Assessment of molecular events during in vitro re-epithelialization under honey-alginate matrix ambience
Re-epithelialization is one of the most important stages of cutaneous regeneration and its success requires supportive micro-ambience which may be provided with suitable bio-matrix. Biocompatibility and efficacy of such bio-matrix in re-epithelialization could be explored by multimodal analysis of s...
Ausführliche Beschreibung
Autor*in: |
Barui, Ananya [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2013transfer abstract |
---|
Umfang: |
8 |
---|
Übergeordnetes Werk: |
Enthalten in: Adsorption of various metals by carboxymethyl-β-cyclodextrin-modified Zn - Kameda, Tomohito ELSEVIER, 2020, Amsterdam |
---|---|
Übergeordnetes Werk: |
volume:33 ; year:2013 ; number:6 ; day:1 ; month:08 ; pages:3418-3425 ; extent:8 |
Links: |
---|
DOI / URN: |
10.1016/j.msec.2013.04.034 |
---|
Katalog-ID: |
ELV016987713 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV016987713 | ||
003 | DE-627 | ||
005 | 20230625121257.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180602s2013 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.msec.2013.04.034 |2 doi | |
028 | 5 | 2 | |a GBVA2013015000010.pica |
035 | |a (DE-627)ELV016987713 | ||
035 | |a (ELSEVIER)S0928-4931(13)00248-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 600 | |
082 | 0 | 4 | |a 600 |q DE-600 |
082 | 0 | 4 | |a 550 |q VZ |
084 | |a 38.30 |2 bkl | ||
084 | |a 58.45 |2 bkl | ||
084 | |a 38.69 |2 bkl | ||
084 | |a 56.20 |2 bkl | ||
100 | 1 | |a Barui, Ananya |e verfasserin |4 aut | |
245 | 1 | 0 | |a Assessment of molecular events during in vitro re-epithelialization under honey-alginate matrix ambience |
264 | 1 | |c 2013transfer abstract | |
300 | |a 8 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Re-epithelialization is one of the most important stages of cutaneous regeneration and its success requires supportive micro-ambience which may be provided with suitable bio-matrix. Biocompatibility and efficacy of such bio-matrix in re-epithelialization could be explored by multimodal analysis of structural and functional attributes of in vitro wound healing model including evaluation of prime molecular expressions of the epithelial cells during repair. Present study examines the influence of honey-alginate and alginate matrices on re-epithelialization in keratinocyte (HaCaT) population in a 2-D wound model. Cellular viability, proliferation and cell–cell adhesion status were assessed during wound closure using live/dead cell assay and by evaluating expressions of Ki67, p63 and E-cadherin along-with % change in cellular electrical impedance. Efficacy of honey-alginate matrix in comparison to only alginate one was demonstrated by a quicker reduction in wound gap, improved cellular viability, enhanced expressions of Ki67, p63 and its isoforms (TAp63, ΔNp63) as well as E-cadherin. Faster restoration of electrical attribute (% of impedance change) after wounding also indicated better impact of honey-alginate matrix in re-epithelialization. | ||
520 | |a Re-epithelialization is one of the most important stages of cutaneous regeneration and its success requires supportive micro-ambience which may be provided with suitable bio-matrix. Biocompatibility and efficacy of such bio-matrix in re-epithelialization could be explored by multimodal analysis of structural and functional attributes of in vitro wound healing model including evaluation of prime molecular expressions of the epithelial cells during repair. Present study examines the influence of honey-alginate and alginate matrices on re-epithelialization in keratinocyte (HaCaT) population in a 2-D wound model. Cellular viability, proliferation and cell–cell adhesion status were assessed during wound closure using live/dead cell assay and by evaluating expressions of Ki67, p63 and E-cadherin along-with % change in cellular electrical impedance. Efficacy of honey-alginate matrix in comparison to only alginate one was demonstrated by a quicker reduction in wound gap, improved cellular viability, enhanced expressions of Ki67, p63 and its isoforms (TAp63, ΔNp63) as well as E-cadherin. Faster restoration of electrical attribute (% of impedance change) after wounding also indicated better impact of honey-alginate matrix in re-epithelialization. | ||
700 | 1 | |a Mandal, Naresh |4 oth | |
700 | 1 | |a Majumder, Subhadipa |4 oth | |
700 | 1 | |a Das, Raunak Kumar |4 oth | |
700 | 1 | |a Sengupta, Sanghamitra |4 oth | |
700 | 1 | |a Banerjee, Provas |4 oth | |
700 | 1 | |a Ray, Ajoy Kumar |4 oth | |
700 | 1 | |a RoyChaudhuri, Chirosree |4 oth | |
700 | 1 | |a Chatterjee, Jyotirmoy |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Kameda, Tomohito ELSEVIER |t Adsorption of various metals by carboxymethyl-β-cyclodextrin-modified Zn |d 2020 |g Amsterdam |w (DE-627)ELV003774007 |
773 | 1 | 8 | |g volume:33 |g year:2013 |g number:6 |g day:1 |g month:08 |g pages:3418-3425 |g extent:8 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.msec.2013.04.034 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OPC-GGO | ||
936 | b | k | |a 38.30 |j Mineralogie |q VZ |
936 | b | k | |a 58.45 |j Gesteinshüttenkunde |q VZ |
936 | b | k | |a 38.69 |j Bodenkunde: Sonstiges |x Geowissenschaften |q VZ |
936 | b | k | |a 56.20 |j Ingenieurgeologie |j Bodenmechanik |q VZ |
