Measurements and empirical correlations in predicting biodiesel-diesel blends’ viscosity and density
• Density-biodiesel content variation is well correlated by linear model. • Exponential equation is the best model for density-temperature variation. • Rational model is the most proper one to predict viscosities of fuel blends. • Power model is the best one to characterize viscosity vs. temperature...
Ausführliche Beschreibung
Autor*in: |
Gülüm, Mert [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Umfang: |
11 |
---|
Übergeordnetes Werk: |
Enthalten in: Achieving highly tunable negative permittivity in titanium nitride/polyimide nanocomposites via controlled DC bias - Yang, Chaoqiang ELSEVIER, 2018, the science and technology of fuel and energy, New York, NY [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:199 ; year:2017 ; day:1 ; month:07 ; pages:567-577 ; extent:11 |
Links: |
---|
DOI / URN: |
10.1016/j.fuel.2017.03.001 |
---|
Katalog-ID: |
ELV015480879 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV015480879 | ||
003 | DE-627 | ||
005 | 20230623122641.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180602s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.fuel.2017.03.001 |2 doi | |
028 | 5 | 2 | |a GBV00000000000097A.pica |
035 | |a (DE-627)ELV015480879 | ||
035 | |a (ELSEVIER)S0016-2361(17)30258-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 660 | |
082 | 0 | 4 | |a 660 |q DE-600 |
082 | 0 | 4 | |a 530 |a 600 |a 670 |q VZ |
084 | |a 51.00 |2 bkl | ||
100 | 1 | |a Gülüm, Mert |e verfasserin |4 aut | |
245 | 1 | 0 | |a Measurements and empirical correlations in predicting biodiesel-diesel blends’ viscosity and density |
264 | 1 | |c 2017 | |
300 | |a 11 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a • Density-biodiesel content variation is well correlated by linear model. • Exponential equation is the best model for density-temperature variation. • Rational model is the most proper one to predict viscosities of fuel blends. • Power model is the best one to characterize viscosity vs. temperature variation. • Two-term power model better correlates density-viscosity variation. | ||
650 | 7 | |a Viscosity |2 Elsevier | |
650 | 7 | |a Two-term power model |2 Elsevier | |
650 | 7 | |a Rational model |2 Elsevier | |
650 | 7 | |a Biodiesel-diesel fuel blends |2 Elsevier | |
650 | 7 | |a Density |2 Elsevier | |
650 | 7 | |a Hazelnut oil biodiesel |2 Elsevier | |
700 | 1 | |a Bilgin, Atilla |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Yang, Chaoqiang ELSEVIER |t Achieving highly tunable negative permittivity in titanium nitride/polyimide nanocomposites via controlled DC bias |d 2018 |d the science and technology of fuel and energy |g New York, NY [u.a.] |w (DE-627)ELV000307122 |
773 | 1 | 8 | |g volume:199 |g year:2017 |g day:1 |g month:07 |g pages:567-577 |g extent:11 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.fuel.2017.03.001 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 51.00 |j Werkstoffkunde: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 199 |j 2017 |b 1 |c 0701 |h 567-577 |g 11 | ||
953 | |2 045F |a 660 |
author_variant |
m g mg |
---|---|
matchkey_str |
glmmertbilginatilla:2017----:esrmnsneprclorltosnrdcigideedeebe |
hierarchy_sort_str |
2017 |
bklnumber |
51.00 |
publishDate |
2017 |
allfields |
10.1016/j.fuel.2017.03.001 doi GBV00000000000097A.pica (DE-627)ELV015480879 (ELSEVIER)S0016-2361(17)30258-2 DE-627 ger DE-627 rakwb eng 660 660 DE-600 530 600 670 VZ 51.00 bkl Gülüm, Mert verfasserin aut Measurements and empirical correlations in predicting biodiesel-diesel blends’ viscosity and density 2017 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Density-biodiesel content variation is well correlated by linear model. • Exponential equation is the best model for density-temperature variation. • Rational model is the most proper one to predict viscosities of fuel blends. • Power model is the best one to characterize viscosity vs. temperature variation. • Two-term power model better correlates density-viscosity variation. Viscosity Elsevier Two-term power model Elsevier Rational model Elsevier Biodiesel-diesel fuel blends Elsevier Density Elsevier Hazelnut oil biodiesel Elsevier Bilgin, Atilla oth Enthalten in Elsevier Yang, Chaoqiang ELSEVIER Achieving highly tunable negative permittivity in titanium nitride/polyimide nanocomposites via controlled DC bias 2018 the science and technology of fuel and energy New York, NY [u.a.] (DE-627)ELV000307122 volume:199 year:2017 day:1 month:07 pages:567-577 extent:11 https://doi.org/10.1016/j.fuel.2017.03.001 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 51.00 Werkstoffkunde: Allgemeines VZ AR 199 2017 1 0701 567-577 11 045F 660 |
