Sigmoid sinus cortical plate dehiscence induces pulsatile tinnitus through amplifying sigmoid sinus venous sound
Sigmoid sinus cortical plate dehiscence (SSCPD) is common in pulsatile tinnitus (PT) patients, and is treated through SSCPD resurfacing surgery in clinic, but the bio-mechanism is not clear as so far. This study aimed to clarify the bio-mechanism of PT sensation induced by SSCPD, and quantify the re...
Ausführliche Beschreibung
Autor*in: |
Tian, Shan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
6 |
---|
Übergeordnetes Werk: |
Enthalten in: Measuring students' school context exposures: A trajectory-based approach - Halpern-Manners, Andrew ELSEVIER, 2016, affiliated with the American Society of Biomechanics, the European Society of Biomechanics, the International Society of Biomechanics, the Japanese Society for Clinical Biomechanics and Related Research and the Australian and New Zealand Society of Biomechanics, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:52 ; year:2017 ; day:8 ; month:02 ; pages:68-73 ; extent:6 |
Links: |
---|
DOI / URN: |
10.1016/j.jbiomech.2016.12.012 |
---|
Katalog-ID: |
ELV015540561 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV015540561 | ||
003 | DE-627 | ||
005 | 20230625115246.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180602s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jbiomech.2016.12.012 |2 doi | |
028 | 5 | 2 | |a GBV00000000000058A.pica |
035 | |a (DE-627)ELV015540561 | ||
035 | |a (ELSEVIER)S0021-9290(16)31291-X | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 570 |a 796 | |
082 | 0 | 4 | |a 570 |q DE-600 |
082 | 0 | 4 | |a 796 |q DE-600 |
082 | 0 | 4 | |a 300 |q VZ |
084 | |a 70.00 |2 bkl | ||
084 | |a 71.00 |2 bkl | ||
100 | 1 | |a Tian, Shan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Sigmoid sinus cortical plate dehiscence induces pulsatile tinnitus through amplifying sigmoid sinus venous sound |
264 | 1 | |c 2017transfer abstract | |
300 | |a 6 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Sigmoid sinus cortical plate dehiscence (SSCPD) is common in pulsatile tinnitus (PT) patients, and is treated through SSCPD resurfacing surgery in clinic, but the bio-mechanism is not clear as so far. This study aimed to clarify the bio-mechanism of PT sensation induced by SSCPD, and quantify the relationship of cortical plate (CP) thickness and PT sensation intensity. It was hypothesized that SSCPD would induce PT through significantly amplifying sigmoid sinus (SS) venous sound in this study. Finite element (FE) analysis based on radiology data of typical patient was used to verify this hypothesis, and was validated with clinical reports. In cases with different CP thickness, FE simulations of SS venous sound generation and propagation procedure were performed, involving SS venous flow field, vibration response of tissue overlying dehiscence area (including SS vessel wall and CP) and sound propagation in temporal bone air cells. It was shown in results that SS venous sound at tympanic membrane was 56.9dB in SSCPD case and −45.2dB in intact CP case, and was inaudible in all thin CP cases. It was concluded that SSCPD would directly induce PT through significantly amplifying SS venous sound, and thin CP would not be the only pathophysiology of PT. This conclusion would provide a theoretical basis for the design of SSCPD resurfacing surgery for PT patients with SSCPD or thin CP. | ||
520 | |a Sigmoid sinus cortical plate dehiscence (SSCPD) is common in pulsatile tinnitus (PT) patients, and is treated through SSCPD resurfacing surgery in clinic, but the bio-mechanism is not clear as so far. This study aimed to clarify the bio-mechanism of PT sensation induced by SSCPD, and quantify the relationship of cortical plate (CP) thickness and PT sensation intensity. It was hypothesized that SSCPD would induce PT through significantly amplifying sigmoid sinus (SS) venous sound in this study. Finite element (FE) analysis based on radiology data of typical patient was used to verify this hypothesis, and was validated with clinical reports. In cases with different CP thickness, FE simulations of SS venous sound generation and propagation procedure were performed, involving SS venous flow field, vibration response of tissue overlying dehiscence area (including SS vessel wall and CP) and sound propagation in temporal bone air cells. It was shown in results that SS venous sound at tympanic membrane was 56.9dB in SSCPD case and −45.2dB in intact CP case, and was inaudible in all thin CP cases. It was concluded that SSCPD would directly induce PT through significantly amplifying SS venous sound, and thin CP would not be the only pathophysiology of PT. This conclusion would provide a theoretical basis for the design of SSCPD resurfacing surgery for PT patients with SSCPD or thin CP. | ||
650 | 7 | |a Venous sound |2 Elsevier | |
650 | 7 | |a Finite element analysis |2 Elsevier | |
650 | 7 | |a Sigmoid sinus |2 Elsevier | |
650 | 7 | |a Cortical plate dehiscence |2 Elsevier | |
650 | 7 | |a Pulsatile tinnitus |2 Elsevier | |
700 | 1 | |a Wang, Lizhen |4 oth | |
700 | 1 | |a Yang, Jiemeng |4 oth | |
700 | 1 | |a Mao, Rui |4 oth | |
700 | 1 | |a Liu, Zhaohui |4 oth | |
700 | 1 | |a Fan, Yubo |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Halpern-Manners, Andrew ELSEVIER |t Measuring students' school context exposures: A trajectory-based approach |d 2016 |d affiliated with the American Society of Biomechanics, the European Society of Biomechanics, the International Society of Biomechanics, the Japanese Society for Clinical Biomechanics and Related Research and the Australian and New Zealand Society of Biomechanics |g Amsterdam [u.a.] |w (DE-627)ELV00201923X |
773 | 1 | 8 | |g volume:52 |g year:2017 |g day:8 |g month:02 |g pages:68-73 |g extent:6 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jbiomech.2016.12.012 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 70.00 |j Sozialwissenschaften allgemein: Allgemeines |q VZ |
