Model for solid oxide fuel cell cathodes prepared by infiltration
A 1-dimensional model of a cathode has been developed in order to understand and predict the performance of cathodes prepared by infiltration of La0.6Sr0.4Co1.05O3-δ (LSC) into porous backbones of Ce0.9Gd0.1O1.95 (CGO). The model accounts for the mixed ionic and electronic conductivity of LSC, ionic...
Ausführliche Beschreibung
Autor*in: |
Samson, Alfred Junio [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
23 |
---|
Übergeordnetes Werk: |
Enthalten in: Computed tomographic morphometric analysis of lateral inclination C1 pedicle screw for atlantoaxial instability patients with a narrow C1 posterior arch - Zhang, Lei ELSEVIER, 2018, the journal of the International Society of Electrochemistry (ISE), New York, NY [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:229 ; year:2017 ; day:1 ; month:03 ; pages:73-95 ; extent:23 |
Links: |
---|
DOI / URN: |
10.1016/j.electacta.2017.01.088 |
---|
Katalog-ID: |
ELV015466604 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV015466604 | ||
003 | DE-627 | ||
005 | 20230625115214.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180602s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.electacta.2017.01.088 |2 doi | |
028 | 5 | 2 | |a GBV00000000000102A.pica |
035 | |a (DE-627)ELV015466604 | ||
035 | |a (ELSEVIER)S0013-4686(17)30088-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 540 | |
082 | 0 | 4 | |a 540 |q DE-600 |
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.00 |2 bkl | ||
100 | 1 | |a Samson, Alfred Junio |e verfasserin |4 aut | |
245 | 1 | 0 | |a Model for solid oxide fuel cell cathodes prepared by infiltration |
264 | 1 | |c 2017transfer abstract | |
300 | |a 23 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a A 1-dimensional model of a cathode has been developed in order to understand and predict the performance of cathodes prepared by infiltration of La0.6Sr0.4Co1.05O3-δ (LSC) into porous backbones of Ce0.9Gd0.1O1.95 (CGO). The model accounts for the mixed ionic and electronic conductivity of LSC, ionic conductivity of CGO, gas transport in the porous cathode, and the oxygen reduction reaction at the surface of percolated LSC. Geometrical variations are applied to reflect a changing microstructure of LSC under varying firing temperatures. Using microstructural parameters obtained from detailed scanning electron microscopy and simulations of the measured polarization resistances, an expression for the area specific resistance (r p) associated with the oxygen exchange on the surface of the infiltrated LSC particles was extracted and compared with literature values. A series of microstructural parameter variations are presented and discussed with the aim of presenting specific guidelines for optimizing the microstructure of cathodes prepared by infiltration. | ||
520 | |a A 1-dimensional model of a cathode has been developed in order to understand and predict the performance of cathodes prepared by infiltration of La0.6Sr0.4Co1.05O3-δ (LSC) into porous backbones of Ce0.9Gd0.1O1.95 (CGO). The model accounts for the mixed ionic and electronic conductivity of LSC, ionic conductivity of CGO, gas transport in the porous cathode, and the oxygen reduction reaction at the surface of percolated LSC. Geometrical variations are applied to reflect a changing microstructure of LSC under varying firing temperatures. Using microstructural parameters obtained from detailed scanning electron microscopy and simulations of the measured polarization resistances, an expression for the area specific resistance (r p) associated with the oxygen exchange on the surface of the infiltrated LSC particles was extracted and compared with literature values. A series of microstructural parameter variations are presented and discussed with the aim of presenting specific guidelines for optimizing the microstructure of cathodes prepared by infiltration. | ||
650 | 7 | |a modeling |2 Elsevier | |
650 | 7 | |a nanoparticles |2 Elsevier | |
650 | 7 | |a SOFC cathode |2 Elsevier | |
650 | 7 | |a mixed ionic and electronic conductor |2 Elsevier | |
650 | 7 | |a infiltration |2 Elsevier | |
700 | 1 | |a Søgaard, Martin |4 oth | |
700 | 1 | |a Hendriksen, Peter Vang |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Zhang, Lei ELSEVIER |t Computed tomographic morphometric analysis of lateral inclination C1 pedicle screw for atlantoaxial instability patients with a narrow C1 posterior arch |d 2018 |d the journal of the International Society of Electrochemistry (ISE) |g New York, NY [u.a.] |w (DE-627)ELV001212419 |
773 | 1 | 8 | |g volume:229 |g year:2017 |g day:1 |g month:03 |g pages:73-95 |g extent:23 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.electacta.2017.01.088 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 44.00 |j Medizin: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 229 |j 2017 |b 1 |c 0301 |h 73-95 |g 23 | ||