spelling |
10.1016/j.fuel.2017.03.001 doi GBV00000000000097A.pica (DE-627)ELV015480879 (ELSEVIER)S0016-2361(17)30258-2 DE-627 ger DE-627 rakwb eng 660 660 DE-600 530 600 670 VZ 51.00 bkl Gülüm, Mert verfasserin aut Measurements and empirical correlations in predicting biodiesel-diesel blends’ viscosity and density 2017 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Density-biodiesel content variation is well correlated by linear model. • Exponential equation is the best model for density-temperature variation. • Rational model is the most proper one to predict viscosities of fuel blends. • Power model is the best one to characterize viscosity vs. temperature variation. • Two-term power model better correlates density-viscosity variation. Viscosity Elsevier Two-term power model Elsevier Rational model Elsevier Biodiesel-diesel fuel blends Elsevier Density Elsevier Hazelnut oil biodiesel Elsevier Bilgin, Atilla oth Enthalten in Elsevier Yang, Chaoqiang ELSEVIER Achieving highly tunable negative permittivity in titanium nitride/polyimide nanocomposites via controlled DC bias 2018 the science and technology of fuel and energy New York, NY [u.a.] (DE-627)ELV000307122 volume:199 year:2017 day:1 month:07 pages:567-577 extent:11 https://doi.org/10.1016/j.fuel.2017.03.001 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 51.00 Werkstoffkunde: Allgemeines VZ AR 199 2017 1 0701 567-577 11 045F 660 |
allfields_unstemmed |
10.1016/j.fuel.2017.03.001 doi GBV00000000000097A.pica (DE-627)ELV015480879 (ELSEVIER)S0016-2361(17)30258-2 DE-627 ger DE-627 rakwb eng 660 660 DE-600 530 600 670 VZ 51.00 bkl Gülüm, Mert verfasserin aut Measurements and empirical correlations in predicting biodiesel-diesel blends’ viscosity and density 2017 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Density-biodiesel content variation is well correlated by linear model. • Exponential equation is the best model for density-temperature variation. • Rational model is the most proper one to predict viscosities of fuel blends. • Power model is the best one to characterize viscosity vs. temperature variation. • Two-term power model better correlates density-viscosity variation. Viscosity Elsevier Two-term power model Elsevier Rational model Elsevier Biodiesel-diesel fuel blends Elsevier Density Elsevier Hazelnut oil biodiesel Elsevier Bilgin, Atilla oth Enthalten in Elsevier Yang, Chaoqiang ELSEVIER Achieving highly tunable negative permittivity in titanium nitride/polyimide nanocomposites via controlled DC bias 2018 the science and technology of fuel and energy New York, NY [u.a.] (DE-627)ELV000307122 volume:199 year:2017 day:1 month:07 pages:567-577 extent:11 https://doi.org/10.1016/j.fuel.2017.03.001 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 51.00 Werkstoffkunde: Allgemeines VZ AR 199 2017 1 0701 567-577 11 045F 660 |
allfieldsGer |
10.1016/j.fuel.2017.03.001 doi GBV00000000000097A.pica (DE-627)ELV015480879 (ELSEVIER)S0016-2361(17)30258-2 DE-627 ger DE-627 rakwb eng 660 660 DE-600 530 600 670 VZ 51.00 bkl Gülüm, Mert verfasserin aut Measurements and empirical correlations in predicting biodiesel-diesel blends’ viscosity and density 2017 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Density-biodiesel content variation is well correlated by linear model. • Exponential equation is the best model for density-temperature variation. • Rational model is the most proper one to predict viscosities of fuel blends. • Power model is the best one to characterize viscosity vs. temperature variation. • Two-term power model better correlates density-viscosity variation. Viscosity Elsevier Two-term power model Elsevier Rational model Elsevier Biodiesel-diesel fuel blends Elsevier Density Elsevier Hazelnut oil biodiesel Elsevier Bilgin, Atilla oth Enthalten in Elsevier Yang, Chaoqiang ELSEVIER Achieving highly tunable negative permittivity in titanium nitride/polyimide nanocomposites via controlled DC bias 2018 the science and technology of fuel and energy New York, NY [u.a.] (DE-627)ELV000307122 volume:199 year:2017 day:1 month:07 pages:567-577 extent:11 https://doi.org/10.1016/j.fuel.2017.03.001 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 51.00 Werkstoffkunde: Allgemeines VZ AR 199 2017 1 0701 567-577 11 045F 660 |