936 | b | k | |a 71.00 |j Soziologie: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 52 |j 2017 |b 8 |c 0208 |h 68-73 |g 6 | ||
953 | |2 045F |a 570 |
author_variant |
s t st |
---|---|
matchkey_str |
tianshanwanglizhenyangjiemengmaoruiliuzh:2017----:imisnsotclltdhsecidcsustltniutruhmlf |
hierarchy_sort_str |
2017transfer abstract |
bklnumber |
70.00 71.00 |
publishDate |
2017 |
allfields |
10.1016/j.jbiomech.2016.12.012 doi GBV00000000000058A.pica (DE-627)ELV015540561 (ELSEVIER)S0021-9290(16)31291-X DE-627 ger DE-627 rakwb eng 570 796 570 DE-600 796 DE-600 300 VZ 70.00 bkl 71.00 bkl Tian, Shan verfasserin aut Sigmoid sinus cortical plate dehiscence induces pulsatile tinnitus through amplifying sigmoid sinus venous sound 2017transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Sigmoid sinus cortical plate dehiscence (SSCPD) is common in pulsatile tinnitus (PT) patients, and is treated through SSCPD resurfacing surgery in clinic, but the bio-mechanism is not clear as so far. This study aimed to clarify the bio-mechanism of PT sensation induced by SSCPD, and quantify the relationship of cortical plate (CP) thickness and PT sensation intensity. It was hypothesized that SSCPD would induce PT through significantly amplifying sigmoid sinus (SS) venous sound in this study. Finite element (FE) analysis based on radiology data of typical patient was used to verify this hypothesis, and was validated with clinical reports. In cases with different CP thickness, FE simulations of SS venous sound generation and propagation procedure were performed, involving SS venous flow field, vibration response of tissue overlying dehiscence area (including SS vessel wall and CP) and sound propagation in temporal bone air cells. It was shown in results that SS venous sound at tympanic membrane was 56.9dB in SSCPD case and −45.2dB in intact CP case, and was inaudible in all thin CP cases. It was concluded that SSCPD would directly induce PT through significantly amplifying SS venous sound, and thin CP would not be the only pathophysiology of PT. This conclusion would provide a theoretical basis for the design of SSCPD resurfacing surgery for PT patients with SSCPD or thin CP. Sigmoid sinus cortical plate dehiscence (SSCPD) is common in pulsatile tinnitus (PT) patients, and is treated through SSCPD resurfacing surgery in clinic, but the bio-mechanism is not clear as so far. This study aimed to clarify the bio-mechanism of PT sensation induced by SSCPD, and quantify the relationship of cortical plate (CP) thickness and PT sensation intensity. It was hypothesized that SSCPD would induce PT through significantly amplifying sigmoid sinus (SS) venous sound in this study. Finite element (FE) analysis based on radiology data of typical patient was used to verify this hypothesis, and was validated with clinical reports. In cases with different CP thickness, FE simulations of SS venous sound generation and propagation procedure were performed, involving SS venous flow field, vibration response of tissue overlying dehiscence area (including SS vessel wall and CP) and sound propagation in temporal bone air cells. It was shown in results that SS venous sound at tympanic membrane was 56.9dB in SSCPD case and −45.2dB in intact CP case, and was inaudible in all thin CP cases. It was concluded that SSCPD would directly induce PT through significantly amplifying SS venous sound, and thin CP would not be the only pathophysiology of PT. This conclusion would provide a theoretical basis for the design of SSCPD resurfacing surgery for PT patients with SSCPD or thin CP. Venous sound Elsevier Finite element analysis Elsevier Sigmoid sinus Elsevier Cortical plate dehiscence Elsevier Pulsatile tinnitus Elsevier Wang, Lizhen oth Yang, Jiemeng oth Mao, Rui oth Liu, Zhaohui oth Fan, Yubo oth Enthalten in Elsevier Science Halpern-Manners, Andrew ELSEVIER Measuring students' school context exposures: A trajectory-based approach 2016 affiliated with the American Society of Biomechanics, the European Society of Biomechanics, the International Society of Biomechanics, the Japanese Society for Clinical Biomechanics and Related Research and the Australian and New Zealand Society of Biomechanics Amsterdam [u.a.] (DE-627)ELV00201923X volume:52 year:2017 day:8 month:02 pages:68-73 extent:6 https://doi.org/10.1016/j.jbiomech.2016.12.012 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 70.00 Sozialwissenschaften allgemein: Allgemeines VZ 71.00 Soziologie: Allgemeines VZ AR 52 2017 8 0208 68-73 6 045F 570 |
spelling |
10.1016/j.jbiomech.2016.12.012 doi GBV00000000000058A.pica (DE-627)ELV015540561 (ELSEVIER)S0021-9290(16)31291-X DE-627 ger DE-627 rakwb eng 570 796 570 DE-600 796 DE-600 300 VZ 70.00 bkl 71.00 bkl Tian, Shan verfasserin aut Sigmoid sinus cortical plate dehiscence induces pulsatile tinnitus through amplifying sigmoid sinus venous sound 2017transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Sigmoid sinus cortical plate dehiscence (SSCPD) is common in pulsatile tinnitus (PT) patients, and is treated through SSCPD resurfacing surgery in clinic, but the bio-mechanism is not clear as so far. This study aimed to clarify the bio-mechanism of PT sensation induced by SSCPD, and quantify the relationship of cortical plate (CP) thickness and PT sensation intensity. It was hypothesized that SSCPD would induce PT through significantly amplifying sigmoid sinus (SS) venous sound in this study. Finite element (FE) analysis based on radiology data of typical patient was used to verify this hypothesis, and was validated with clinical reports. In cases with different CP thickness, FE simulations of SS venous sound generation and propagation procedure were performed, involving SS venous flow field, vibration response of tissue overlying dehiscence area (including SS vessel wall and CP) and sound propagation in temporal bone air cells. It was shown in results that SS venous sound at tympanic membrane was 56.9dB in SSCPD case and −45.2dB in intact CP case, and was inaudible in all thin CP cases. It was concluded