951 | |a AR | ||
952 | |d 33 |j 2013 |e 6 |b 1 |c 0801 |h 3418-3425 |g 8 | ||
953 | |2 045F |a 600 |
author_variant |
a b ab |
---|---|
matchkey_str |
baruiananyamandalnareshmajumdersubhadipa:2013----:sesetfoeuaeetdrnivtoepteilztoudro |
hierarchy_sort_str |
2013transfer abstract |
bklnumber |
38.30 58.45 38.69 56.20 |
publishDate |
2013 |
allfields |
10.1016/j.msec.2013.04.034 doi GBVA2013015000010.pica (DE-627)ELV016987713 (ELSEVIER)S0928-4931(13)00248-8 DE-627 ger DE-627 rakwb eng 600 600 DE-600 550 VZ 38.30 bkl 58.45 bkl 38.69 bkl 56.20 bkl Barui, Ananya verfasserin aut Assessment of molecular events during in vitro re-epithelialization under honey-alginate matrix ambience 2013transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Re-epithelialization is one of the most important stages of cutaneous regeneration and its success requires supportive micro-ambience which may be provided with suitable bio-matrix. Biocompatibility and efficacy of such bio-matrix in re-epithelialization could be explored by multimodal analysis of structural and functional attributes of in vitro wound healing model including evaluation of prime molecular expressions of the epithelial cells during repair. Present study examines the influence of honey-alginate and alginate matrices on re-epithelialization in keratinocyte (HaCaT) population in a 2-D wound model. Cellular viability, proliferation and cell–cell adhesion status were assessed during wound closure using live/dead cell assay and by evaluating expressions of Ki67, p63 and E-cadherin along-with % change in cellular electrical impedance. Efficacy of honey-alginate matrix in comparison to only alginate one was demonstrated by a quicker reduction in wound gap, improved cellular viability, enhanced expressions of Ki67, p63 and its isoforms (TAp63, ΔNp63) as well as E-cadherin. Faster restoration of electrical attribute (% of impedance change) after wounding also indicated better impact of honey-alginate matrix in re-epithelialization. Re-epithelialization is one of the most important stages of cutaneous regeneration and its success requires supportive micro-ambience which may be provided with suitable bio-matrix. Biocompatibility and efficacy of such bio-matrix in re-epithelialization could be explored by multimodal analysis of structural and functional attributes of in vitro wound healing model including evaluation of prime molecular expressions of the epithelial cells during repair. Present study examines the influence of honey-alginate and alginate matrices on re-epithelialization in keratinocyte (HaCaT) population in a 2-D wound model. Cellular viability, proliferation and cell–cell adhesion status were assessed during wound closure using live/dead cell assay and by evaluating expressions of Ki67, p63 and E-cadherin along-with % change in cellular electrical impedance. Efficacy of honey-alginate matrix in comparison to only alginate one was demonstrated by a quicker reduction in wound gap, improved cellular viability, enhanced expressions of Ki67, p63 and its isoforms (TAp63, ΔNp63) as well as E-cadherin. Faster restoration of electrical attribute (% of impedance change) after wounding also indicated better impact of honey-alginate matrix in re-epithelialization. Mandal, Naresh oth Majumder, Subhadipa oth Das, Raunak Kumar oth Sengupta, Sanghamitra oth Banerjee, Provas oth Ray, Ajoy Kumar oth RoyChaudhuri, Chirosree oth Chatterjee, Jyotirmoy oth Enthalten in Elsevier Kameda, Tomohito ELSEVIER Adsorption of various metals by carboxymethyl-β-cyclodextrin-modified Zn 2020 Amsterdam (DE-627)ELV003774007 volume:33 year:2013 number:6 day:1 month:08 pages:3418-3425 extent:8 https://doi.org/10.1016/j.msec.2013.04.034 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO 38.30 Mineralogie VZ 58.45 Gesteinshüttenkunde VZ 38.69 Bodenkunde: Sonstiges Geowissenschaften VZ 56.20 Ingenieurgeologie Bodenmechanik VZ AR 33 2013 6 1 0801 3418-3425 8 045F 600 |
spelling |
10.1016/j.msec.2013.04.034 doi GBVA2013015000010.pica (DE-627)ELV016987713 (ELSEVIER)S0928-4931(13)00248-8 DE-627 ger DE-627 rakwb eng 600 600 DE-600 550 VZ 38.30 bkl 58.45 bkl 38.69 bkl 56.20 bkl Barui, Ananya verfasserin aut Assessment of molecular events during in vitro re-epithelialization under honey-alginate matrix ambience 2013transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Re-epithelialization is one of the most important stages of cutaneous regeneration and its success requires supportive micro-ambience which may be provided with suitable bio-matrix. Biocompatibility and efficacy of such bio-matrix in re-epithelialization could be explored by multimodal analysis of structural and functional attributes of in vitro wound healing model including evaluation of prime molecular expressions of the epithelial cells during repair. Present study examines the influence of honey-alginate and alginate matrices on re-epithelialization in keratinocyte (HaCaT) population in a 2-D wound model. Cellular viability, proliferation and cell–cell adhesion status were assessed during wound closure using live/dead cell assay and by evaluating expressions of Ki67, p63 and E-cadherin along-with % change in cellular electrical impedance. Efficacy of honey-alginate matrix in comparison to only alginate one was demonstrated by a quicker reduction in wound gap, improved cellular viability, enhanced