Formation and characterization of iron-binding phosphorylated human-like collagen as a potential iron supplement
Iron incorporated into food can induce precipitation and unwanted interaction with other components in food. Iron-binding proteins represent a possibility to avoid these problems and other side effects, as the iron is protected. However, there are several technical problems associated with protein–i...
Ausführliche Beschreibung
Autor*in: |
Deng, Jianjun [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2013transfer abstract |
---|
Umfang: |
8 |
---|
Übergeordnetes Werk: |
Enthalten in: Adsorption of various metals by carboxymethyl-β-cyclodextrin-modified Zn - Kameda, Tomohito ELSEVIER, 2020, Amsterdam |
---|---|
Übergeordnetes Werk: |
volume:33 ; year:2013 ; number:7 ; pages:4361-4368 ; extent:8 |
Links: |
---|
DOI / URN: |
10.1016/j.msec.2013.06.024 |
---|
Katalog-ID: |
ELV016988965 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV016988965 | ||
003 | DE-627 | ||
005 | 20230625121301.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180602s2013 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.msec.2013.06.024 |2 doi | |
028 | 5 | 2 | |a GBVA2013015000010.pica |
035 | |a (DE-627)ELV016988965 | ||
035 | |a (ELSEVIER)S0928-4931(13)00383-4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 600 | |
082 | 0 | 4 | |a 600 |q DE-600 |
082 | 0 | 4 | |a 550 |q VZ |
084 | |a 38.30 |2 bkl | ||
084 | |a 58.45 |2 bkl | ||
084 | |a 38.69 |2 bkl | ||
084 | |a 56.20 |2 bkl | ||
100 | 1 | |a Deng, Jianjun |e verfasserin |4 aut | |
245 | 1 | 0 | |a Formation and characterization of iron-binding phosphorylated human-like collagen as a potential iron supplement |
264 | 1 | |c 2013transfer abstract | |
300 | |a 8 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Iron incorporated into food can induce precipitation and unwanted interaction with other components in food. Iron-binding proteins represent a possibility to avoid these problems and other side effects, as the iron is protected. However, there are several technical problems associated with protein–iron complex formation. In this paper, the iron-binding phosphorylated human-like collagen (Fe-G6P-HLC) was prepared under physiological conditions through phosphorylated modification. One molecule of Fe-G6P-HLC possesses about 24 atoms of Fe. Spectroscopy analysis, differential scanning calorimetry (DSC) and equilibrium dialysis techniques were employed to investigate the characteristics of the Fe-G6P-HLC. The binding sites (n b ) and apparent association constant (K app ) between iron and phosphorylated HLC were measured at n b =23.7 and log K app =4.57, respectively. The amount of iron (Fe2+ sulfate) binding to phosphorylated HLC was found to be a function of pH and phosphate content. In addition, the solubility and thermal stability of HLC were not significantly affected. The results should facilitate the utilization of HLC as a bioactive iron supplement in the food and medical industry and provide an important theoretical evidence for the application of HLC chelates. | ||
520 | |a Iron incorporated into food can induce precipitation and unwanted interaction with other components in food. Iron-binding proteins represent a possibility to avoid these problems and other side effects, as the iron is protected. However, there are several technical problems associated with protein–iron complex formation. In this paper, the iron-binding phosphorylated human-like collagen (Fe-G6P-HLC) was prepared under physiological conditions through phosphorylated modification. One molecule of Fe-G6P-HLC possesses about 24 atoms of Fe. Spectroscopy analysis, differential scanning calorimetry (DSC) and equilibrium dialysis techniques were employed to investigate the characteristics of the Fe-G6P-HLC. The binding sites (n b ) and apparent association constant (K app ) between iron and phosphorylated HLC were measured at n b =23.7 and log K app =4.57, respectively. The amount of iron (Fe2+ sulfate) binding to phosphorylated HLC was found to be a function of pH and phosphate content. In addition, the solubility and thermal stability of HLC were not significantly affected. The results should facilitate the utilization of HLC as a bioactive iron supplement in the food and medical industry and provide an important theoretical evidence for the application of HLC chelates. | ||
