Multiplication Operators on Invariant Subspaces of Function Spaces
Let M φ be the operator of multiplication by φ on a Hilbert space of functions analytic on the open unit disk. For an invariant subspace F for the multiplication operator Mz , we derive some spectral properties of the multiplication operator M φ : F → F. We characterize norm, spectrum, essential nor...
Ausführliche Beschreibung
Autor*in: |
YOUSEFI, B. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2013 |
---|
Schlagwörter: |
---|
Umfang: |
8 |
---|
Übergeordnetes Werk: |
Enthalten in: Understanding the effect of increased cell specific productivity on galactosylation of monoclonal antibodies produced using Chinese hamster ovary cells - Madabhushi, Sri R. ELSEVIER, 2021, [Singapore] |
---|---|
Übergeordnetes Werk: |
volume:33 ; year:2013 ; number:5 ; pages:1463-1470 ; extent:8 |
Links: |
---|
DOI / URN: |
10.1016/S0252-9602(13)60096-X |
---|
Katalog-ID: |
ELV016748999 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV016748999 | ||
003 | DE-627 | ||
005 | 20230623131644.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180602s2013 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/S0252-9602(13)60096-X |2 doi | |
028 | 5 | 2 | |a GBVA2013007000028.pica |
035 | |a (DE-627)ELV016748999 | ||
035 | |a (ELSEVIER)S0252-9602(13)60096-X | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 510 | |
082 | 0 | 4 | |a 510 |q DE-600 |
082 | 0 | 4 | |a 540 |q VZ |
084 | |a 58.30 |2 bkl | ||
100 | 1 | |a YOUSEFI, B. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Multiplication Operators on Invariant Subspaces of Function Spaces |
264 | 1 | |c 2013 | |
300 | |a 8 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Let M φ be the operator of multiplication by φ on a Hilbert space of functions analytic on the open unit disk. For an invariant subspace F for the multiplication operator Mz , we derive some spectral properties of the multiplication operator M φ : F → F. We characterize norm, spectrum, essential norm and essential spectrum of such operators when F has the codimension n property with n ∈ {1, 2, …, + ∞}. | ||
650 | 7 | |a essential spectrum |2 Elsevier | |
650 | 7 | |a essential norm |2 Elsevier | |
650 | 7 | |a Fredholm operator |2 Elsevier | |
650 | 7 | |a multiplication operator |2 Elsevier | |
650 | 7 | |a invariant subspace |2 Elsevier | |
650 | 7 | |a Hilbert space of analytic functions |2 Elsevier | |
700 | 1 | |a KHOSHDEL, Sh. |4 oth | |
700 | 1 | |a JAHANSHAHI, Y. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Springer Singapore |a Madabhushi, Sri R. ELSEVIER |t Understanding the effect of increased cell specific productivity on galactosylation of monoclonal antibodies produced using Chinese hamster ovary cells |d 2021 |g [Singapore] |w (DE-627)ELV005671817 |
773 | 1 | 8 | |g volume:33 |g year:2013 |g number:5 |g pages:1463-1470 |g extent:8 |
856 | 4 | 0 | |u https://doi.org/10.1016/S0252-9602(13)60096-X |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 58.30 |j Biotechnologie |q VZ |
951 | |a AR | ||
952 | |d 33 |j 2013 |e 5 |h 1463-1470 |g 8 | ||
953 | |2 045F |a 510 |
author_variant |
b y by |
---|---|
matchkey_str |
yousefibkhoshdelshjahanshahiy:2013----:utpiainprtroivratusae |
hierarchy_sort_str |
2013 |
bklnumber |
58.30 |
publishDate |
2013 |
allfields |
10.1016/S0252-9602(13)60096-X doi GBVA2013007000028.pica (DE-627)ELV016748999 (ELSEVIER)S0252-9602(13)60096-X DE-627 ger DE-627 rakwb eng 510 510 DE-600 540 VZ 58.30 bkl YOUSEFI, B. verfasserin aut Multiplication Operators on Invariant Subspaces of Function Spaces 2013 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Let M φ be the operator of multiplication by φ on a Hilbert space of functions analytic on the open unit disk. For an invariant subspace F for the multiplication operator Mz , we derive some spectral properties of the multiplication operator M φ : F → F. We characterize norm, spectrum, essential norm and essential spectrum of such operators when F has the codimension n property with n ∈ {1, 2, …, + ∞}. essential spectrum Elsevier essential norm Elsevier Fredholm operator Elsevier multiplication operator Elsevier invariant subspace Elsevier Hilbert space of analytic functions Elsevier KHOSHDEL, Sh. oth JAHANSHAHI, Y. oth Enthalten in Springer Singapore Madabhushi, Sri R. ELSEVIER Understanding the effect of increased cell specific productivity on galactosylation of monoclonal antibodies produced using Chinese hamster ovary cells 2021 [Singapore] (DE-627)ELV005671817 volume:33 year:2013 number:5 pages:1463-1470 extent:8 https://doi.org/10.1016/S0252-9602(13)60096-X Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 58.30 Biotechnologie VZ AR 33 2013 5 1463-1470 8 045F 510 |
