimental investigation of heat transfer and fluid flow characteristics of a cross-connected alternating converging–diverging channel heat sink</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">16</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• Repetitive thermal boundary layer disruption improves heat transfer performance. • A better fluid mixing enables a more uniform temperature build-up of the coolant. • The flow circulation regions could reduce the advection heat transfer efficiency. • The vortices absorb the kinetic energy of the flow to sustain their angular momentum. • Carefully tailored fin designs can provide reduced heat sink temperatures.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Air cooling</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Advection</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Pressure drop</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fan power</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Secondary flow</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Heat transfer</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lee, Poh Seng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yap, Christopher</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Basheer, Sabeel M. ELSEVIER</subfield><subfield code="t">Analytical and computational investigation on host-guest interaction of cyclohexyl based thiosemicarbazones: Construction of molecular logic gates using multi-ion detection</subfield><subfield code="d">2019</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV002904500</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:106</subfield><subfield code="g">year:2017</subfield><subfield code="g">pages:449-464</subfield><subfield code="g">extent:16</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.057</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.79</subfield><subfield code="j">Sonstige Werkstoffe</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.45</subfield><subfield code="j">Werkstoffe mit besonderen Eigenschaften</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">106</subfield><subfield code="j">2017</subfield><subfield code="h">449-464</subfield><subfield code="g">16</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">620</subfield></datafield></record></collection>
|
author |
Kanargi, Omer Bugra |
spellingShingle |
Kanargi, Omer Bugra ddc 620 ddc 600 bkl 51.79 bkl 51.45 Elsevier Air cooling Elsevier Advection Elsevier Pressure drop Elsevier Fan power Elsevier Secondary flow Elsevier Heat transfer A numerical and experimental investigation of heat transfer and fluid flow characteristics of a cross-connected alternating converging–diverging channel heat sink |
authorStr |
Kanargi, Omer Bugra |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV002904500 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations 600 - Technology |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
620 620 DE-600 600 VZ 51.79 bkl 51.45 bkl A numerical and experimental investigation of heat transfer and fluid flow characteristics of a cross-connected alternating converging–diverging channel heat sink Air cooling Elsevier Advection Elsevier Pressure drop Elsevier Fan power Elsevier Secondary flow Elsevier Heat transfer Elsevier |
topic |
ddc 620 ddc 600 bkl 51.79 bkl 51.45 Elsevier Air cooling Elsevier Advection Elsevier Pressure drop Elsevier Fan power Elsevier Secondary flow Elsevier Heat transfer |
topic_unstemmed |
ddc 620 ddc 600 bkl 51.79 bkl 51.45 Elsevier Air cooling Elsevier Advection Elsevier Pressure drop Elsevier Fan power Elsevier Secondary flow Elsevier Heat transfer |
topic_browse |
ddc 620 ddc 600 bkl 51.79 bkl 51.45 Elsevier Air cooling Elsevier Advection Elsevier Pressure drop Elsevier Fan power Elsevier Secondary flow Elsevier Heat transfer |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
p s l ps psl c y cy |
hierarchy_parent_title |
Analytical and computational investigation on host-guest interaction of cyclohexyl based thiosemicarbazones: Construction of molecular logic gates using multi-ion detection |
hierarchy_parent_id |
ELV002904500 |
dewey-tens |
620 - Engineering 600 - Technology |
hierarchy_top_title |
Analytical and computational investigation on host-guest interaction of cyclohexyl based thiosemicarbazones: Construction of molecular logic gates using multi-ion detection |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV002904500 |
title |
A numerical and experimental investigation of heat transfer and fluid flow characteristics of a cross-connected alternating converging–diverging channel heat sink |
ctrlnum |
(DE-627)ELV015459578 (ELSEVIER)S0017-9310(16)30940-1 |
title_full |
A numerical and experimental investigation of heat transfer and fluid flow characteristics of a cross-connected alternating converging–diverging channel heat sink |
author_sort |
Kanargi, Omer Bugra |
journal |
Analytical and computational investigation on host-guest interaction of cyclohexyl based thiosemicarbazones: Construction of molecular logic gates using multi-ion detection |
journalStr |
Analytical and computational investigation on host-guest interaction of cyclohexyl based thiosemicarbazones: Construction of molecular logic gates using multi-ion detection |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
zzz |
container_start_page |
449 |
author_browse |
Kanargi, Omer Bugra |
container_volume |
106 |
physical |
16 |
class |