that SSCPD would directly induce PT through significantly amplifying SS venous sound, and thin CP would not be the only pathophysiology of PT. This conclusion would provide a theoretical basis for the design of SSCPD resurfacing surgery for PT patients with SSCPD or thin CP. Sigmoid sinus cortical plate dehiscence (SSCPD) is common in pulsatile tinnitus (PT) patients, and is treated through SSCPD resurfacing surgery in clinic, but the bio-mechanism is not clear as so far. This study aimed to clarify the bio-mechanism of PT sensation induced by SSCPD, and quantify the relationship of cortical plate (CP) thickness and PT sensation intensity. It was hypothesized that SSCPD would induce PT through significantly amplifying sigmoid sinus (SS) venous sound in this study. Finite element (FE) analysis based on radiology data of typical patient was used to verify this hypothesis, and was validated with clinical reports. In cases with different CP thickness, FE simulations of SS venous sound generation and propagation procedure were performed, involving SS venous flow field, vibration response of tissue overlying dehiscence area (including SS vessel wall and CP) and sound propagation in temporal bone air cells. It was shown in results that SS venous sound at tympanic membrane was 56.9dB in SSCPD case and −45.2dB in intact CP case, and was inaudible in all thin CP cases. It was concluded that SSCPD would directly induce PT through significantly amplifying SS venous sound, and thin CP would not be the only pathophysiology of PT. This conclusion would provide a theoretical basis for the design of SSCPD resurfacing surgery for PT patients with SSCPD or thin CP. Venous sound Elsevier Finite element analysis Elsevier Sigmoid sinus Elsevier Cortical plate dehiscence Elsevier Pulsatile tinnitus Elsevier Wang, Lizhen oth Yang, Jiemeng oth Mao, Rui oth Liu, Zhaohui oth Fan, Yubo oth Enthalten in Elsevier Science Halpern-Manners, Andrew ELSEVIER Measuring students' school context exposures: A trajectory-based approach 2016 affiliated with the American Society of Biomechanics, the European Society of Biomechanics, the International Society of Biomechanics, the Japanese Society for Clinical Biomechanics and Related Research and the Australian and New Zealand Society of Biomechanics Amsterdam [u.a.] (DE-627)ELV00201923X volume:52 year:2017 day:8 month:02 pages:68-73 extent:6 https://doi.org/10.1016/j.jbiomech.2016.12.012 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 70.00 Sozialwissenschaften allgemein: Allgemeines VZ 71.00 Soziologie: Allgemeines VZ AR 52 2017 8 0208 68-73 6 045F 570 |
allfields_unstemmed |
10.1016/j.jbiomech.2016.12.012 doi GBV00000000000058A.pica (DE-627)ELV015540561 (ELSEVIER)S0021-9290(16)31291-X DE-627 ger DE-627 rakwb eng 570 796 570 DE-600 796 DE-600 300 VZ 70.00 bkl 71.00 bkl Tian, Shan verfasserin aut Sigmoid sinus cortical plate dehiscence induces pulsatile tinnitus through amplifying sigmoid sinus venous sound 2017transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Sigmoid sinus cortical plate dehiscence (SSCPD) is common in pulsatile tinnitus (PT) patients, and is treated through SSCPD resurfacing surgery in clinic, but the bio-mechanism is not clear as so far. This study aimed to clarify the bio-mechanism of PT sensation induced by SSCPD, and quantify the relationship of cortical plate (CP) thickness and PT sensation intensity. It was hypothesized that SSCPD would induce PT through significantly amplifying sigmoid sinus (SS) venous sound in this study. Finite element (FE) analysis based on radiology data of typical patient was used to verify this hypothesis, and was validated with clinical reports. In cases with different CP thickness, FE simulations of SS venous sound generation and propagation procedure were performed, involving SS venous flow field, vibration response of tissue overlying dehiscence area (including SS vessel wall and CP) and sound propagation in temporal bone air cells. It was shown in results that SS venous sound at tympanic membrane was 56.9dB in SSCPD case and −45.2dB in intact CP case, and was inaudible in all thin CP cases. It was concluded that SSCPD would directly induce PT through significantly amplifying SS venous sound, and thin CP would not be the only pathophysiology of PT. This conclusion would provide a theoretical basis for the design of SSCPD resurfacing surgery for PT patients with SSCPD or thin CP. Sigmoid sinus cortical plate dehiscence (SSCPD) is common in pulsatile tinnitus (PT) patients, and is treated through SSCPD resurfacing surgery in clinic, but the bio-mechanism is not clear as so far. This study aimed to clarify the bio-mechanism of PT sensation induced by SSCPD, and quantify the relationship of cortical plate (CP) thickness and PT sensation intensity. It was hypothesized that SSCPD would induce PT through significantly amplifying sigmoid sinus (SS) venous sound in this study. Finite element (FE) analysis based on radiology data of typical patient was used to verify this hypothesis, and was validated with clinical reports. In cases with different CP thickness, FE simulations of SS venous sound generation and propagation procedure were performed, involving SS venous flow field, vibration response of tissue overlying dehiscence area (including SS vessel wall and CP) and sound propagation in temporal bone air cells. It was shown in results that SS venous sound at tympanic membrane was 56.9dB in SSCPD case and −45.2dB in intact CP case, and was inaudible in all thin CP cases. It was concluded that SSCPD would directly induce PT through significantly amplifying SS venous sound, and thin CP would not be the only pathophysiology of PT. This conclusion would provide a theoretical basis for the design of SSCPD resurfacing surgery for PT patients with SSCPD or thin CP. Venous sound Elsevier Finite element analysis Elsevier Sigmoid sinus Elsevier Cortical plate dehiscence Elsevier Pulsatile tinnitus Elsevier Wang, Lizhen oth Yang, Jiemeng oth Mao, Rui oth Liu, Zhaohui oth Fan, Yubo oth Enthalten in Elsevier Science Halpern-Manners, Andrew ELSEVIER Measuring students' school context exposures: A trajectory-based approach 2016 affiliated with the American Society of Biomechanics, the European Society of Biomechanics, the International Society of Biomechanics, the Japanese Society for Clinical Biomechanics and Related Research and the Australian and New Zealand Society of Biomechanics Amsterdam [u.a.] (DE-627)ELV00201923X volume:52 year:2017 day:8 month:02 pages:68-73 extent:6 https://doi.org/10.1016/j.jbiomech.2016.12.012 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 70.00 Sozialwissenschaften allgemein: Allgemeines VZ 71.00 Soziologie: Allgemeines VZ AR 52 2017 8 0208 68-73 6 045F 570 |