953 | |2 045F |a 540 |
author_variant |
a j s aj ajs |
---|---|
matchkey_str |
samsonalfredjuniosgaardmartinhendriksenp:2017----:oefroioieulelahdsrprd |
hierarchy_sort_str |
2017transfer abstract |
bklnumber |
44.00 |
publishDate |
2017 |
allfields |
10.1016/j.electacta.2017.01.088 doi GBV00000000000102A.pica (DE-627)ELV015466604 (ELSEVIER)S0013-4686(17)30088-9 DE-627 ger DE-627 rakwb eng 540 540 DE-600 610 VZ 44.00 bkl Samson, Alfred Junio verfasserin aut Model for solid oxide fuel cell cathodes prepared by infiltration 2017transfer abstract 23 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier A 1-dimensional model of a cathode has been developed in order to understand and predict the performance of cathodes prepared by infiltration of La0.6Sr0.4Co1.05O3-δ (LSC) into porous backbones of Ce0.9Gd0.1O1.95 (CGO). The model accounts for the mixed ionic and electronic conductivity of LSC, ionic conductivity of CGO, gas transport in the porous cathode, and the oxygen reduction reaction at the surface of percolated LSC. Geometrical variations are applied to reflect a changing microstructure of LSC under varying firing temperatures. Using microstructural parameters obtained from detailed scanning electron microscopy and simulations of the measured polarization resistances, an expression for the area specific resistance (r p) associated with the oxygen exchange on the surface of the infiltrated LSC particles was extracted and compared with literature values. A series of microstructural parameter variations are presented and discussed with the aim of presenting specific guidelines for optimizing the microstructure of cathodes prepared by infiltration. A 1-dimensional model of a cathode has been developed in order to understand and predict the performance of cathodes prepared by infiltration of La0.6Sr0.4Co1.05O3-δ (LSC) into porous backbones of Ce0.9Gd0.1O1.95 (CGO). The model accounts for the mixed ionic and electronic conductivity of LSC, ionic conductivity of CGO, gas transport in the porous cathode, and the oxygen reduction reaction at the surface of percolated LSC. Geometrical variations are applied to reflect a changing microstructure of LSC under varying firing temperatures. Using microstructural parameters obtained from detailed scanning electron microscopy and simulations of the measured polarization resistances, an expression for the area specific resistance (r p) associated with the oxygen exchange on the surface of the infiltrated LSC particles was extracted and compared with literature values. A series of microstructural parameter variations are presented and discussed with the aim of presenting specific guidelines for optimizing the microstructure of cathodes prepared by infiltration. modeling Elsevier nanoparticles Elsevier SOFC cathode Elsevier mixed ionic and electronic conductor Elsevier infiltration Elsevier Søgaard, Martin oth Hendriksen, Peter Vang oth Enthalten in Elsevier Zhang, Lei ELSEVIER Computed tomographic morphometric analysis of lateral inclination C1 pedicle screw for atlantoaxial instability patients with a narrow C1 posterior arch 2018 the journal of the International Society of Electrochemistry (ISE) New York, NY [u.a.] (DE-627)ELV001212419 volume:229 year:2017 day:1 month:03 pages:73-95 extent:23 https://doi.org/10.1016/j.electacta.2017.01.088 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.00 Medizin: Allgemeines VZ AR 229 2017 1 0301 73-95 23 045F 540 |
spelling |
10.1016/j.electacta.2017.01.088 doi GBV00000000000102A.pica (DE-627)ELV015466604 (ELSEVIER)S0013-4686(17)30088-9 DE-627 ger DE-627 rakwb eng 540 540 DE-600 610 VZ 44.00 bkl Samson, Alfred Junio verfasserin aut Model for solid oxide fuel cell cathodes prepared by infiltration 2017transfer abstract 23 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier A 1-dimensional model of a cathode has been developed in order to understand and predict the performance of cathodes prepared by infiltration of La0.6Sr0.4Co1.05O3-δ (LSC) into porous backbones of Ce0.9Gd0.1O1.95 (CGO). The model accounts for the mixed ionic and electronic conductivity of LSC, ionic conductivity of CGO, gas transport in the porous cathode, and the oxygen reduction reaction at the surface of percolated LSC. Geometrical variations are applied to reflect a changing microstructure of LSC under varying firing temperatures. Using microstructural parameters obtained from detailed scanning electron microscopy and simulations of the measured polarization resistances, an expression for the area specific resistance (r p) associated with the oxygen exchange on the surface of the infiltrated LSC particles was extracted and