expressions of Ki67, p63 and its isoforms (TAp63, ΔNp63) as well as E-cadherin. Faster restoration of electrical attribute (% of impedance change) after wounding also indicated better impact of honey-alginate matrix in re-epithelialization. Re-epithelialization is one of the most important stages of cutaneous regeneration and its success requires supportive micro-ambience which may be provided with suitable bio-matrix. Biocompatibility and efficacy of such bio-matrix in re-epithelialization could be explored by multimodal analysis of structural and functional attributes of in vitro wound healing model including evaluation of prime molecular expressions of the epithelial cells during repair. Present study examines the influence of honey-alginate and alginate matrices on re-epithelialization in keratinocyte (HaCaT) population in a 2-D wound model. Cellular viability, proliferation and cell–cell adhesion status were assessed during wound closure using live/dead cell assay and by evaluating expressions of Ki67, p63 and E-cadherin along-with % change in cellular electrical impedance. Efficacy of honey-alginate matrix in comparison to only alginate one was demonstrated by a quicker reduction in wound gap, improved cellular viability, enhanced expressions of Ki67, p63 and its isoforms (TAp63, ΔNp63) as well as E-cadherin. Faster restoration of electrical attribute (% of impedance change) after wounding also indicated better impact of honey-alginate matrix in re-epithelialization. Mandal, Naresh oth Majumder, Subhadipa oth Das, Raunak Kumar oth Sengupta, Sanghamitra oth Banerjee, Provas oth Ray, Ajoy Kumar oth RoyChaudhuri, Chirosree oth Chatterjee, Jyotirmoy oth Enthalten in Elsevier Kameda, Tomohito ELSEVIER Adsorption of various metals by carboxymethyl-β-cyclodextrin-modified Zn 2020 Amsterdam (DE-627)ELV003774007 volume:33 year:2013 number:6 day:1 month:08 pages:3418-3425 extent:8 https://doi.org/10.1016/j.msec.2013.04.034 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO 38.30 Mineralogie VZ 58.45 Gesteinshüttenkunde VZ 38.69 Bodenkunde: Sonstiges Geowissenschaften VZ 56.20 Ingenieurgeologie Bodenmechanik VZ AR 33 2013 6 1 0801 3418-3425 8 045F 600 |
allfields_unstemmed |
10.1016/j.msec.2013.04.034 doi GBVA2013015000010.pica (DE-627)ELV016987713 (ELSEVIER)S0928-4931(13)00248-8 DE-627 ger DE-627 rakwb eng 600 600 DE-600 550 VZ 38.30 bkl 58.45 bkl 38.69 bkl 56.20 bkl Barui, Ananya verfasserin aut Assessment of molecular events during in vitro re-epithelialization under honey-alginate matrix ambience 2013transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Re-epithelialization is one of the most important stages of cutaneous regeneration and its success requires supportive micro-ambience which may be provided with suitable bio-matrix. Biocompatibility and efficacy of such bio-matrix in re-epithelialization could be explored by multimodal analysis of structural and functional attributes of in vitro wound healing model including evaluation of prime molecular expressions of the epithelial cells during repair. Present study examines the influence of honey-alginate and alginate matrices on re-epithelialization in keratinocyte (HaCaT) population in a 2-D wound model. Cellular viability, proliferation and cell–cell adhesion status were assessed during wound closure using live/dead cell assay and by evaluating expressions of Ki67, p63 and E-cadherin along-with % change in cellular electrical impedance. Efficacy of honey-alginate matrix in comparison to only alginate one was demonstrated by a quicker reduction in wound gap, improved cellular viability, enhanced expressions of Ki67, p63 and its isoforms (TAp63, ΔNp63) as well as E-cadherin. Faster restoration of electrical attribute (% of impedance change) after wounding also indicated better impact of honey-alginate matrix in re-epithelialization. Re-epithelialization is one of the most important stages of cutaneous regeneration and its success requires supportive micro-ambience which may be provided with suitable bio-matrix. Biocompatibility and efficacy of such bio-matrix in re-epithelialization could be explored by multimodal analysis of structural and functional attributes of in vitro wound healing model including evaluation of prime molecular expressions of the epithelial cells during repair. Present study examines the influence of honey-alginate and alginate matrices on re-epithelialization in keratinocyte (HaCaT) population in a 2-D wound model. Cellular viability, proliferation and cell–cell adhesion status were assessed during wound closure using live/dead cell assay and by evaluating expressions of Ki67, p63 and E-cadherin along-with % change in cellular electrical impedance. Efficacy of honey-alginate matrix in comparison to only alginate one was demonstrated by a quicker reduction in wound gap, improved cellular viability, enhanced expressions of Ki67, p63 and its isoforms (TAp63, ΔNp63) as well as E-cadherin. Faster restoration of electrical attribute (% of impedance change) after wounding also indicated better impact of honey-alginate matrix in re-epithelialization. Mandal, Naresh oth Majumder, Subhadipa oth Das, Raunak Kumar oth Sengupta, Sanghamitra oth Banerjee, Provas oth Ray, Ajoy Kumar oth RoyChaudhuri, Chirosree oth Chatterjee, Jyotirmoy oth Enthalten in Elsevier Kameda, Tomohito ELSEVIER Adsorption of various metals by carboxymethyl-β-cyclodextrin-modified Zn 2020 Amsterdam (DE-627)ELV003774007 volume:33 year:2013 number:6 day:1 month:08 pages:3418-3425 extent:8 https://doi.org/10.1016/j.msec.2013.04.034 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO 38.30 Mineralogie VZ 58.45 Gesteinshüttenkunde VZ 38.69 Bodenkunde: Sonstiges Geowissenschaften VZ 56.20 Ingenieurgeologie Bodenmechanik VZ AR 33 2013 6 1 0801 3418-3425 8 045F 600 |