allfieldsGer |
10.1016/j.jbiomech.2016.12.012 doi GBV00000000000058A.pica (DE-627)ELV015540561 (ELSEVIER)S0021-9290(16)31291-X DE-627 ger DE-627 rakwb eng 570 796 570 DE-600 796 DE-600 300 VZ 70.00 bkl 71.00 bkl Tian, Shan verfasserin aut Sigmoid sinus cortical plate dehiscence induces pulsatile tinnitus through amplifying sigmoid sinus venous sound 2017transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Sigmoid sinus cortical plate dehiscence (SSCPD) is common in pulsatile tinnitus (PT) patients, and is treated through SSCPD resurfacing surgery in clinic, but the bio-mechanism is not clear as so far. This study aimed to clarify the bio-mechanism of PT sensation induced by SSCPD, and quantify the relationship of cortical plate (CP) thickness and PT sensation intensity. It was hypothesized that SSCPD would induce PT through significantly amplifying sigmoid sinus (SS) venous sound in this study. Finite element (FE) analysis based on radiology data of typical patient was used to verify this hypothesis, and was validated with clinical reports. In cases with different CP thickness, FE simulations of SS venous sound generation and propagation procedure were performed, involving SS venous flow field, vibration response of tissue overlying dehiscence area (including SS vessel wall and CP) and sound propagation in temporal bone air cells. It was shown in results that SS venous sound at tympanic membrane was 56.9dB in SSCPD case and −45.2dB in intact CP case, and was inaudible in all thin CP cases. It was concluded that SSCPD would directly induce PT through significantly amplifying SS venous sound, and thin CP would not be the only pathophysiology of PT. This conclusion would provide a theoretical basis for the design of SSCPD resurfacing surgery for PT patients with SSCPD or thin CP. Sigmoid sinus cortical plate dehiscence (SSCPD) is common in pulsatile tinnitus (PT) patients, and is treated through SSCPD resurfacing surgery in clinic, but the bio-mechanism is not clear as so far. This study aimed to clarify the bio-mechanism of PT sensation induced by SSCPD, and quantify the relationship of cortical plate (CP) thickness and PT sensation intensity. It was hypothesized that SSCPD would induce PT through significantly amplifying sigmoid sinus (SS) venous sound in this study. Finite element (FE) analysis based on radiology data of typical patient was used to verify this hypothesis, and was validated with clinical reports. In cases with different CP thickness, FE simulations of SS venous sound generation and propagation procedure were performed, involving SS venous flow field, vibration response of tissue overlying dehiscence area (including SS vessel wall and CP) and sound propagation in temporal bone air cells. It was shown in results that SS venous sound at tympanic membrane was 56.9dB in SSCPD case and −45.2dB in intact CP case, and was inaudible in all thin CP cases. It was concluded that SSCPD would directly induce PT through significantly amplifying SS venous sound, and thin CP would not be the only pathophysiology of PT. This conclusion would provide a theoretical basis for the design of SSCPD resurfacing surgery for PT patients with SSCPD or thin CP. Venous sound Elsevier Finite element analysis Elsevier Sigmoid sinus Elsevier Cortical plate dehiscence Elsevier Pulsatile tinnitus Elsevier Wang, Lizhen oth Yang, Jiemeng oth Mao, Rui oth Liu, Zhaohui oth Fan, Yubo oth Enthalten in Elsevier Science Halpern-Manners, Andrew ELSEVIER Measuring students' school context exposures: A trajectory-based approach 2016 affiliated with the American Society of Biomechanics, the European Society of Biomechanics, the International Society of Biomechanics, the Japanese Society for Clinical Biomechanics and Related Research and the Australian and New Zealand Society of Biomechanics Amsterdam [u.a.] (DE-627)ELV00201923X volume:52 year:2017 day:8 month:02 pages:68-73 extent:6 https://doi.org/10.1016/j.jbiomech.2016.12.012 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 70.00 Sozialwissenschaften allgemein: Allgemeines VZ 71.00 Soziologie: Allgemeines VZ AR 52 2017 8 0208 68-73 6 045F 570 |
allfieldsSound |
10.1016/j.jbiomech.2016.12.012 doi GBV00000000000058A.pica (DE-627)ELV015540561 (ELSEVIER)S0021-9290(16)31291-X DE-627 ger DE-627 rakwb eng 570 796 570 DE-600 796 DE-600 300 VZ 70.00 bkl 71.00 bkl Tian, Shan verfasserin aut Sigmoid sinus cortical plate dehiscence induces pulsatile tinnitus through amplifying sigmoid sinus venous sound 2017transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Sigmoid sinus cortical plate dehiscence (SSCPD) is common in pulsatile tinnitus (PT) patients, and is treated through SSCPD resurfacing surgery in clinic, but the bio-mechanism is not clear as so far. This study aimed to clarify the bio-mechanism of PT sensation induced by SSCPD, and quantify the relationship of cortical plate (CP) thickness and PT sensation intensity. It was hypothesized that SSCPD would induce PT through significantly amplifying sigmoid sinus (SS) venous sound in this study. Finite element (FE) analysis based on radiology data of typical patient was used to verify this hypothesis, and was validated with clinical reports. In cases with different CP thickness, FE simulations of SS venous sound generation and propagation