700 | 1 | |a Chen, Fei |4 oth | |
700 | 1 | |a Fan, Daidi |4 oth | |
700 | 1 | |a Zhu, Chenhui |4 oth | |
700 | 1 | |a Ma, Xiaoxuan |4 oth | |
700 | 1 | |a Xue, Wenjiao |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Kameda, Tomohito ELSEVIER |t Adsorption of various metals by carboxymethyl-β-cyclodextrin-modified Zn |d 2020 |g Amsterdam |w (DE-627)ELV003774007 |
773 | 1 | 8 | |g volume:33 |g year:2013 |g number:7 |g pages:4361-4368 |g extent:8 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.msec.2013.06.024 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OPC-GGO | ||
936 | b | k | |a 38.30 |j Mineralogie |q VZ |
936 | b | k | |a 58.45 |j Gesteinshüttenkunde |q VZ |
936 | b | k | |a 38.69 |j Bodenkunde: Sonstiges |x Geowissenschaften |q VZ |
936 | b | k | |a 56.20 |j Ingenieurgeologie |j Bodenmechanik |q VZ |
951 | |a AR | ||
952 | |d 33 |j 2013 |e 7 |h 4361-4368 |g 8 | ||
953 | |2 045F |a 600 |
author_variant |
j d jd |
---|---|
matchkey_str |
dengjianjunchenfeifandaidizhuchenhuimaxi:2013----:omtoadhrceiainfrnidnpopoyaehmnieolgn |
hierarchy_sort_str |
2013transfer abstract |
bklnumber |
38.30 58.45 38.69 56.20 |
publishDate |
2013 |
allfields |
10.1016/j.msec.2013.06.024 doi GBVA2013015000010.pica (DE-627)ELV016988965 (ELSEVIER)S0928-4931(13)00383-4 DE-627 ger DE-627 rakwb eng 600 600 DE-600 550 VZ 38.30 bkl 58.45 bkl 38.69 bkl 56.20 bkl Deng, Jianjun verfasserin aut Formation and characterization of iron-binding phosphorylated human-like collagen as a potential iron supplement 2013transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Iron incorporated into food can induce precipitation and unwanted interaction with other components in food. Iron-binding proteins represent a possibility to avoid these problems and other side effects, as the iron is protected. However, there are several technical problems associated with protein–iron complex formation. In this paper, the iron-binding phosphorylated human-like collagen (Fe-G6P-HLC) was prepared under physiological conditions through phosphorylated modification. One molecule of Fe-G6P-HLC possesses about 24 atoms of Fe. Spectroscopy analysis, differential scanning calorimetry (DSC) and equilibrium dialysis techniques were employed to investigate the characteristics of the Fe-G6P-HLC. The binding sites (n b ) and apparent association constant (K app ) between iron and phosphorylated HLC were measured at n b =23.7 and log K app =4.57, respectively. The amount of iron (Fe2+ sulfate) binding to phosphorylated HLC was found to be a function of pH and phosphate content. In addition, the solubility and thermal stability of HLC were not significantly affected. The results should facilitate the utilization of HLC as a bioactive iron supplement in the food and medical industry and provide an important theoretical evidence for the application of HLC chelates. Iron incorporated into food can induce precipitation and unwanted interaction with other components in food. Iron-binding proteins represent a possibility to avoid these problems and other side effects, as the iron is protected. However, there are several technical problems associated with protein–iron complex formation. In this paper, the iron-binding phosphorylated human-like collagen (Fe-G6P-HLC) was prepared under physiological conditions through phosphorylated modification. One molecule of Fe-G6P-HLC possesses about 24 atoms of Fe. Spectroscopy analysis, differential scanning calorimetry (DSC) and equilibrium dialysis techniques were employed to investigate the characteristics of the Fe-G6P-HLC. The binding sites (n b ) and apparent association constant (K app ) between iron and phosphorylated HLC were measured at n b =23.7 and log K app =4.57, respectively. The amount of iron (Fe2+ sulfate) binding to phosphorylated HLC was found to be a function of pH and phosphate content. In addition, the solubility and thermal stability of HLC were not significantly affected. The results should facilitate the utilization of HLC as a bioactive iron supplement in the food and medical industry and provide an important theoretical evidence for the application of HLC chelates. Chen, Fei oth Fan, Daidi oth Zhu, Chenhui oth Ma, Xiaoxuan oth Xue, Wenjiao oth Enthalten in Elsevier Kameda, Tomohito ELSEVIER Adsorption of various metals by carboxymethyl-β-cyclodextrin-modified Zn 2020 Amsterdam (DE-627)ELV003774007 volume:33 year:2013 number:7 pages:4361-4368 extent:8 https://doi.org/10.1016/j.msec.2013.06.024 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO 38.30 Mineralogie VZ 58.45 Gesteinshüttenkunde VZ 38.69 Bodenkunde: Sonstiges Geowissenschaften VZ 56.20 Ingenieurgeologie Bodenmechanik VZ AR 33 2013 7 4361-4368 8 045F 600 |
spelling |
10.1016/j.msec.2013.06.024 doi GBVA2013015000010.pica (DE-627)ELV016988965 (ELSEVIER)S0928-4931(13)00383-4 DE-627 ger DE-627 rakwb eng 600 600 DE-600 550 VZ 38.30 bkl 58.45 bkl 38.69 bkl 56.20 bkl Deng, Jianjun verfasserin aut Formation and characterization of iron-binding phosphorylated human-like collagen as a potential iron supplement 2013transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Iron incorporated into food can induce precipitation and unwanted interaction with other components in food. Iron-binding proteins represent a possibility to avoid these problems and other side effects, as the iron is protected. However, there are several technical problems associated with protein–iron complex formation. In this paper, the iron-binding phosphorylated human-like collagen (Fe-G6P-HLC) was prepared under physiological conditions through phosphorylated modification. One molecule of Fe-G6P-HLC possesses about 24 atoms of Fe. Spectroscopy analysis, differential scanning calorimetry (DSC) and equilibrium dialysis techniques were employed to investigate the characteristics of the Fe-G6P-HLC. The binding sites (n b ) and apparent association constant (K app ) between iron and phosphorylated HLC were measured at n b =23.7 and log K app =4.57, respectively. The amount of iron (Fe2+ sulfate) binding to phosphorylated HLC was found to be a function of pH and phosphate content. In addition, the solubility and thermal stability of HLC were not significantly affected. The results should facilitate the utilization of HLC as a bioactive iron supplement in the food and medical industry and provide an important theoretical evidence for the application of HLC chelates. Iron incorporated into food can induce precipitation and unwanted interaction with other components in food. Iron-binding proteins represent a possibility to avoid these problems and other side effects, as the iron is protected. However, there are several technical problems associated with protein–iron complex formation. In this paper, the iron-binding phosphorylated human-like collagen (Fe-G6P-HLC) was prepared under physiological conditions through phosphorylated modification. One molecule of Fe-G6P-HLC possesses about 24 atoms of Fe. Spectroscopy analysis, differential scanning calorimetry (DSC) and equilibrium dialysis techniques were employed to investigate the characteristics of the Fe-G6P-HLC. The binding sites (n b ) and apparent association constant (K app ) between iron and phosphorylated HLC were measured at n b =23.7 and log K app =4.57, respectively. The amount of iron (Fe2+ sulfate) binding to phosphorylated HLC was found to be a function of pH and phosphate content. In addition, the solubility and thermal stability of HLC were not significantly affected. The results should facilitate the utilization of HLC as a bioactive iron supplement in the food and medical industry and provide an important theoretical evidence for the application of HLC chelates. Chen, Fei oth Fan, Daidi oth Zhu, Chenhui oth Ma, Xiaoxuan oth Xue, Wenjiao oth Enthalten in Elsevier Kameda, Tomohito ELSEVIER Adsorption of various metals by carboxymethyl-β-cyclodextrin-modified Zn 2020 Amsterdam (DE-627)ELV003774007 volume:33 year:2013 number:7 pages:4361-4368 extent:8 https://doi.org/10.1016/j.msec.2013.06.024 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO 38.30 Mineralogie VZ 58.45 Gesteinshüttenkunde VZ 38.69 Bodenkunde: Sonstiges Geowissenschaften VZ 56.20 Ingenieurgeologie Bodenmechanik VZ AR 33 2013 7 4361-4368 8 045F 600 |