compared with literature values. A series of microstructural parameter variations are presented and discussed with the aim of presenting specific guidelines for optimizing the microstructure of cathodes prepared by infiltration. A 1-dimensional model of a cathode has been developed in order to understand and predict the performance of cathodes prepared by infiltration of La0.6Sr0.4Co1.05O3-δ (LSC) into porous backbones of Ce0.9Gd0.1O1.95 (CGO). The model accounts for the mixed ionic and electronic conductivity of LSC, ionic conductivity of CGO, gas transport in the porous cathode, and the oxygen reduction reaction at the surface of percolated LSC. Geometrical variations are applied to reflect a changing microstructure of LSC under varying firing temperatures. Using microstructural parameters obtained from detailed scanning electron microscopy and simulations of the measured polarization resistances, an expression for the area specific resistance (r p) associated with the oxygen exchange on the surface of the infiltrated LSC particles was extracted and compared with literature values. A series of microstructural parameter variations are presented and discussed with the aim of presenting specific guidelines for optimizing the microstructure of cathodes prepared by infiltration. modeling Elsevier nanoparticles Elsevier SOFC cathode Elsevier mixed ionic and electronic conductor Elsevier infiltration Elsevier Søgaard, Martin oth Hendriksen, Peter Vang oth Enthalten in Elsevier Zhang, Lei ELSEVIER Computed tomographic morphometric analysis of lateral inclination C1 pedicle screw for atlantoaxial instability patients with a narrow C1 posterior arch 2018 the journal of the International Society of Electrochemistry (ISE) New York, NY [u.a.] (DE-627)ELV001212419 volume:229 year:2017 day:1 month:03 pages:73-95 extent:23 https://doi.org/10.1016/j.electacta.2017.01.088 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.00 Medizin: Allgemeines VZ AR 229 2017 1 0301 73-95 23 045F 540 |
allfields_unstemmed |
10.1016/j.electacta.2017.01.088 doi GBV00000000000102A.pica (DE-627)ELV015466604 (ELSEVIER)S0013-4686(17)30088-9 DE-627 ger DE-627 rakwb eng 540 540 DE-600 610 VZ 44.00 bkl Samson, Alfred Junio verfasserin aut Model for solid oxide fuel cell cathodes prepared by infiltration 2017transfer abstract 23 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier A 1-dimensional model of a cathode has been developed in order to understand and predict the performance of cathodes prepared by infiltration of La0.6Sr0.4Co1.05O3-δ (LSC) into porous backbones of Ce0.9Gd0.1O1.95 (CGO). The model accounts for the mixed ionic and electronic conductivity of LSC, ionic conductivity of CGO, gas transport in the porous cathode, and the oxygen reduction reaction at the surface of percolated LSC. Geometrical variations are applied to reflect a changing microstructure of LSC under varying firing temperatures. Using microstructural parameters obtained from detailed scanning electron microscopy and simulations of the measured polarization resistances, an expression for the area specific resistance (r p) associated with the oxygen exchange on the surface of the infiltrated LSC particles was extracted and compared with literature values. A series of microstructural parameter variations are presented and discussed with the aim of presenting specific guidelines for optimizing the microstructure of cathodes prepared by infiltration. A 1-dimensional model of a cathode has been developed in order to understand and predict the performance of cathodes prepared by infiltration of La0.6Sr0.4Co1.05O3-δ (LSC) into porous backbones of Ce0.9Gd0.1O1.95 (CGO). The model accounts for the mixed ionic and electronic conductivity of LSC, ionic conductivity of CGO, gas transport in the porous cathode, and the oxygen reduction reaction at the surface of percolated LSC. Geometrical variations are applied to reflect a changing microstructure of LSC under varying firing temperatures. Using microstructural parameters obtained from detailed scanning electron microscopy and simulations of the measured polarization resistances, an expression for the area specific resistance (r p) associated with the oxygen exchange on the surface of the infiltrated LSC particles was extracted and compared with literature values. A series of microstructural parameter variations are presented and discussed with the aim of presenting specific guidelines for optimizing the microstructure of cathodes prepared by infiltration. modeling Elsevier nanoparticles Elsevier SOFC cathode Elsevier mixed ionic and electronic conductor Elsevier infiltration Elsevier Søgaard, Martin oth Hendriksen, Peter Vang oth Enthalten in Elsevier Zhang, Lei ELSEVIER Computed tomographic morphometric analysis of lateral inclination C1 pedicle screw for atlantoaxial instability patients with a narrow C1 posterior arch 2018 the journal of the International Society of Electrochemistry (ISE) New York, NY [u.a.] (DE-627)ELV001212419 volume:229 year:2017 day:1 month:03 pages:73-95 extent:23 https://doi.org/10.1016/j.electacta.2017.01.088 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.00 Medizin: Allgemeines VZ AR 229 2017 1 0301 73-95 23 045F 540 |