allfieldsGer |
10.1016/j.msec.2013.04.034 doi GBVA2013015000010.pica (DE-627)ELV016987713 (ELSEVIER)S0928-4931(13)00248-8 DE-627 ger DE-627 rakwb eng 600 600 DE-600 550 VZ 38.30 bkl 58.45 bkl 38.69 bkl 56.20 bkl Barui, Ananya verfasserin aut Assessment of molecular events during in vitro re-epithelialization under honey-alginate matrix ambience 2013transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Re-epithelialization is one of the most important stages of cutaneous regeneration and its success requires supportive micro-ambience which may be provided with suitable bio-matrix. Biocompatibility and efficacy of such bio-matrix in re-epithelialization could be explored by multimodal analysis of structural and functional attributes of in vitro wound healing model including evaluation of prime molecular expressions of the epithelial cells during repair. Present study examines the influence of honey-alginate and alginate matrices on re-epithelialization in keratinocyte (HaCaT) population in a 2-D wound model. Cellular viability, proliferation and cell–cell adhesion status were assessed during wound closure using live/dead cell assay and by evaluating expressions of Ki67, p63 and E-cadherin along-with % change in cellular electrical impedance. Efficacy of honey-alginate matrix in comparison to only alginate one was demonstrated by a quicker reduction in wound gap, improved cellular viability, enhanced expressions of Ki67, p63 and its isoforms (TAp63, ΔNp63) as well as E-cadherin. Faster restoration of electrical attribute (% of impedance change) after wounding also indicated better impact of honey-alginate matrix in re-epithelialization. Re-epithelialization is one of the most important stages of cutaneous regeneration and its success requires supportive micro-ambience which may be provided with suitable bio-matrix. Biocompatibility and efficacy of such bio-matrix in re-epithelialization could be explored by multimodal analysis of structural and functional attributes of in vitro wound healing model including evaluation of prime molecular expressions of the epithelial cells during repair. Present study examines the influence of honey-alginate and alginate matrices on re-epithelialization in keratinocyte (HaCaT) population in a 2-D wound model. Cellular viability, proliferation and cell–cell adhesion status were assessed during wound closure using live/dead cell assay and by evaluating expressions of Ki67, p63 and E-cadherin along-with % change in cellular electrical impedance. Efficacy of honey-alginate matrix in comparison to only alginate one was demonstrated by a quicker reduction in wound gap, improved cellular viability, enhanced expressions of Ki67, p63 and its isoforms (TAp63, ΔNp63) as well as E-cadherin. Faster restoration of electrical attribute (% of impedance change) after wounding also indicated better impact of honey-alginate matrix in re-epithelialization. Mandal, Naresh oth Majumder, Subhadipa oth Das, Raunak Kumar oth Sengupta, Sanghamitra oth Banerjee, Provas oth Ray, Ajoy Kumar oth RoyChaudhuri, Chirosree oth Chatterjee, Jyotirmoy oth Enthalten in Elsevier Kameda, Tomohito ELSEVIER Adsorption of various metals by carboxymethyl-β-cyclodextrin-modified Zn 2020 Amsterdam (DE-627)ELV003774007 volume:33 year:2013 number:6 day:1 month:08 pages:3418-3425 extent:8 https://doi.org/10.1016/j.msec.2013.04.034 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO 38.30 Mineralogie VZ 58.45 Gesteinshüttenkunde VZ 38.69 Bodenkunde: Sonstiges Geowissenschaften VZ 56.20 Ingenieurgeologie Bodenmechanik VZ AR 33 2013 6 1 0801 3418-3425 8 045F 600 |
allfieldsSound |
10.1016/j.msec.2013.04.034 doi GBVA2013015000010.pica (DE-627)ELV016987713 (ELSEVIER)S0928-4931(13)00248-8 DE-627 ger DE-627 rakwb eng 600 600 DE-600 550 VZ 38.30 bkl 58.45 bkl 38.69 bkl 56.20 bkl Barui, Ananya verfasserin aut Assessment of molecular events during in vitro re-epithelialization under honey-alginate matrix ambience 2013transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Re-epithelialization is one of the most important stages of cutaneous regeneration and its success requires supportive micro-ambience which may be provided with suitable bio-matrix. Biocompatibility and efficacy of such bio-matrix in re-epithelialization could be explored by multimodal analysis of structural and functional attributes of in vitro wound healing model including evaluation of prime molecular expressions of the epithelial cells during repair. Present study examines the influence of honey-alginate and alginate matrices on re-epithelialization in keratinocyte (HaCaT) population in a 2-D wound model. Cellular viability, proliferation and cell–cell adhesion status were assessed during wound closure using live/dead cell assay and by evaluating expressions of Ki67, p63 and E-cadherin along-with % change in cellular electrical impedance. Efficacy of honey-alginate matrix in comparison to