allfields_unstemmed |
10.1016/j.msec.2013.06.024 doi GBVA2013015000010.pica (DE-627)ELV016988965 (ELSEVIER)S0928-4931(13)00383-4 DE-627 ger DE-627 rakwb eng 600 600 DE-600 550 VZ 38.30 bkl 58.45 bkl 38.69 bkl 56.20 bkl Deng, Jianjun verfasserin aut Formation and characterization of iron-binding phosphorylated human-like collagen as a potential iron supplement 2013transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Iron incorporated into food can induce precipitation and unwanted interaction with other components in food. Iron-binding proteins represent a possibility to avoid these problems and other side effects, as the iron is protected. However, there are several technical problems associated with protein–iron complex formation. In this paper, the iron-binding phosphorylated human-like collagen (Fe-G6P-HLC) was prepared under physiological conditions through phosphorylated modification. One molecule of Fe-G6P-HLC possesses about 24 atoms of Fe. Spectroscopy analysis, differential scanning calorimetry (DSC) and equilibrium dialysis techniques were employed to investigate the characteristics of the Fe-G6P-HLC. The binding sites (n b ) and apparent association constant (K app ) between iron and phosphorylated HLC were measured at n b =23.7 and log K app =4.57, respectively. The amount of iron (Fe2+ sulfate) binding to phosphorylated HLC was found to be a function of pH and phosphate content. In addition, the solubility and thermal stability of HLC were not significantly affected. The results should facilitate the utilization of HLC as a bioactive iron supplement in the food and medical industry and provide an important theoretical evidence for the application of HLC chelates. Iron incorporated into food can induce precipitation and unwanted interaction with other components in food. Iron-binding proteins represent a possibility to avoid these problems and other side effects, as the iron is protected. However, there are several technical problems associated with protein–iron complex formation. In this paper, the iron-binding phosphorylated human-like collagen (Fe-G6P-HLC) was prepared under physiological conditions through phosphorylated modification. One molecule of Fe-G6P-HLC possesses about 24 atoms of Fe. Spectroscopy analysis, differential scanning calorimetry (DSC) and equilibrium dialysis techniques were employed to investigate the characteristics of the Fe-G6P-HLC. The binding sites (n b ) and apparent association constant (K app ) between iron and phosphorylated HLC were measured at n b =23.7 and log K app =4.57, respectively. The amount of iron (Fe2+ sulfate) binding to phosphorylated HLC was found to be a function of pH and phosphate content. In addition, the solubility and thermal stability of HLC were not significantly affected. The results should facilitate the utilization of HLC as a bioactive iron supplement in the food and medical industry and provide an important theoretical evidence for the application of HLC chelates. Chen, Fei oth Fan, Daidi oth Zhu, Chenhui oth Ma, Xiaoxuan oth Xue, Wenjiao oth Enthalten in Elsevier Kameda, Tomohito ELSEVIER Adsorption of various metals by carboxymethyl-β-cyclodextrin-modified Zn 2020 Amsterdam (DE-627)ELV003774007 volume:33 year:2013 number:7 pages:4361-4368 extent:8 https://doi.org/10.1016/j.msec.2013.06.024 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO 38.30 Mineralogie VZ 58.45 Gesteinshüttenkunde VZ 38.69 Bodenkunde: Sonstiges Geowissenschaften VZ 56.20 Ingenieurgeologie Bodenmechanik VZ AR 33 2013 7 4361-4368 8 045F 600 |