spelling |
10.1016/S0252-9602(13)60096-X doi GBVA2013007000028.pica (DE-627)ELV016748999 (ELSEVIER)S0252-9602(13)60096-X DE-627 ger DE-627 rakwb eng 510 510 DE-600 540 VZ 58.30 bkl YOUSEFI, B. verfasserin aut Multiplication Operators on Invariant Subspaces of Function Spaces 2013 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Let M φ be the operator of multiplication by φ on a Hilbert space of functions analytic on the open unit disk. For an invariant subspace F for the multiplication operator Mz , we derive some spectral properties of the multiplication operator M φ : F → F. We characterize norm, spectrum, essential norm and essential spectrum of such operators when F has the codimension n property with n ∈ {1, 2, …, + ∞}. essential spectrum Elsevier essential norm Elsevier Fredholm operator Elsevier multiplication operator Elsevier invariant subspace Elsevier Hilbert space of analytic functions Elsevier KHOSHDEL, Sh. oth JAHANSHAHI, Y. oth Enthalten in Springer Singapore Madabhushi, Sri R. ELSEVIER Understanding the effect of increased cell specific productivity on galactosylation of monoclonal antibodies produced using Chinese hamster ovary cells 2021 [Singapore] (DE-627)ELV005671817 volume:33 year:2013 number:5 pages:1463-1470 extent:8 https://doi.org/10.1016/S0252-9602(13)60096-X Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 58.30 Biotechnologie VZ AR 33 2013 5 1463-1470 8 045F 510 |
allfields_unstemmed |
10.1016/S0252-9602(13)60096-X doi GBVA2013007000028.pica (DE-627)ELV016748999 (ELSEVIER)S0252-9602(13)60096-X DE-627 ger DE-627 rakwb eng 510 510 DE-600 540 VZ 58.30 bkl YOUSEFI, B. verfasserin aut Multiplication Operators on Invariant Subspaces of Function Spaces 2013 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Let M φ be the operator of multiplication by φ on a Hilbert space of functions analytic on the open unit disk. For an invariant subspace F for the multiplication operator Mz , we derive some spectral properties of the multiplication operator M φ : F → F. We characterize norm, spectrum, essential norm and essential spectrum of such operators when F has the codimension n property with n ∈ {1, 2, …, + ∞}. essential spectrum Elsevier essential norm Elsevier Fredholm operator Elsevier multiplication operator Elsevier invariant subspace Elsevier Hilbert space of analytic functions Elsevier KHOSHDEL, Sh. oth JAHANSHAHI, Y. oth Enthalten in Springer Singapore Madabhushi, Sri R. ELSEVIER Understanding the effect of increased cell specific productivity on galactosylation of monoclonal antibodies produced using Chinese hamster ovary cells 2021 [Singapore] (DE-627)ELV005671817 volume:33 year:2013 number:5 pages:1463-1470 extent:8 https://doi.org/10.1016/S0252-9602(13)60096-X Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 58.30 Biotechnologie VZ AR 33 2013 5 1463-1470 8 045F 510 |
allfieldsGer |
10.1016/S0252-9602(13)60096-X doi GBVA2013007000028.pica (DE-627)ELV016748999 (ELSEVIER)S0252-9602(13)60096-X DE-627 ger DE-627 rakwb eng 510 510 DE-600 540 VZ 58.30 bkl YOUSEFI, B. verfasserin aut Multiplication Operators on Invariant Subspaces of Function Spaces 2013 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Let M φ be the operator of multiplication by φ on a Hilbert space of functions analytic on the open unit disk. For an invariant subspace F for the multiplication operator Mz , we derive some spectral properties of the multiplication operator M φ : F → F. We characterize norm, spectrum, essential norm and essential spectrum of such operators when F has the codimension n property with n ∈ {1, 2, …, + ∞}. essential spectrum Elsevier essential norm Elsevier Fredholm operator Elsevier multiplication operator Elsevier invariant subspace Elsevier Hilbert space of analytic functions Elsevier KHOSHDEL, Sh. oth JAHANSHAHI, Y. oth Enthalten in Springer Singapore Madabhushi, Sri R. ELSEVIER Understanding the effect of increased cell specific productivity on galactosylation of monoclonal antibodies produced using Chinese hamster ovary cells 2021 [Singapore] (DE-627)ELV005671817 volume:33 year:2013 number:5 pages:1463-1470 extent:8 https://doi.org/10.1016/S0252-9602(13)60096-X Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 58.30 Biotechnologie VZ AR 33 2013 5 1463-1470 8 045F 510 |