allfieldsGer |
10.1016/j.electacta.2017.01.088 doi GBV00000000000102A.pica (DE-627)ELV015466604 (ELSEVIER)S0013-4686(17)30088-9 DE-627 ger DE-627 rakwb eng 540 540 DE-600 610 VZ 44.00 bkl Samson, Alfred Junio verfasserin aut Model for solid oxide fuel cell cathodes prepared by infiltration 2017transfer abstract 23 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier A 1-dimensional model of a cathode has been developed in order to understand and predict the performance of cathodes prepared by infiltration of La0.6Sr0.4Co1.05O3-δ (LSC) into porous backbones of Ce0.9Gd0.1O1.95 (CGO). The model accounts for the mixed ionic and electronic conductivity of LSC, ionic conductivity of CGO, gas transport in the porous cathode, and the oxygen reduction reaction at the surface of percolated LSC. Geometrical variations are applied to reflect a changing microstructure of LSC under varying firing temperatures. Using microstructural parameters obtained from detailed scanning electron microscopy and simulations of the measured polarization resistances, an expression for the area specific resistance (r p) associated with the oxygen exchange on the surface of the infiltrated LSC particles was extracted and compared with literature values. A series of microstructural parameter variations are presented and discussed with the aim of presenting specific guidelines for optimizing the microstructure of cathodes prepared by infiltration. A 1-dimensional model of a cathode has been developed in order to understand and predict the performance of cathodes prepared by infiltration of La0.6Sr0.4Co1.05O3-δ (LSC) into porous backbones of Ce0.9Gd0.1O1.95 (CGO). The model accounts for the mixed ionic and electronic conductivity of LSC, ionic conductivity of CGO, gas transport in the porous cathode, and the oxygen reduction reaction at the surface of percolated LSC. Geometrical variations are applied to reflect a changing microstructure of LSC under varying firing temperatures. Using microstructural parameters obtained from detailed scanning electron microscopy and simulations of the measured polarization resistances, an expression for the area specific resistance (r p) associated with the oxygen exchange on the surface of the infiltrated LSC particles was extracted and compared with literature values. A series of microstructural parameter variations are presented and discussed with the aim of presenting specific guidelines for optimizing the microstructure of cathodes prepared by infiltration. modeling Elsevier nanoparticles Elsevier SOFC cathode Elsevier mixed ionic and electronic conductor Elsevier infiltration Elsevier Søgaard, Martin oth Hendriksen, Peter Vang oth Enthalten in Elsevier Zhang, Lei ELSEVIER Computed tomographic morphometric analysis of lateral inclination C1 pedicle screw for atlantoaxial instability patients with a narrow C1 posterior arch 2018 the journal of the International Society of Electrochemistry (ISE) New York, NY [u.a.] (DE-627)ELV001212419 volume:229 year:2017 day:1 month:03 pages:73-95 extent:23 https://doi.org/10.1016/j.electacta.2017.01.088 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.00 Medizin: Allgemeines VZ AR 229 2017 1 0301 73-95 23 045F 540 |
allfieldsSound |
10.1016/j.electacta.2017.01.088 doi GBV00000000000102A.pica (DE-627)ELV015466604 (ELSEVIER)S0013-4686(17)30088-9 DE-627 ger DE-627 rakwb eng 540 540 DE-600 610 VZ 44.00 bkl Samson, Alfred Junio verfasserin aut Model for solid oxide fuel cell cathodes prepared by infiltration 2017transfer abstract 23 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier A 1-dimensional model of a cathode has been developed in order to understand and predict the performance of cathodes prepared by infiltration of La0.6Sr0.4Co1.05O3-δ (LSC) into porous backbones of Ce0.9Gd0.1O1.95 (CGO). The model accounts for the mixed ionic and electronic conductivity of LSC, ionic conductivity of CGO, gas transport in the porous cathode, and the oxygen reduction reaction at the surface of percolated LSC. Geometrical variations are applied to reflect a changing microstructure of LSC under varying firing temperatures. Using microstructural parameters obtained from detailed scanning electron microscopy and simulations of the measured polarization resistances, an expression for the area specific resistance (r p) associated with the oxygen exchange on the surface