allfieldsSound |
10.1016/j.fuel.2017.03.001 doi GBV00000000000097A.pica (DE-627)ELV015480879 (ELSEVIER)S0016-2361(17)30258-2 DE-627 ger DE-627 rakwb eng 660 660 DE-600 530 600 670 VZ 51.00 bkl Gülüm, Mert verfasserin aut Measurements and empirical correlations in predicting biodiesel-diesel blends’ viscosity and density 2017 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Density-biodiesel content variation is well correlated by linear model. • Exponential equation is the best model for density-temperature variation. • Rational model is the most proper one to predict viscosities of fuel blends. • Power model is the best one to characterize viscosity vs. temperature variation. • Two-term power model better correlates density-viscosity variation. Viscosity Elsevier Two-term power model Elsevier Rational model Elsevier Biodiesel-diesel fuel blends Elsevier Density Elsevier Hazelnut oil biodiesel Elsevier Bilgin, Atilla oth Enthalten in Elsevier Yang, Chaoqiang ELSEVIER Achieving highly tunable negative permittivity in titanium nitride/polyimide nanocomposites via controlled DC bias 2018 the science and technology of fuel and energy New York, NY [u.a.] (DE-627)ELV000307122 volume:199 year:2017 day:1 month:07 pages:567-577 extent:11 https://doi.org/10.1016/j.fuel.2017.03.001 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 51.00 Werkstoffkunde: Allgemeines VZ AR 199 2017 1 0701 567-577 11 045F 660 |
language |
English |
source |
Enthalten in Achieving highly tunable negative permittivity in titanium nitride/polyimide nanocomposites via controlled DC bias New York, NY [u.a.] volume:199 year:2017 day:1 month:07 pages:567-577 extent:11 |
sourceStr |
Enthalten in Achieving highly tunable negative permittivity in titanium nitride/polyimide nanocomposites via controlled DC bias New York, NY [u.a.] volume:199 year:2017 day:1 month:07 pages:567-577 extent:11 |
format_phy_str_mv |
Article |
bklname |
Werkstoffkunde: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Viscosity Two-term power model Rational model Biodiesel-diesel fuel blends Density Hazelnut oil biodiesel |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
Achieving highly tunable negative permittivity in titanium nitride/polyimide nanocomposites via controlled DC bias |
authorswithroles_txt_mv |
Gülüm, Mert @@aut@@ Bilgin, Atilla @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
ELV000307122 |
dewey-sort |
3660 |
id |
ELV015480879 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV015480879</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230623122641.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.fuel.2017.03.001</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000097A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV015480879</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0016-2361(17)30258-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">660</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">600</subfield><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gülüm, Mert</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Measurements and empirical correlations in predicting biodiesel-diesel blends’ viscosity and density</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">11</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• Density-biodiesel content variation is well correlated by linear model. • Exponential equation is the best model for density-temperature variation. • Rational model is the most proper one to predict viscosities of fuel blends. • Power model is the best one to characterize viscosity vs. temperature variation. • Two-term power model better correlates density-viscosity variation.