procedure were performed, involving SS venous flow field, vibration response of tissue overlying dehiscence area (including SS vessel wall and CP) and sound propagation in temporal bone air cells. It was shown in results that SS venous sound at tympanic membrane was 56.9dB in SSCPD case and −45.2dB in intact CP case, and was inaudible in all thin CP cases. It was concluded that SSCPD would directly induce PT through significantly amplifying SS venous sound, and thin CP would not be the only pathophysiology of PT. This conclusion would provide a theoretical basis for the design of SSCPD resurfacing surgery for PT patients with SSCPD or thin CP. Sigmoid sinus cortical plate dehiscence (SSCPD) is common in pulsatile tinnitus (PT) patients, and is treated through SSCPD resurfacing surgery in clinic, but the bio-mechanism is not clear as so far. This study aimed to clarify the bio-mechanism of PT sensation induced by SSCPD, and quantify the relationship of cortical plate (CP) thickness and PT sensation intensity. It was hypothesized that SSCPD would induce PT through significantly amplifying sigmoid sinus (SS) venous sound in this study. Finite element (FE) analysis based on radiology data of typical patient was used to verify this hypothesis, and was validated with clinical reports. In cases with different CP thickness, FE simulations of SS venous sound generation and propagation procedure were performed, involving SS venous flow field, vibration response of tissue overlying dehiscence area (including SS vessel wall and CP) and sound propagation in temporal bone air cells. It was shown in results that SS venous sound at tympanic membrane was 56.9dB in SSCPD case and −45.2dB in intact CP case, and was inaudible in all thin CP cases. It was concluded that SSCPD would directly induce PT through significantly amplifying SS venous sound, and thin CP would not be the only pathophysiology of PT. This conclusion would provide a theoretical basis for the design of SSCPD resurfacing surgery for PT patients with SSCPD or thin CP. Venous sound Elsevier Finite element analysis Elsevier Sigmoid sinus Elsevier Cortical plate dehiscence Elsevier Pulsatile tinnitus Elsevier Wang, Lizhen oth Yang, Jiemeng oth Mao, Rui oth Liu, Zhaohui oth Fan, Yubo oth Enthalten in Elsevier Science Halpern-Manners, Andrew ELSEVIER Measuring students' school context exposures: A trajectory-based approach 2016 affiliated with the American Society of Biomechanics, the European Society of Biomechanics, the International Society of Biomechanics, the Japanese Society for Clinical Biomechanics and Related Research and the Australian and New Zealand Society of Biomechanics Amsterdam [u.a.] (DE-627)ELV00201923X volume:52 year:2017 day:8 month:02 pages:68-73 extent:6 https://doi.org/10.1016/j.jbiomech.2016.12.012 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 70.00 Sozialwissenschaften allgemein: Allgemeines VZ 71.00 Soziologie: Allgemeines VZ AR 52 2017 8 0208 68-73 6 045F 570 |
language |
English |
source |
Enthalten in Measuring students' school context exposures: A trajectory-based approach Amsterdam [u.a.] volume:52 year:2017 day:8 month:02 pages:68-73 extent:6 |
sourceStr |
Enthalten in Measuring students' school context exposures: A trajectory-based approach Amsterdam [u.a.] volume:52 year:2017 day:8 month:02 pages:68-73 extent:6 |
format_phy_str_mv |
Article |
bklname |
Sozialwissenschaften allgemein: Allgemeines Soziologie: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Venous sound Finite element analysis Sigmoid sinus Cortical plate dehiscence Pulsatile tinnitus |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
Measuring students' school context exposures: A trajectory-based approach |
authorswithroles_txt_mv |
Tian, Shan @@aut@@ Wang, Lizhen @@oth@@ Yang, Jiemeng @@oth@@ Mao, Rui @@oth@@ Liu, Zhaohui @@oth@@ Fan, Yubo @@oth@@ |
publishDateDaySort_date |
2017-01-08T00:00:00Z |
hierarchy_top_id |
ELV00201923X |
dewey-sort |
3570 |
id |
ELV015540561 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV015540561</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625115246.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jbiomech.2016.12.012</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000058A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV015540561</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0021-9290(16)31291-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">570</subfield><subfield code="a">796</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">796</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">300</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">70.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">71.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tian, Shan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sigmoid sinus cortical plate dehiscence induces pulsatile tinnitus through amplifying sigmoid sinus venous sound</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">6</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Sigmoid sinus cortical plate dehiscence (SSCPD) is common in pulsatile tinnitus (PT) patients, and is treated through SSCPD resurfacing surgery in clinic, but the bio-mechanism is not clear as so far. This study aimed to clarify the bio-mechanism of PT sensation induced by SSCPD, and quantify the relationship of cortical plate (CP) thickness and PT sensation intensity. It was hypothesized that SSCPD would induce PT through significantly amplifying sigmoid sinus (SS) venous sound in this study. Finite element (FE) analysis based on radiology data of typical patient was used to verify this hypothesis, and was validated with clinical reports. In cases with different CP thickness, FE simulations of SS venous sound generation and propagation procedure were performed, involving SS venous flow field, vibration response of tissue overlying dehiscence area (including SS vessel wall and CP) and sound propagation in temporal bone air cells. It was shown in results that SS venous sound at tympanic membrane was 56.9dB in SSCPD case and −45.2dB in intact CP case, and was inaudible in all thin CP cases. It was concluded that SSCPD would directly induce PT through significantly amplifying SS venous sound, and thin CP would not be the only pathophysiology of PT. This conclusion would provide a theoretical basis for the design of SSCPD resurfacing surgery for PT patients with SSCPD or thin CP.