of the infiltrated LSC particles was extracted and compared with literature values. A series of microstructural parameter variations are presented and discussed with the aim of presenting specific guidelines for optimizing the microstructure of cathodes prepared by infiltration. A 1-dimensional model of a cathode has been developed in order to understand and predict the performance of cathodes prepared by infiltration of La0.6Sr0.4Co1.05O3-δ (LSC) into porous backbones of Ce0.9Gd0.1O1.95 (CGO). The model accounts for the mixed ionic and electronic conductivity of LSC, ionic conductivity of CGO, gas transport in the porous cathode, and the oxygen reduction reaction at the surface of percolated LSC. Geometrical variations are applied to reflect a changing microstructure of LSC under varying firing temperatures. Using microstructural parameters obtained from detailed scanning electron microscopy and simulations of the measured polarization resistances, an expression for the area specific resistance (r p) associated with the oxygen exchange on the surface of the infiltrated LSC particles was extracted and compared with literature values. A series of microstructural parameter variations are presented and discussed with the aim of presenting specific guidelines for optimizing the microstructure of cathodes prepared by infiltration. modeling Elsevier nanoparticles Elsevier SOFC cathode Elsevier mixed ionic and electronic conductor Elsevier infiltration Elsevier Søgaard, Martin oth Hendriksen, Peter Vang oth Enthalten in Elsevier Zhang, Lei ELSEVIER Computed tomographic morphometric analysis of lateral inclination C1 pedicle screw for atlantoaxial instability patients with a narrow C1 posterior arch 2018 the journal of the International Society of Electrochemistry (ISE) New York, NY [u.a.] (DE-627)ELV001212419 volume:229 year:2017 day:1 month:03 pages:73-95 extent:23 https://doi.org/10.1016/j.electacta.2017.01.088 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.00 Medizin: Allgemeines VZ AR 229 2017 1 0301 73-95 23 045F 540 |
language |
English |
source |
Enthalten in Computed tomographic morphometric analysis of lateral inclination C1 pedicle screw for atlantoaxial instability patients with a narrow C1 posterior arch New York, NY [u.a.] volume:229 year:2017 day:1 month:03 pages:73-95 extent:23 |
sourceStr |
Enthalten in Computed tomographic morphometric analysis of lateral inclination C1 pedicle screw for atlantoaxial instability patients with a narrow C1 posterior arch New York, NY [u.a.] volume:229 year:2017 day:1 month:03 pages:73-95 extent:23 |
format_phy_str_mv |
Article |
bklname |
Medizin: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
modeling nanoparticles SOFC cathode mixed ionic and electronic conductor infiltration |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
Computed tomographic morphometric analysis of lateral inclination C1 pedicle screw for atlantoaxial instability patients with a narrow C1 posterior arch |
authorswithroles_txt_mv |
Samson, Alfred Junio @@aut@@ Søgaard, Martin @@oth@@ Hendriksen, Peter Vang @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
ELV001212419 |
dewey-sort |
3540 |
id |
ELV015466604 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV015466604</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625115214.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.electacta.2017.01.088</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000102A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV015466604</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0013-4686(17)30088-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">540</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Samson, Alfred Junio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Model for solid oxide fuel cell cathodes prepared by infiltration</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">23</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A 1-dimensional model of a cathode has been developed in order to understand and predict the performance of cathodes prepared by infiltration of La0.6Sr0.4Co1.05O3-δ (LSC) into porous backbones of Ce0.9Gd0.1O1.95 (CGO). The model accounts for the mixed ionic and electronic conductivity of LSC, ionic conductivity of CGO, gas transport in the porous cathode, and the oxygen reduction reaction at the surface of percolated LSC. Geometrical variations are applied to reflect a changing microstructure of LSC under varying firing temperatures. Using microstructural parameters obtained from detailed scanning electron microscopy and simulations of the measured polarization resistances, an expression for the area specific resistance (r p) associated with the oxygen exchange on the surface of the infiltrated LSC particles was extracted and compared with literature values. A series of microstructural parameter variations are presented and discussed with the aim of presenting specific guidelines for optimizing the microstructure of cathodes prepared by infiltration.