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Viscosity</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Two-term power model</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Rational model</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Biodiesel-diesel fuel blends</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Density</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hazelnut oil biodiesel</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bilgin, Atilla</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Yang, Chaoqiang ELSEVIER</subfield><subfield code="t">Achieving highly tunable negative permittivity in titanium nitride/polyimide nanocomposites via controlled DC bias</subfield><subfield code="d">2018</subfield><subfield code="d">the science and technology of fuel and energy</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV000307122</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:199</subfield><subfield code="g">year:2017</subfield><subfield code="g">day:1</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:567-577</subfield><subfield code="g">extent:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.fuel.2017.03.001</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.00</subfield><subfield code="j">Werkstoffkunde: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">199</subfield><subfield code="j">2017</subfield><subfield code="b">1</subfield><subfield code="c">0701</subfield><subfield code="h">567-577</subfield><subfield code="g">11</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">660</subfield></datafield></record></collection>
|
author |
Gülüm, Mert |
spellingShingle |
Gülüm, Mert ddc 660 ddc 530 bkl 51.00 Elsevier Viscosity Elsevier Two-term power model Elsevier Rational model Elsevier Biodiesel-diesel fuel blends Elsevier Density Elsevier Hazelnut oil biodiesel Measurements and empirical correlations in predicting biodiesel-diesel blends’ viscosity and density |
authorStr |
Gülüm, Mert |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV000307122 |
format |
electronic Article |
dewey-ones |
660 - Chemical engineering 530 - Physics 600 - Technology 670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
660 660 DE-600 530 600 670 VZ 51.00 bkl Measurements and empirical correlations in predicting biodiesel-diesel blends’ viscosity and density Viscosity Elsevier Two-term power model Elsevier Rational model Elsevier Biodiesel-diesel fuel blends Elsevier Density Elsevier Hazelnut oil biodiesel Elsevier |
topic |
ddc 660 ddc 530 bkl 51.00 Elsevier Viscosity Elsevier Two-term power model Elsevier Rational model Elsevier Biodiesel-diesel fuel blends Elsevier Density Elsevier Hazelnut oil biodiesel |
topic_unstemmed |
ddc 660 ddc 530 bkl 51.00 Elsevier Viscosity Elsevier Two-term power model Elsevier Rational model Elsevier Biodiesel-diesel fuel blends Elsevier Density Elsevier Hazelnut oil biodiesel |
topic_browse |
ddc 660 ddc 530 bkl 51.00 Elsevier Viscosity Elsevier Two-term power model Elsevier Rational model Elsevier Biodiesel-diesel fuel blends Elsevier Density Elsevier Hazelnut oil biodiesel |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
a b ab |
hierarchy_parent_title |
Achieving highly tunable negative permittivity in titanium nitride/polyimide nanocomposites via controlled DC bias |
hierarchy_parent_id |
ELV000307122 |
dewey-tens |
660 - Chemical engineering 530 - Physics 600 - Technology 670 - Manufacturing |
hierarchy_top_title |
Achieving highly tunable negative permittivity in titanium nitride/polyimide nanocomposites via controlled DC bias |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV000307122 |
title |
Measurements and empirical correlations in predicting biodiesel-diesel blends’ viscosity and density |
ctrlnum |
(DE-627)ELV015480879 (ELSEVIER)S0016-2361(17)30258-2 |
title_full |
Measurements and empirical correlations in predicting biodiesel-diesel blends’ viscosity and density |
author_sort |
Gülüm, Mert |
journal |
Achieving highly tunable negative permittivity in titanium nitride/polyimide nanocomposites via controlled DC bias |
journalStr |
Achieving highly tunable negative permittivity in titanium nitride/polyimide nanocomposites via controlled DC bias |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
zzz |
container_start_page |
567 |
author_browse |
Gülüm, Mert |
container_volume |
199 |
physical |
11 |
class |
660 660 DE-600 530 600 670 VZ 51.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Gülüm, Mert |
doi_str_mv |
10.1016/j.fuel.2017.03.001 |
dewey-full |
660 530 600 670 |
title_sort |
measurements and empirical correlations in predicting biodiesel-diesel blends’ viscosity and density |
title_auth |
Measurements and empirical correlations in predicting biodiesel-diesel blends’ viscosity and density |
abstract |