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Sigmoid sinus cortical plate dehiscence (SSCPD) is common in pulsatile tinnitus (PT) patients, and is treated through SSCPD resurfacing surgery in clinic, but the bio-mechanism is not clear as so far. This study aimed to clarify the bio-mechanism of PT sensation induced by SSCPD, and quantify the relationship of cortical plate (CP) thickness and PT sensation intensity. It was hypothesized that SSCPD would induce PT through significantly amplifying sigmoid sinus (SS) venous sound in this study. Finite element (FE) analysis based on radiology data of typical patient was used to verify this hypothesis, and was validated with clinical reports. In cases with different CP thickness, FE simulations of SS venous sound generation and propagation procedure were performed, involving SS venous flow field, vibration response of tissue overlying dehiscence area (including SS vessel wall and CP) and sound propagation in temporal bone air cells. It was shown in results that SS venous sound at tympanic membrane was 56.9dB in SSCPD case and −45.2dB in intact CP case, and was inaudible in all thin CP cases. It was concluded that SSCPD would directly induce PT through significantly amplifying SS venous sound, and thin CP would not be the only pathophysiology of PT. This conclusion would provide a theoretical basis for the design of SSCPD resurfacing surgery for PT patients with SSCPD or thin CP.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Venous sound</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Finite element analysis</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Sigmoid sinus</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cortical plate dehiscence</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Pulsatile tinnitus</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Lizhen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Jiemeng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mao, Rui</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Zhaohui</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fan, Yubo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Halpern-Manners, Andrew ELSEVIER</subfield><subfield code="t">Measuring students' school context exposures: A trajectory-based approach</subfield><subfield code="d">2016</subfield><subfield code="d">affiliated with the American Society of Biomechanics, the European Society of Biomechanics, the International Society of Biomechanics, the Japanese Society for Clinical Biomechanics and Related Research and the Australian and New Zealand Society of Biomechanics</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV00201923X</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:52</subfield><subfield code="g">year:2017</subfield><subfield code="g">day:8</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:68-73</subfield><subfield code="g">extent:6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jbiomech.2016.12.012</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">70.00</subfield><subfield code="j">Sozialwissenschaften allgemein: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">71.00</subfield><subfield code="j">Soziologie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">52</subfield><subfield code="j">2017</subfield><subfield code="b">8</subfield><subfield code="c">0208</subfield><subfield code="h">68-73</subfield><subfield code="g">6</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">570</subfield></datafield></record></collection>
|
author |
Tian, Shan |
spellingShingle |
Tian, Shan ddc 570 ddc 796 ddc 300 bkl 70.00 bkl 71.00 Elsevier Venous sound Elsevier Finite element analysis Elsevier Sigmoid sinus Elsevier Cortical plate dehiscence Elsevier Pulsatile tinnitus Sigmoid sinus cortical plate dehiscence induces pulsatile tinnitus through amplifying sigmoid sinus venous sound |
authorStr |
Tian, Shan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV00201923X |
format |
electronic Article |
dewey-ones |
570 - Life sciences; biology 796 - Athletic & outdoor sports & games 300 - Social sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
570 796 570 DE-600 796 DE-600 300 VZ 70.00 bkl 71.00 bkl Sigmoid sinus cortical plate dehiscence induces pulsatile tinnitus through amplifying sigmoid sinus venous sound Venous sound Elsevier Finite element analysis Elsevier Sigmoid sinus Elsevier Cortical plate dehiscence Elsevier Pulsatile tinnitus Elsevier |
topic |
ddc 570 ddc 796 ddc 300 bkl 70.00 bkl 71.00 Elsevier Venous sound Elsevier Finite element analysis Elsevier Sigmoid sinus Elsevier Cortical plate dehiscence Elsevier Pulsatile tinnitus |
topic_unstemmed |
ddc 570 ddc 796 ddc 300 bkl 70.00 bkl 71.00 Elsevier Venous sound Elsevier Finite element analysis Elsevier Sigmoid sinus Elsevier Cortical plate dehiscence Elsevier Pulsatile tinnitus |
topic_browse |
ddc 570 ddc 796 ddc 300 bkl 70.00 bkl 71.00 Elsevier Venous sound Elsevier Finite element analysis Elsevier Sigmoid sinus Elsevier Cortical plate dehiscence Elsevier Pulsatile tinnitus |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
l w lw j y jy r m rm z l zl y f yf |
hierarchy_parent_title |
Measuring students' school context exposures: A trajectory-based approach |
hierarchy_parent_id |
ELV00201923X |
dewey-tens |
570 - Life sciences; biology 790 - Sports, games & entertainment 300 - Social sciences, sociology & anthropology |
hierarchy_top_title |
Measuring students' school context exposures: A trajectory-based approach |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV00201923X |
title |