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A 1-dimensional model of a cathode has been developed in order to understand and predict the performance of cathodes prepared by infiltration of La0.6Sr0.4Co1.05O3-δ (LSC) into porous backbones of Ce0.9Gd0.1O1.95 (CGO). The model accounts for the mixed ionic and electronic conductivity of LSC, ionic conductivity of CGO, gas transport in the porous cathode, and the oxygen reduction reaction at the surface of percolated LSC. Geometrical variations are applied to reflect a changing microstructure of LSC under varying firing temperatures. Using microstructural parameters obtained from detailed scanning electron microscopy and simulations of the measured polarization resistances, an expression for the area specific resistance (r p) associated with the oxygen exchange on the surface of the infiltrated LSC particles was extracted and compared with literature values. A series of microstructural parameter variations are presented and discussed with the aim of presenting specific guidelines for optimizing the microstructure of cathodes prepared by infiltration.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">modeling</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">nanoparticles</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SOFC cathode</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">mixed ionic and electronic conductor</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">infiltration</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Søgaard, Martin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hendriksen, Peter Vang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Zhang, Lei ELSEVIER</subfield><subfield code="t">Computed tomographic morphometric analysis of lateral inclination C1 pedicle screw for atlantoaxial instability patients with a narrow C1 posterior arch</subfield><subfield code="d">2018</subfield><subfield code="d">the journal of the International Society of Electrochemistry (ISE)</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV001212419</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:229</subfield><subfield code="g">year:2017</subfield><subfield code="g">day:1</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:73-95</subfield><subfield code="g">extent:23</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.electacta.2017.01.088</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.00</subfield><subfield code="j">Medizin: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">229</subfield><subfield code="j">2017</subfield><subfield code="b">1</subfield><subfield code="c">0301</subfield><subfield code="h">73-95</subfield><subfield code="g">23</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">540</subfield></datafield></record></collection>
|
author |
Samson, Alfred Junio |
spellingShingle |
Samson, Alfred Junio ddc 540 ddc 610 bkl 44.00 Elsevier modeling Elsevier nanoparticles Elsevier SOFC cathode Elsevier mixed ionic and electronic conductor Elsevier infiltration Model for solid oxide fuel cell cathodes prepared by infiltration |
authorStr |
Samson, Alfred Junio |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV001212419 |
format |
electronic Article |
dewey-ones |
540 - Chemistry & allied sciences 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
540 540 DE-600 610 VZ 44.00 bkl Model for solid oxide fuel cell cathodes prepared by infiltration modeling Elsevier nanoparticles Elsevier SOFC cathode Elsevier mixed ionic and electronic conductor Elsevier infiltration Elsevier |
topic |
ddc 540 ddc 610 bkl 44.00 Elsevier modeling Elsevier nanoparticles Elsevier SOFC cathode Elsevier mixed ionic and electronic conductor Elsevier infiltration |
topic_unstemmed |
ddc 540 ddc 610 bkl 44.00 Elsevier modeling Elsevier nanoparticles Elsevier SOFC cathode Elsevier mixed ionic and electronic conductor Elsevier infiltration |
topic_browse |
ddc 540 ddc 610 bkl 44.00 Elsevier modeling Elsevier nanoparticles Elsevier SOFC cathode Elsevier mixed ionic and electronic conductor Elsevier infiltration |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
m s ms p v h pv pvh |
hierarchy_parent_title |
Computed tomographic morphometric analysis of lateral inclination C1 pedicle screw for atlantoaxial instability patients with a narrow C1 posterior arch |
hierarchy_parent_id |
ELV001212419 |
dewey-tens |
540 - Chemistry 610 - Medicine & health |
hierarchy_top_title |
Computed tomographic morphometric analysis of lateral inclination C1 pedicle screw for atlantoaxial instability patients with a narrow C1 posterior arch |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV001212419 |