allfieldsSound |
10.1016/S0252-9602(13)60096-X doi GBVA2013007000028.pica (DE-627)ELV016748999 (ELSEVIER)S0252-9602(13)60096-X DE-627 ger DE-627 rakwb eng 510 510 DE-600 540 VZ 58.30 bkl YOUSEFI, B. verfasserin aut Multiplication Operators on Invariant Subspaces of Function Spaces 2013 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Let M φ be the operator of multiplication by φ on a Hilbert space of functions analytic on the open unit disk. For an invariant subspace F for the multiplication operator Mz , we derive some spectral properties of the multiplication operator M φ : F → F. We characterize norm, spectrum, essential norm and essential spectrum of such operators when F has the codimension n property with n ∈ {1, 2, …, + ∞}. essential spectrum Elsevier essential norm Elsevier Fredholm operator Elsevier multiplication operator Elsevier invariant subspace Elsevier Hilbert space of analytic functions Elsevier KHOSHDEL, Sh. oth JAHANSHAHI, Y. oth Enthalten in Springer Singapore Madabhushi, Sri R. ELSEVIER Understanding the effect of increased cell specific productivity on galactosylation of monoclonal antibodies produced using Chinese hamster ovary cells 2021 [Singapore] (DE-627)ELV005671817 volume:33 year:2013 number:5 pages:1463-1470 extent:8 https://doi.org/10.1016/S0252-9602(13)60096-X Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 58.30 Biotechnologie VZ AR 33 2013 5 1463-1470 8 045F 510 |
language |
English |
source |
Enthalten in Understanding the effect of increased cell specific productivity on galactosylation of monoclonal antibodies produced using Chinese hamster ovary cells [Singapore] volume:33 year:2013 number:5 pages:1463-1470 extent:8 |
sourceStr |
Enthalten in Understanding the effect of increased cell specific productivity on galactosylation of monoclonal antibodies produced using Chinese hamster ovary cells [Singapore] volume:33 year:2013 number:5 pages:1463-1470 extent:8 |
format_phy_str_mv |
Article |
bklname |
Biotechnologie |
institution |
findex.gbv.de |
topic_facet |
essential spectrum essential norm Fredholm operator multiplication operator invariant subspace Hilbert space of analytic functions |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Understanding the effect of increased cell specific productivity on galactosylation of monoclonal antibodies produced using Chinese hamster ovary cells |
authorswithroles_txt_mv |
YOUSEFI, B. @@aut@@ KHOSHDEL, Sh. @@oth@@ JAHANSHAHI, Y. @@oth@@ |
publishDateDaySort_date |
2013-01-01T00:00:00Z |
hierarchy_top_id |
ELV005671817 |
dewey-sort |
3510 |
id |
ELV016748999 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV016748999</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230623131644.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/S0252-9602(13)60096-X</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2013007000028.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV016748999</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0252-9602(13)60096-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.30</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">YOUSEFI, B.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multiplication Operators on Invariant Subspaces of Function Spaces</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Let M φ be the operator of multiplication by φ on a Hilbert space of functions analytic on the open unit disk. For an invariant subspace F for the multiplication operator Mz , we derive some spectral properties of the multiplication operator M φ : F → F. We characterize norm, spectrum, essential norm and essential spectrum of such operators when F has the codimension n property with n ∈ {1, 2, …, + ∞}.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">essential spectrum</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">essential norm</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fredholm operator</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">multiplication operator</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">invariant subspace</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hilbert space of analytic functions</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">KHOSHDEL, Sh.