Sigmoid sinus cortical plate dehiscence induces pulsatile tinnitus through amplifying sigmoid sinus venous sound |
ctrlnum |
(DE-627)ELV015540561 (ELSEVIER)S0021-9290(16)31291-X |
title_full |
Sigmoid sinus cortical plate dehiscence induces pulsatile tinnitus through amplifying sigmoid sinus venous sound |
author_sort |
Tian, Shan |
journal |
Measuring students' school context exposures: A trajectory-based approach |
journalStr |
Measuring students' school context exposures: A trajectory-based approach |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 700 - Arts & recreation 300 - Social sciences |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
zzz |
container_start_page |
68 |
author_browse |
Tian, Shan |
container_volume |
52 |
physical |
6 |
class |
570 796 570 DE-600 796 DE-600 300 VZ 70.00 bkl 71.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Tian, Shan |
doi_str_mv |
10.1016/j.jbiomech.2016.12.012 |
dewey-full |
570 796 300 |
title_sort |
sigmoid sinus cortical plate dehiscence induces pulsatile tinnitus through amplifying sigmoid sinus venous sound |
title_auth |
Sigmoid sinus cortical plate dehiscence induces pulsatile tinnitus through amplifying sigmoid sinus venous sound |
abstract |
Sigmoid sinus cortical plate dehiscence (SSCPD) is common in pulsatile tinnitus (PT) patients, and is treated through SSCPD resurfacing surgery in clinic, but the bio-mechanism is not clear as so far. This study aimed to clarify the bio-mechanism of PT sensation induced by SSCPD, and quantify the relationship of cortical plate (CP) thickness and PT sensation intensity. It was hypothesized that SSCPD would induce PT through significantly amplifying sigmoid sinus (SS) venous sound in this study. Finite element (FE) analysis based on radiology data of typical patient was used to verify this hypothesis, and was validated with clinical reports. In cases with different CP thickness, FE simulations of SS venous sound generation and propagation procedure were performed, involving SS venous flow field, vibration response of tissue overlying dehiscence area (including SS vessel wall and CP) and sound propagation in temporal bone air cells. It was shown in results that SS venous sound at tympanic membrane was 56.9dB in SSCPD case and −45.2dB in intact CP case, and was inaudible in all thin CP cases. It was concluded that SSCPD would directly induce PT through significantly amplifying SS venous sound, and thin CP would not be the only pathophysiology of PT. This conclusion would provide a theoretical basis for the design of SSCPD resurfacing surgery for PT patients with SSCPD or thin CP. |
abstractGer |
Sigmoid sinus cortical plate dehiscence (SSCPD) is common in pulsatile tinnitus (PT) patients, and is treated through SSCPD resurfacing surgery in clinic, but the bio-mechanism is not clear as so far. This study aimed to clarify the bio-mechanism of PT sensation induced by SSCPD, and quantify the relationship of cortical plate (CP) thickness and PT sensation intensity. It was hypothesized that SSCPD would induce PT through significantly amplifying sigmoid sinus (SS) venous sound in this study. Finite element (FE) analysis based on radiology data of typical patient was used to verify this hypothesis, and was validated with clinical reports. In cases with different CP thickness, FE simulations of SS venous sound generation and propagation procedure were performed, involving SS venous flow field, vibration response of tissue overlying dehiscence area (including SS vessel wall and CP) and sound propagation in temporal bone air cells. It was shown in results that SS venous sound at tympanic membrane was 56.9dB in SSCPD case and −45.2dB in intact CP case, and was inaudible in all thin CP cases. It was concluded that SSCPD would directly induce PT through significantly amplifying SS venous sound, and thin CP would not be the only pathophysiology of PT. This conclusion would provide a theoretical basis for the design of SSCPD resurfacing surgery for PT patients with SSCPD or thin CP. |
abstract_unstemmed |
Sigmoid sinus cortical plate dehiscence (SSCPD) is common in pulsatile tinnitus (PT) patients, and is treated through SSCPD resurfacing surgery in clinic, but the bio-mechanism is not clear as so far. This study aimed to clarify the bio-mechanism of PT sensation induced by SSCPD, and quantify the relationship of cortical plate (CP) thickness and PT sensation intensity. It was hypothesized that SSCPD would induce PT through significantly amplifying sigmoid sinus (SS) venous sound in this study. Finite element (FE) analysis based on radiology data of typical patient was used to verify this hypothesis, and was validated with clinical reports. In cases with different CP thickness, FE simulations of SS venous sound generation and propagation procedure were performed, involving SS venous flow field, vibration response of tissue overlying dehiscence area (including SS vessel wall and CP) and sound propagation in temporal bone air cells. It was shown in results that SS venous sound at tympanic membrane was 56.9dB in SSCPD case and −45.2dB in intact CP case, and was inaudible in all thin CP cases. It was concluded that SSCPD would directly induce PT through significantly amplifying SS venous sound, and thin CP would not be the only pathophysiology of PT. This conclusion would provide a theoretical basis for the design of SSCPD resurfacing surgery for PT patients with SSCPD or thin CP. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
Sigmoid sinus cortical plate dehiscence induces pulsatile tinnitus through amplifying sigmoid sinus venous sound |
url |
https://doi.org/10.1016/j.jbiomech.2016.12.012 |
remote_bool |
true |
author2 |
Wang, Lizhen Yang, Jiemeng Mao, Rui Liu, Zhaohui Fan, Yubo |
author2Str |
Wang, Lizhen Yang, Jiemeng Mao, Rui Liu, Zhaohui Fan, Yubo |
ppnlink |
ELV00201923X |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth |
doi_str |
10.1016/j.jbiomech.2016.12.012 |
up_date |
2024-07-06T17:56:56.891Z |
_version_ |