title |
Model for solid oxide fuel cell cathodes prepared by infiltration |
ctrlnum |
(DE-627)ELV015466604 (ELSEVIER)S0013-4686(17)30088-9 |
title_full |
Model for solid oxide fuel cell cathodes prepared by infiltration |
author_sort |
Samson, Alfred Junio |
journal |
Computed tomographic morphometric analysis of lateral inclination C1 pedicle screw for atlantoaxial instability patients with a narrow C1 posterior arch |
journalStr |
Computed tomographic morphometric analysis of lateral inclination C1 pedicle screw for atlantoaxial instability patients with a narrow C1 posterior arch |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
zzz |
container_start_page |
73 |
author_browse |
Samson, Alfred Junio |
container_volume |
229 |
physical |
23 |
class |
540 540 DE-600 610 VZ 44.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Samson, Alfred Junio |
doi_str_mv |
10.1016/j.electacta.2017.01.088 |
dewey-full |
540 610 |
title_sort |
model for solid oxide fuel cell cathodes prepared by infiltration |
title_auth |
Model for solid oxide fuel cell cathodes prepared by infiltration |
abstract |
A 1-dimensional model of a cathode has been developed in order to understand and predict the performance of cathodes prepared by infiltration of La0.6Sr0.4Co1.05O3-δ (LSC) into porous backbones of Ce0.9Gd0.1O1.95 (CGO). The model accounts for the mixed ionic and electronic conductivity of LSC, ionic conductivity of CGO, gas transport in the porous cathode, and the oxygen reduction reaction at the surface of percolated LSC. Geometrical variations are applied to reflect a changing microstructure of LSC under varying firing temperatures. Using microstructural parameters obtained from detailed scanning electron microscopy and simulations of the measured polarization resistances, an expression for the area specific resistance (r p) associated with the oxygen exchange on the surface of the infiltrated LSC particles was extracted and compared with literature values. A series of microstructural parameter variations are presented and discussed with the aim of presenting specific guidelines for optimizing the microstructure of cathodes prepared by infiltration. |
abstractGer |
A 1-dimensional model of a cathode has been developed in order to understand and predict the performance of cathodes prepared by infiltration of La0.6Sr0.4Co1.05O3-δ (LSC) into porous backbones of Ce0.9Gd0.1O1.95 (CGO). The model accounts for the mixed ionic and electronic conductivity of LSC, ionic conductivity of CGO, gas transport in the porous cathode, and the oxygen reduction reaction at the surface of percolated LSC. Geometrical variations are applied to reflect a changing microstructure of LSC under varying firing temperatures. Using microstructural parameters obtained from detailed scanning electron microscopy and simulations of the measured polarization resistances, an expression for the area specific resistance (r p) associated with the oxygen exchange on the surface of the infiltrated LSC particles was extracted and compared with literature values. A series of microstructural parameter variations are presented and discussed with the aim of presenting specific guidelines for optimizing the microstructure of cathodes prepared by infiltration. |
abstract_unstemmed |
A 1-dimensional model of a cathode has been developed in order to understand and predict the performance of cathodes prepared by infiltration of La0.6Sr0.4Co1.05O3-δ (LSC) into porous backbones of Ce0.9Gd0.1O1.95 (CGO). The model accounts for the mixed ionic and electronic conductivity of LSC, ionic conductivity of CGO, gas transport in the porous cathode, and the oxygen reduction reaction at the surface of percolated LSC. Geometrical variations are applied to reflect a changing microstructure of LSC under varying firing temperatures. Using microstructural parameters obtained from detailed scanning electron microscopy and simulations of the measured polarization resistances, an expression for the area specific resistance (r p) associated with the oxygen exchange on the surface of the infiltrated LSC particles was extracted and compared with literature values. A series of microstructural parameter variations are presented and discussed with the aim of presenting specific guidelines for optimizing the microstructure of cathodes prepared by infiltration. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
title_short |
Model for solid oxide fuel cell cathodes prepared by infiltration |
url |
https://doi.org/10.1016/j.electacta.2017.01.088 |
remote_bool |
true |
author2 |
Søgaard, Martin Hendriksen, Peter Vang |
author2Str |
Søgaard, Martin Hendriksen, Peter Vang |
ppnlink |