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">JAHANSHAHI, Y.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Springer Singapore</subfield><subfield code="a">Madabhushi, Sri R. ELSEVIER</subfield><subfield code="t">Understanding the effect of increased cell specific productivity on galactosylation of monoclonal antibodies produced using Chinese hamster ovary cells</subfield><subfield code="d">2021</subfield><subfield code="g">[Singapore]</subfield><subfield code="w">(DE-627)ELV005671817</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:33</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:1463-1470</subfield><subfield code="g">extent:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/S0252-9602(13)60096-X</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.30</subfield><subfield code="j">Biotechnologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">33</subfield><subfield code="j">2013</subfield><subfield code="e">5</subfield><subfield code="h">1463-1470</subfield><subfield code="g">8</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">510</subfield></datafield></record></collection>
|
author |
YOUSEFI, B. |
spellingShingle |
YOUSEFI, B. ddc 510 ddc 540 bkl 58.30 Elsevier essential spectrum Elsevier essential norm Elsevier Fredholm operator Elsevier multiplication operator Elsevier invariant subspace Elsevier Hilbert space of analytic functions Multiplication Operators on Invariant Subspaces of Function Spaces |
authorStr |
YOUSEFI, B. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV005671817 |
format |
electronic Article |
dewey-ones |
510 - Mathematics 540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
510 510 DE-600 540 VZ 58.30 bkl Multiplication Operators on Invariant Subspaces of Function Spaces essential spectrum Elsevier essential norm Elsevier Fredholm operator Elsevier multiplication operator Elsevier invariant subspace Elsevier Hilbert space of analytic functions Elsevier |
topic |
ddc 510 ddc 540 bkl 58.30 Elsevier essential spectrum Elsevier essential norm Elsevier Fredholm operator Elsevier multiplication operator Elsevier invariant subspace Elsevier Hilbert space of analytic functions |
topic_unstemmed |
ddc 510 ddc 540 bkl 58.30 Elsevier essential spectrum Elsevier essential norm Elsevier Fredholm operator Elsevier multiplication operator Elsevier invariant subspace Elsevier Hilbert space of analytic functions |
topic_browse |
ddc 510 ddc 540 bkl 58.30 Elsevier essential spectrum Elsevier essential norm Elsevier Fredholm operator Elsevier multiplication operator Elsevier invariant subspace Elsevier Hilbert space of analytic functions |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
s k sk y j yj |
hierarchy_parent_title |
Understanding the effect of increased cell specific productivity on galactosylation of monoclonal antibodies produced using Chinese hamster ovary cells |
hierarchy_parent_id |
ELV005671817 |
dewey-tens |
510 - Mathematics 540 - Chemistry |
hierarchy_top_title |
Understanding the effect of increased cell specific productivity on galactosylation of monoclonal antibodies produced using Chinese hamster ovary cells |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV005671817 |
title |
Multiplication Operators on Invariant Subspaces of Function Spaces |
ctrlnum |
(DE-627)ELV016748999 (ELSEVIER)S0252-9602(13)60096-X |
title_full |
Multiplication Operators on Invariant Subspaces of Function Spaces |
author_sort |
YOUSEFI, B. |
journal |
Understanding the effect of increased cell specific productivity on galactosylation of monoclonal antibodies produced using Chinese hamster ovary cells |
journalStr |
Understanding the effect of increased cell specific productivity on galactosylation of monoclonal antibodies produced using Chinese hamster ovary cells |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
zzz |
container_start_page |
1463 |
author_browse |
YOUSEFI, B. |
container_volume |
33 |
physical |
8 |
class |
510 510 DE-600 540 VZ 58.30 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
YOUSEFI, B. |
doi_str_mv |
10.1016/S0252-9602(13)60096-X |
dewey-full |
510 540 |
title_sort |
multiplication operators on invariant subspaces of function spaces |
title_auth |
Multiplication Operators on Invariant Subspaces of Function Spaces |
abstract |