only alginate one was demonstrated by a quicker reduction in wound gap, improved cellular viability, enhanced expressions of Ki67, p63 and its isoforms (TAp63, ΔNp63) as well as E-cadherin. Faster restoration of electrical attribute (% of impedance change) after wounding also indicated better impact of honey-alginate matrix in re-epithelialization. Re-epithelialization is one of the most important stages of cutaneous regeneration and its success requires supportive micro-ambience which may be provided with suitable bio-matrix. Biocompatibility and efficacy of such bio-matrix in re-epithelialization could be explored by multimodal analysis of structural and functional attributes of in vitro wound healing model including evaluation of prime molecular expressions of the epithelial cells during repair. Present study examines the influence of honey-alginate and alginate matrices on re-epithelialization in keratinocyte (HaCaT) population in a 2-D wound model. Cellular viability, proliferation and cell–cell adhesion status were assessed during wound closure using live/dead cell assay and by evaluating expressions of Ki67, p63 and E-cadherin along-with % change in cellular electrical impedance. Efficacy of honey-alginate matrix in comparison to only alginate one was demonstrated by a quicker reduction in wound gap, improved cellular viability, enhanced expressions of Ki67, p63 and its isoforms (TAp63, ΔNp63) as well as E-cadherin. Faster restoration of electrical attribute (% of impedance change) after wounding also indicated better impact of honey-alginate matrix in re-epithelialization. Mandal, Naresh oth Majumder, Subhadipa oth Das, Raunak Kumar oth Sengupta, Sanghamitra oth Banerjee, Provas oth Ray, Ajoy Kumar oth RoyChaudhuri, Chirosree oth Chatterjee, Jyotirmoy oth Enthalten in Elsevier Kameda, Tomohito ELSEVIER Adsorption of various metals by carboxymethyl-β-cyclodextrin-modified Zn 2020 Amsterdam (DE-627)ELV003774007 volume:33 year:2013 number:6 day:1 month:08 pages:3418-3425 extent:8 https://doi.org/10.1016/j.msec.2013.04.034 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO 38.30 Mineralogie VZ 58.45 Gesteinshüttenkunde VZ 38.69 Bodenkunde: Sonstiges Geowissenschaften VZ 56.20 Ingenieurgeologie Bodenmechanik VZ AR 33 2013 6 1 0801 3418-3425 8 045F 600 |
language |
English |
source |
Enthalten in Adsorption of various metals by carboxymethyl-β-cyclodextrin-modified Zn Amsterdam volume:33 year:2013 number:6 day:1 month:08 pages:3418-3425 extent:8 |
sourceStr |
Enthalten in Adsorption of various metals by carboxymethyl-β-cyclodextrin-modified Zn Amsterdam volume:33 year:2013 number:6 day:1 month:08 pages:3418-3425 extent:8 |
format_phy_str_mv |
Article |
bklname |
Mineralogie Gesteinshüttenkunde Bodenkunde: Sonstiges Ingenieurgeologie Bodenmechanik |
institution |
findex.gbv.de |
dewey-raw |
600 |
isfreeaccess_bool |
false |
container_title |
Adsorption of various metals by carboxymethyl-β-cyclodextrin-modified Zn |
authorswithroles_txt_mv |
Barui, Ananya @@aut@@ Mandal, Naresh @@oth@@ Majumder, Subhadipa @@oth@@ Das, Raunak Kumar @@oth@@ Sengupta, Sanghamitra @@oth@@ Banerjee, Provas @@oth@@ Ray, Ajoy Kumar @@oth@@ RoyChaudhuri, Chirosree @@oth@@ Chatterjee, Jyotirmoy @@oth@@ |
publishDateDaySort_date |
2013-01-01T00:00:00Z |
hierarchy_top_id |
ELV003774007 |
dewey-sort |
3600 |
id |
ELV016987713 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV016987713</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625121257.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.msec.2013.04.034</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2013015000010.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV016987713</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0928-4931(13)00248-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.30</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.45</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.69</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">56.20</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Barui, Ananya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Assessment of molecular events during in vitro re-epithelialization under honey-alginate matrix ambience</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Re-epithelialization is one of the most important stages of cutaneous regeneration and its success requires supportive micro-ambience which may be provided with suitable bio-matrix. Biocompatibility and efficacy of such bio-matrix in re-epithelialization could be explored by multimodal analysis of structural and functional attributes of in vitro wound healing model including evaluation of prime molecular expressions of the epithelial cells during repair. Present study examines the influence of honey-alginate and alginate matrices on re-epithelialization in keratinocyte (HaCaT) population in a 2-D wound model. Cellular viability, proliferation and cell–cell adhesion status were assessed during wound closure using live/dead cell assay and by evaluating expressions of Ki67, p63 and E-cadherin along-with % change in cellular electrical impedance. Efficacy of honey-alginate matrix in comparison to only alginate one was demonstrated by a quicker reduction in wound gap, improved cellular viability, enhanced expressions of Ki67, p63 and its isoforms (TAp63, ΔNp63) as well as E-cadherin. Faster restoration of electrical attribute (% of impedance change) after wounding also indicated better impact of honey-alginate matrix in re-epithelialization.