1803853356747194368 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV015540561</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625115246.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jbiomech.2016.12.012</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000058A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV015540561</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0021-9290(16)31291-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">570</subfield><subfield code="a">796</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">796</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">300</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">70.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">71.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tian, Shan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sigmoid sinus cortical plate dehiscence induces pulsatile tinnitus through amplifying sigmoid sinus venous sound</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">6</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Sigmoid sinus cortical plate dehiscence (SSCPD) is common in pulsatile tinnitus (PT) patients, and is treated through SSCPD resurfacing surgery in clinic, but the bio-mechanism is not clear as so far. This study aimed to clarify the bio-mechanism of PT sensation induced by SSCPD, and quantify the relationship of cortical plate (CP) thickness and PT sensation intensity. It was hypothesized that SSCPD would induce PT through significantly amplifying sigmoid sinus (SS) venous sound in this study. Finite element (FE) analysis based on radiology data of typical patient was used to verify this hypothesis, and was validated with clinical reports. In cases with different CP thickness, FE simulations of SS venous sound generation and propagation procedure were performed, involving SS venous flow field, vibration response of tissue overlying dehiscence area (including SS vessel wall and CP) and sound propagation in temporal bone air cells. It was shown in results that SS venous sound at tympanic membrane was 56.9dB in SSCPD case and −45.2dB in intact CP case, and was inaudible in all thin CP cases. It was concluded that SSCPD would directly induce PT through significantly amplifying SS venous sound, and thin CP would not be the only pathophysiology of PT. This conclusion would provide a theoretical basis for the design of SSCPD resurfacing surgery for PT patients with SSCPD or thin CP.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Sigmoid sinus cortical plate dehiscence (SSCPD) is common in pulsatile tinnitus (PT) patients, and is treated through SSCPD resurfacing surgery in clinic, but the bio-mechanism is not clear as so far. This study aimed to clarify the bio-mechanism of PT sensation induced by SSCPD, and quantify the relationship of cortical plate (CP) thickness and PT sensation intensity. It was hypothesized that SSCPD would induce PT through significantly amplifying sigmoid sinus (SS) venous sound in this study. Finite element (FE) analysis based on radiology data of typical patient was used to verify this hypothesis, and was validated with clinical reports. In cases with different CP thickness, FE simulations of SS venous sound generation and propagation procedure were performed, involving SS venous flow field, vibration response of tissue overlying dehiscence area (including SS vessel wall and CP) and sound propagation in temporal bone air cells. It was shown in results that SS venous sound at tympanic membrane was 56.9dB in SSCPD case and −45.2dB in intact CP case, and was inaudible in all thin CP cases. It was concluded that SSCPD would directly induce PT through significantly amplifying SS venous sound, and thin CP would not be the only pathophysiology of PT. This conclusion would provide a theoretical basis for the design of SSCPD resurfacing surgery for PT patients with SSCPD or thin CP.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Venous sound</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Finite element analysis</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Sigmoid sinus</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cortical plate dehiscence</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Pulsatile tinnitus</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Lizhen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Jiemeng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mao, Rui</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Zhaohui</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fan, Yubo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Halpern-Manners, Andrew ELSEVIER</subfield><subfield code="t">Measuring students' school context exposures: A trajectory-based approach</subfield><subfield code="d">2016</subfield><subfield code="d">affiliated with the American Society of Biomechanics, the European Society of Biomechanics, the International Society of Biomechanics, the Japanese Society for Clinical Biomechanics and Related Research and the Australian and New Zealand Society of Biomechanics</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV00201923X</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:52</subfield><subfield code="g">year:2017</subfield><subfield code="g">day:8</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:68-73</subfield><subfield code="g">extent:6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jbiomech.2016.12.012</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">70.00</subfield><subfield code="j">Sozialwissenschaften allgemein: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">71.00</subfield><subfield code="j">Soziologie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">52</subfield><subfield code="j">2017</subfield><subfield code="b">8</subfield><subfield code="c">0208</subfield><subfield code="h">68-73</subfield><subfield code="g">6</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">570</subfield></datafield></record></collection>
|
score |
7.4009047 |