ELV001212419 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1016/j.electacta.2017.01.088 |
up_date |
2024-07-06T17:46:26.090Z |
_version_ |
1803852695303356416 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV015466604</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625115214.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.electacta.2017.01.088</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000102A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV015466604</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0013-4686(17)30088-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">540</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Samson, Alfred Junio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Model for solid oxide fuel cell cathodes prepared by infiltration</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">23</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A 1-dimensional model of a cathode has been developed in order to understand and predict the performance of cathodes prepared by infiltration of La0.6Sr0.4Co1.05O3-δ (LSC) into porous backbones of Ce0.9Gd0.1O1.95 (CGO). The model accounts for the mixed ionic and electronic conductivity of LSC, ionic conductivity of CGO, gas transport in the porous cathode, and the oxygen reduction reaction at the surface of percolated LSC. Geometrical variations are applied to reflect a changing microstructure of LSC under varying firing temperatures. Using microstructural parameters obtained from detailed scanning electron microscopy and simulations of the measured polarization resistances, an expression for the area specific resistance (r p) associated with the oxygen exchange on the surface of the infiltrated LSC particles was extracted and compared with literature values. A series of microstructural parameter variations are presented and discussed with the aim of presenting specific guidelines for optimizing the microstructure of cathodes prepared by infiltration.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A 1-dimensional model of a cathode has been developed in order to understand and predict the performance of cathodes prepared by infiltration of La0.6Sr0.4Co1.05O3-δ (LSC) into porous backbones of Ce0.9Gd0.1O1.95 (CGO). The model accounts for the mixed ionic and electronic conductivity of LSC, ionic conductivity of CGO, gas transport in the porous cathode, and the oxygen reduction reaction at the surface of percolated LSC. Geometrical variations are applied to reflect a changing microstructure of LSC under varying firing temperatures. Using microstructural parameters obtained from detailed scanning electron microscopy and simulations of the measured polarization resistances, an expression for the area specific resistance (r p) associated with the oxygen exchange on the surface of the infiltrated LSC particles was extracted and compared with literature values. A series of microstructural parameter variations are presented and discussed with the aim of presenting specific guidelines for optimizing the microstructure of cathodes prepared by infiltration.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">modeling</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">nanoparticles</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SOFC cathode</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">mixed ionic and electronic conductor</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">infiltration</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Søgaard, Martin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hendriksen, Peter Vang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Zhang, Lei ELSEVIER</subfield><subfield code="t">Computed tomographic morphometric analysis of lateral inclination C1 pedicle screw for atlantoaxial instability patients with a narrow C1 posterior arch</subfield><subfield code="d">2018</subfield><subfield code="d">the journal of the International Society of Electrochemistry (ISE)</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV001212419</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:229</subfield><subfield code="g">year:2017</subfield><subfield code="g">day:1</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:73-95</subfield><subfield code="g">extent:23</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.electacta.2017.01.088</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.00</subfield><subfield code="j">Medizin: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">229</subfield><subfield code="j">2017</subfield><subfield code="b">1</subfield><subfield code="c">0301</subfield><subfield code="h">73-95</subfield><subfield code="g">23</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">540</subfield></datafield></record></collection>
|
score |
7.3993254 |