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Re-epithelialization is one of the most important stages of cutaneous regeneration and its success requires supportive micro-ambience which may be provided with suitable bio-matrix. Biocompatibility and efficacy of such bio-matrix in re-epithelialization could be explored by multimodal analysis of structural and functional attributes of in vitro wound healing model including evaluation of prime molecular expressions of the epithelial cells during repair. Present study examines the influence of honey-alginate and alginate matrices on re-epithelialization in keratinocyte (HaCaT) population in a 2-D wound model. Cellular viability, proliferation and cell–cell adhesion status were assessed during wound closure using live/dead cell assay and by evaluating expressions of Ki67, p63 and E-cadherin along-with % change in cellular electrical impedance. Efficacy of honey-alginate matrix in comparison to only alginate one was demonstrated by a quicker reduction in wound gap, improved cellular viability, enhanced expressions of Ki67, p63 and its isoforms (TAp63, ΔNp63) as well as E-cadherin. Faster restoration of electrical attribute (% of impedance change) after wounding also indicated better impact of honey-alginate matrix in re-epithelialization.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mandal, Naresh</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Majumder, Subhadipa</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Das, Raunak Kumar</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sengupta, Sanghamitra</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Banerjee, Provas</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ray, Ajoy Kumar</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">RoyChaudhuri, Chirosree</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chatterjee, Jyotirmoy</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Kameda, Tomohito ELSEVIER</subfield><subfield code="t">Adsorption of various metals by carboxymethyl-β-cyclodextrin-modified Zn</subfield><subfield code="d">2020</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV003774007</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:33</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:6</subfield><subfield code="g">day:1</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:3418-3425</subfield><subfield code="g">extent:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.msec.2013.04.034</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.30</subfield><subfield code="j">Mineralogie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.45</subfield><subfield code="j">Gesteinshüttenkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.69</subfield><subfield code="j">Bodenkunde: Sonstiges</subfield><subfield code="x">Geowissenschaften</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">56.20</subfield><subfield code="j">Ingenieurgeologie</subfield><subfield code="j">Bodenmechanik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">33</subfield><subfield code="j">2013</subfield><subfield code="e">6</subfield><subfield code="b">1</subfield><subfield code="c">0801</subfield><subfield code="h">3418-3425</subfield><subfield code="g">8</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">600</subfield></datafield></record></collection>
|
author |
Barui, Ananya |
spellingShingle |
Barui, Ananya ddc 600 ddc 550 bkl 38.30 bkl 58.45 bkl 38.69 bkl 56.20 Assessment of molecular events during in vitro re-epithelialization under honey-alginate matrix ambience |
authorStr |
Barui, Ananya |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV003774007 |
format |
electronic Article |
dewey-ones |
600 - Technology 550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
600 600 DE-600 550 VZ 38.30 bkl 58.45 bkl 38.69 bkl 56.20 bkl Assessment of molecular events during in vitro re-epithelialization under honey-alginate matrix ambience |
topic |
ddc 600 ddc 550 bkl 38.30 bkl 58.45 bkl 38.69 bkl 56.20 |
topic_unstemmed |
ddc 600 ddc 550 bkl 38.30 bkl 58.45 bkl 38.69 bkl 56.20 |
topic_browse |
ddc 600 ddc 550 bkl 38.30 bkl 58.45 bkl 38.69 bkl 56.20 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
n m nm s m sm r k d rk rkd s s ss p b pb a k r ak akr c r cr j c jc |
hierarchy_parent_title |
Adsorption of various metals by carboxymethyl-β-cyclodextrin-modified Zn |
hierarchy_parent_id |
ELV003774007 |
dewey-tens |
600 - Technology 550 - Earth sciences & geology |
hierarchy_top_title |
Adsorption of various metals by carboxymethyl-β-cyclodextrin-modified Zn |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV003774007 |
title |
Assessment of molecular events during in vitro re-epithelialization under honey-alginate matrix ambience |
ctrlnum |
(DE-627)ELV016987713 (ELSEVIER)S0928-4931(13)00248-8 |
title_full |
Assessment of molecular events during in vitro re-epithelialization under honey-alginate matrix ambience |
author_sort |
Barui, Ananya |
journal |
Adsorption of various metals by carboxymethyl-β-cyclodextrin-modified Zn |
journalStr |
Adsorption of various metals by carboxymethyl-β-cyclodextrin-modified Zn |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