620 620 DE-600 600 VZ 51.79 bkl 51.45 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Kanargi, Omer Bugra |
doi_str_mv |
10.1016/j.ijheatmasstransfer.2016.08.057 |
dewey-full |
620 600 |
title_sort |
a numerical and experimental investigation of heat transfer and fluid flow characteristics of a cross-connected alternating converging–diverging channel heat sink |
title_auth |
A numerical and experimental investigation of heat transfer and fluid flow characteristics of a cross-connected alternating converging–diverging channel heat sink |
abstract |
• Repetitive thermal boundary layer disruption improves heat transfer performance. • A better fluid mixing enables a more uniform temperature build-up of the coolant. • The flow circulation regions could reduce the advection heat transfer efficiency. • The vortices absorb the kinetic energy of the flow to sustain their angular momentum. • Carefully tailored fin designs can provide reduced heat sink temperatures. |
abstractGer |
• Repetitive thermal boundary layer disruption improves heat transfer performance. • A better fluid mixing enables a more uniform temperature build-up of the coolant. • The flow circulation regions could reduce the advection heat transfer efficiency. • The vortices absorb the kinetic energy of the flow to sustain their angular momentum. • Carefully tailored fin designs can provide reduced heat sink temperatures. |
abstract_unstemmed |
• Repetitive thermal boundary layer disruption improves heat transfer performance. • A better fluid mixing enables a more uniform temperature build-up of the coolant. • The flow circulation regions could reduce the advection heat transfer efficiency. • The vortices absorb the kinetic energy of the flow to sustain their angular momentum. • Carefully tailored fin designs can provide reduced heat sink temperatures. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
A numerical and experimental investigation of heat transfer and fluid flow characteristics of a cross-connected alternating converging–diverging channel heat sink |
url |
https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.057 |
remote_bool |
true |
author2 |
Lee, Poh Seng Yap, Christopher |
author2Str |
Lee, Poh Seng Yap, Christopher |
ppnlink |
ELV002904500 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1016/j.ijheatmasstransfer.2016.08.057 |
up_date |
2024-07-06T17:45:18.864Z |
_version_ |
1803852624811786240 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV015459578</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230623122554.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijheatmasstransfer.2016.08.057</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000120A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV015459578</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0017-9310(16)30940-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.79</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.45</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kanargi, Omer Bugra</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A numerical and experimental investigation of heat transfer and fluid flow characteristics of a cross-connected alternating converging–diverging channel heat sink</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">16</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• Repetitive thermal boundary layer disruption improves heat transfer performance. • A better fluid mixing enables a more uniform temperature build-up of the coolant. • The flow circulation regions could reduce the advection heat transfer efficiency. • The vortices absorb the kinetic energy of the flow to sustain their angular momentum. • Carefully tailored fin designs can provide reduced heat sink temperatures.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Air cooling</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Advection</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Pressure drop</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fan power</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Secondary flow</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Heat transfer</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lee, Poh Seng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yap, Christopher</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Basheer, Sabeel M. ELSEVIER</subfield><subfield code="t">Analytical and computational investigation on host-guest interaction of cyclohexyl based thiosemicarbazones: Construction of molecular logic gates using multi-ion detection</subfield><subfield code="d">2019</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV002904500</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:106</subfield><subfield code="g">year:2017</subfield><subfield code="g">pages:449-464</subfield><subfield code="g">extent:16</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.057</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.79</subfield><subfield code="j">Sonstige Werkstoffe</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.45</subfield><subfield code="j">Werkstoffe mit besonderen Eigenschaften</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">106</subfield><subfield code="j">2017</subfield><subfield code="h">449-464</subfield><subfield code="g">16</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">620</subfield></datafield></record></collection>
|
score |
7.401758 |