• Density-biodiesel content variation is well correlated by linear model. • Exponential equation is the best model for density-temperature variation. • Rational model is the most proper one to predict viscosities of fuel blends. • Power model is the best one to characterize viscosity vs. temperature variation. • Two-term power model better correlates density-viscosity variation. |
abstractGer |
• Density-biodiesel content variation is well correlated by linear model. • Exponential equation is the best model for density-temperature variation. • Rational model is the most proper one to predict viscosities of fuel blends. • Power model is the best one to characterize viscosity vs. temperature variation. • Two-term power model better correlates density-viscosity variation. |
abstract_unstemmed |
• Density-biodiesel content variation is well correlated by linear model. • Exponential equation is the best model for density-temperature variation. • Rational model is the most proper one to predict viscosities of fuel blends. • Power model is the best one to characterize viscosity vs. temperature variation. • Two-term power model better correlates density-viscosity variation. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
Measurements and empirical correlations in predicting biodiesel-diesel blends’ viscosity and density |
url |
https://doi.org/10.1016/j.fuel.2017.03.001 |
remote_bool |
true |
author2 |
Bilgin, Atilla |
author2Str |
Bilgin, Atilla |
ppnlink |
ELV000307122 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1016/j.fuel.2017.03.001 |
up_date |
2024-07-06T17:48:39.148Z |
_version_ |
1803852834825830400 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV015480879</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230623122641.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.fuel.2017.03.001</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000097A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV015480879</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0016-2361(17)30258-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">660</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">600</subfield><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gülüm, Mert</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Measurements and empirical correlations in predicting biodiesel-diesel blends’ viscosity and density</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">11</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• Density-biodiesel content variation is well correlated by linear model. • Exponential equation is the best model for density-temperature variation. • Rational model is the most proper one to predict viscosities of fuel blends. • Power model is the best one to characterize viscosity vs. temperature variation. • Two-term power model better correlates density-viscosity variation.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Viscosity</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Two-term power model</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Rational model</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Biodiesel-diesel fuel blends</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Density</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hazelnut oil biodiesel</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bilgin, Atilla</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Yang, Chaoqiang ELSEVIER</subfield><subfield code="t">Achieving highly tunable negative permittivity in titanium nitride/polyimide nanocomposites via controlled DC bias</subfield><subfield code="d">2018</subfield><subfield code="d">the science and technology of fuel and energy</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV000307122</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:199</subfield><subfield code="g">year:2017</subfield><subfield code="g">day:1</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:567-577</subfield><subfield code="g">extent:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.fuel.2017.03.001</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.00</subfield><subfield code="j">Werkstoffkunde: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">199</subfield><subfield code="j">2017</subfield><subfield code="b">1</subfield><subfield code="c">0701</subfield><subfield code="h">567-577</subfield><subfield code="g">11</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">660</subfield></datafield></record></collection>
|
score |
7.401717 |