zzz |
container_start_page |
3418 |
author_browse |
Barui, Ananya |
container_volume |
33 |
physical |
8 |
class |
600 600 DE-600 550 VZ 38.30 bkl 58.45 bkl 38.69 bkl 56.20 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Barui, Ananya |
doi_str_mv |
10.1016/j.msec.2013.04.034 |
dewey-full |
600 550 |
title_sort |
assessment of molecular events during in vitro re-epithelialization under honey-alginate matrix ambience |
title_auth |
Assessment of molecular events during in vitro re-epithelialization under honey-alginate matrix ambience |
abstract |
Re-epithelialization is one of the most important stages of cutaneous regeneration and its success requires supportive micro-ambience which may be provided with suitable bio-matrix. Biocompatibility and efficacy of such bio-matrix in re-epithelialization could be explored by multimodal analysis of structural and functional attributes of in vitro wound healing model including evaluation of prime molecular expressions of the epithelial cells during repair. Present study examines the influence of honey-alginate and alginate matrices on re-epithelialization in keratinocyte (HaCaT) population in a 2-D wound model. Cellular viability, proliferation and cell–cell adhesion status were assessed during wound closure using live/dead cell assay and by evaluating expressions of Ki67, p63 and E-cadherin along-with % change in cellular electrical impedance. Efficacy of honey-alginate matrix in comparison to only alginate one was demonstrated by a quicker reduction in wound gap, improved cellular viability, enhanced expressions of Ki67, p63 and its isoforms (TAp63, ΔNp63) as well as E-cadherin. Faster restoration of electrical attribute (% of impedance change) after wounding also indicated better impact of honey-alginate matrix in re-epithelialization. |
abstractGer |
Re-epithelialization is one of the most important stages of cutaneous regeneration and its success requires supportive micro-ambience which may be provided with suitable bio-matrix. Biocompatibility and efficacy of such bio-matrix in re-epithelialization could be explored by multimodal analysis of structural and functional attributes of in vitro wound healing model including evaluation of prime molecular expressions of the epithelial cells during repair. Present study examines the influence of honey-alginate and alginate matrices on re-epithelialization in keratinocyte (HaCaT) population in a 2-D wound model. Cellular viability, proliferation and cell–cell adhesion status were assessed during wound closure using live/dead cell assay and by evaluating expressions of Ki67, p63 and E-cadherin along-with % change in cellular electrical impedance. Efficacy of honey-alginate matrix in comparison to only alginate one was demonstrated by a quicker reduction in wound gap, improved cellular viability, enhanced expressions of Ki67, p63 and its isoforms (TAp63, ΔNp63) as well as E-cadherin. Faster restoration of electrical attribute (% of impedance change) after wounding also indicated better impact of honey-alginate matrix in re-epithelialization. |
abstract_unstemmed |
Re-epithelialization is one of the most important stages of cutaneous regeneration and its success requires supportive micro-ambience which may be provided with suitable bio-matrix. Biocompatibility and efficacy of such bio-matrix in re-epithelialization could be explored by multimodal analysis of structural and functional attributes of in vitro wound healing model including evaluation of prime molecular expressions of the epithelial cells during repair. Present study examines the influence of honey-alginate and alginate matrices on re-epithelialization in keratinocyte (HaCaT) population in a 2-D wound model. Cellular viability, proliferation and cell–cell adhesion status were assessed during wound closure using live/dead cell assay and by evaluating expressions of Ki67, p63 and E-cadherin along-with % change in cellular electrical impedance. Efficacy of honey-alginate matrix in comparison to only alginate one was demonstrated by a quicker reduction in wound gap, improved cellular viability, enhanced expressions of Ki67, p63 and its isoforms (TAp63, ΔNp63) as well as E-cadherin. Faster restoration of electrical attribute (% of impedance change) after wounding also indicated better impact of honey-alginate matrix in re-epithelialization. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO |
container_issue |
6 |
title_short |
Assessment of molecular events during in vitro re-epithelialization under honey-alginate matrix ambience |
url |
https://doi.org/10.1016/j.msec.2013.04.034 |
remote_bool |
true |
author2 |
Mandal, Naresh Majumder, Subhadipa Das, Raunak Kumar Sengupta, Sanghamitra Banerjee, Provas Ray, Ajoy Kumar RoyChaudhuri, Chirosree Chatterjee, Jyotirmoy |
author2Str |
Mandal, Naresh Majumder, Subhadipa Das, Raunak Kumar Sengupta, Sanghamitra Banerjee, Provas Ray, Ajoy Kumar RoyChaudhuri, Chirosree Chatterjee, Jyotirmoy |
ppnlink |
ELV003774007 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth oth |
doi_str |
10.1016/j.msec.2013.04.034 |
up_date |
2024-07-06T20:50:01.979Z |
_version_ |