Let M φ be the operator of multiplication by φ on a Hilbert space of functions analytic on the open unit disk. For an invariant subspace F for the multiplication operator Mz , we derive some spectral properties of the multiplication operator M φ : F → F. We characterize norm, spectrum, essential norm and essential spectrum of such operators when F has the codimension n property with n ∈ {1, 2, …, + ∞}. |
abstractGer |
Let M φ be the operator of multiplication by φ on a Hilbert space of functions analytic on the open unit disk. For an invariant subspace F for the multiplication operator Mz , we derive some spectral properties of the multiplication operator M φ : F → F. We characterize norm, spectrum, essential norm and essential spectrum of such operators when F has the codimension n property with n ∈ {1, 2, …, + ∞}. |
abstract_unstemmed |
Let M φ be the operator of multiplication by φ on a Hilbert space of functions analytic on the open unit disk. For an invariant subspace F for the multiplication operator Mz , we derive some spectral properties of the multiplication operator M φ : F → F. We characterize norm, spectrum, essential norm and essential spectrum of such operators when F has the codimension n property with n ∈ {1, 2, …, + ∞}. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
container_issue |
5 |
title_short |
Multiplication Operators on Invariant Subspaces of Function Spaces |
url |
https://doi.org/10.1016/S0252-9602(13)60096-X |
remote_bool |
true |
author2 |
KHOSHDEL, Sh JAHANSHAHI, Y. |
author2Str |
KHOSHDEL, Sh JAHANSHAHI, Y. |
ppnlink |
ELV005671817 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1016/S0252-9602(13)60096-X |
up_date |
2024-07-06T20:18:14.934Z |
_version_ |
1803862246619611136 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV016748999</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230623131644.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/S0252-9602(13)60096-X</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2013007000028.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV016748999</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0252-9602(13)60096-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.30</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">YOUSEFI, B.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multiplication Operators on Invariant Subspaces of Function Spaces</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Let M φ be the operator of multiplication by φ on a Hilbert space of functions analytic on the open unit disk. For an invariant subspace F for the multiplication operator Mz , we derive some spectral properties of the multiplication operator M φ : F → F. We characterize norm, spectrum, essential norm and essential spectrum of such operators when F has the codimension n property with n ∈ {1, 2, …, + ∞}.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">essential spectrum</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">essential norm</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fredholm operator</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">multiplication operator</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">invariant subspace</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hilbert space of analytic functions</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">KHOSHDEL, Sh.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">JAHANSHAHI, Y.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Springer Singapore</subfield><subfield code="a">Madabhushi, Sri R. ELSEVIER</subfield><subfield code="t">Understanding the effect of increased cell specific productivity on galactosylation of monoclonal antibodies produced using Chinese hamster ovary cells</subfield><subfield code="d">2021</subfield><subfield code="g">[Singapore]</subfield><subfield code="w">(DE-627)ELV005671817</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:33</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:1463-1470</subfield><subfield code="g">extent:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/S0252-9602(13)60096-X</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.30</subfield><subfield code="j">Biotechnologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">33</subfield><subfield code="j">2013</subfield><subfield code="e">5</subfield><subfield code="h">1463-1470</subfield><subfield code="g">8</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">510</subfield></datafield></record></collection>
|
score |
7.4021826 |