1803864246300180480 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV016987713</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625121257.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.msec.2013.04.034</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2013015000010.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV016987713</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0928-4931(13)00248-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.30</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.45</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.69</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">56.20</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Barui, Ananya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Assessment of molecular events during in vitro re-epithelialization under honey-alginate matrix ambience</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Re-epithelialization is one of the most important stages of cutaneous regeneration and its success requires supportive micro-ambience which may be provided with suitable bio-matrix. Biocompatibility and efficacy of such bio-matrix in re-epithelialization could be explored by multimodal analysis of structural and functional attributes of in vitro wound healing model including evaluation of prime molecular expressions of the epithelial cells during repair. Present study examines the influence of honey-alginate and alginate matrices on re-epithelialization in keratinocyte (HaCaT) population in a 2-D wound model. Cellular viability, proliferation and cell–cell adhesion status were assessed during wound closure using live/dead cell assay and by evaluating expressions of Ki67, p63 and E-cadherin along-with % change in cellular electrical impedance. Efficacy of honey-alginate matrix in comparison to only alginate one was demonstrated by a quicker reduction in wound gap, improved cellular viability, enhanced expressions of Ki67, p63 and its isoforms (TAp63, ΔNp63) as well as E-cadherin. Faster restoration of electrical attribute (% of impedance change) after wounding also indicated better impact of honey-alginate matrix in re-epithelialization.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Re-epithelialization is one of the most important stages of cutaneous regeneration and its success requires supportive micro-ambience which may be provided with suitable bio-matrix. Biocompatibility and efficacy of such bio-matrix in re-epithelialization could be explored by multimodal analysis of structural and functional attributes of in vitro wound healing model including evaluation of prime molecular expressions of the epithelial cells during repair. Present study examines the influence of honey-alginate and alginate matrices on re-epithelialization in keratinocyte (HaCaT) population in a 2-D wound model. Cellular viability, proliferation and cell–cell adhesion status were assessed during wound closure using live/dead cell assay and by evaluating expressions of Ki67, p63 and E-cadherin along-with % change in cellular electrical impedance. Efficacy of honey-alginate matrix in comparison to only alginate one was demonstrated by a quicker reduction in wound gap, improved cellular viability, enhanced expressions of Ki67, p63 and its isoforms (TAp63, ΔNp63) as well as E-cadherin. Faster restoration of electrical attribute (% of impedance change) after wounding also indicated better impact of honey-alginate matrix in re-epithelialization.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mandal, Naresh</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Majumder, Subhadipa</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Das, Raunak Kumar</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sengupta, Sanghamitra</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Banerjee, Provas</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ray, Ajoy Kumar</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">RoyChaudhuri, Chirosree</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chatterjee, Jyotirmoy</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Kameda, Tomohito ELSEVIER</subfield><subfield code="t">Adsorption of various metals by carboxymethyl-β-cyclodextrin-modified Zn</subfield><subfield code="d">2020</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV003774007</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:33</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:6</subfield><subfield code="g">day:1</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:3418-3425</subfield><subfield code="g">extent:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.msec.2013.04.034</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.30</subfield><subfield code="j">Mineralogie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.45</subfield><subfield code="j">Gesteinshüttenkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.69</subfield><subfield code="j">Bodenkunde: Sonstiges</subfield><subfield code="x">Geowissenschaften</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">56.20</subfield><subfield code="j">Ingenieurgeologie</subfield><subfield code="j">Bodenmechanik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">33</subfield><subfield code="j">2013</subfield><subfield code="e">6</subfield><subfield code="b">1</subfield><subfield code="c">0801</subfield><subfield code="h">3418-3425</subfield><subfield code="g">8</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">600</subfield></datafield></record></collection>
|
score |
7.401457 |