allfieldsGer |
10.1016/j.msec.2013.06.024 doi GBVA2013015000010.pica (DE-627)ELV016988965 (ELSEVIER)S0928-4931(13)00383-4 DE-627 ger DE-627 rakwb eng 600 600 DE-600 550 VZ 38.30 bkl 58.45 bkl 38.69 bkl 56.20 bkl Deng, Jianjun verfasserin aut Formation and characterization of iron-binding phosphorylated human-like collagen as a potential iron supplement 2013transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Iron incorporated into food can induce precipitation and unwanted interaction with other components in food. Iron-binding proteins represent a possibility to avoid these problems and other side effects, as the iron is protected. However, there are several technical problems associated with protein–iron complex formation. In this paper, the iron-binding phosphorylated human-like collagen (Fe-G6P-HLC) was prepared under physiological conditions through phosphorylated modification. One molecule of Fe-G6P-HLC possesses about 24 atoms of Fe. Spectroscopy analysis, differential scanning calorimetry (DSC) and equilibrium dialysis techniques were employed to investigate the characteristics of the Fe-G6P-HLC. The binding sites (n b ) and apparent association constant (K app ) between iron and phosphorylated HLC were measured at n b =23.7 and log K app =4.57, respectively. The amount of iron (Fe2+ sulfate) binding to phosphorylated HLC was found to be a function of pH and phosphate content. In addition, the solubility and thermal stability of HLC were not significantly affected. The results should facilitate the utilization of HLC as a bioactive iron supplement in the food and medical industry and provide an important theoretical evidence for the application of HLC chelates. Iron incorporated into food can induce precipitation and unwanted interaction with other components in food. Iron-binding proteins represent a possibility to avoid these problems and other side effects, as the iron is protected. However, there are several technical problems associated with protein–iron complex formation. In this paper, the iron-binding phosphorylated human-like collagen (Fe-G6P-HLC) was prepared under physiological conditions through phosphorylated modification. One molecule of Fe-G6P-HLC possesses about 24 atoms of Fe. Spectroscopy analysis, differential scanning calorimetry (DSC) and equilibrium dialysis techniques were employed to investigate the characteristics of the Fe-G6P-HLC. The binding sites (n b ) and apparent association constant (K app ) between iron and phosphorylated HLC were measured at n b =23.7 and log K app =4.57, respectively. The amount of iron (Fe2+ sulfate) binding to phosphorylated HLC was found to be a function of pH and phosphate content. In addition, the solubility and thermal stability of HLC were not significantly affected. The results should facilitate the utilization of HLC as a bioactive iron supplement in the food and medical industry and provide an important theoretical evidence for the application of HLC chelates. Chen, Fei oth Fan, Daidi oth Zhu, Chenhui oth Ma, Xiaoxuan oth Xue, Wenjiao oth Enthalten in Elsevier Kameda, Tomohito ELSEVIER Adsorption of various metals by carboxymethyl-β-cyclodextrin-modified Zn 2020 Amsterdam (DE-627)ELV003774007 volume:33 year:2013 number:7 pages:4361-4368 extent:8 https://doi.org/10.1016/j.msec.2013.06.024 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO 38.30 Mineralogie VZ 58.45 Gesteinshüttenkunde VZ 38.69 Bodenkunde: Sonstiges Geowissenschaften VZ 56.20 Ingenieurgeologie Bodenmechanik VZ AR 33 2013 7 4361-4368 8 045F 600 |
allfieldsSound |
10.1016/j.msec.2013.06.024 doi GBVA2013015000010.pica (DE-627)ELV016988965 (ELSEVIER)S0928-4931(13)00383-4 DE-627 ger DE-627 rakwb eng 600 600 DE-600 550 VZ 38.30 bkl 58.45 bkl 38.69 bkl 56.20 bkl Deng, Jianjun verfasserin aut Formation and characterization of iron-binding phosphorylated human-like collagen as a potential iron supplement 2013transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Iron incorporated into food can induce precipitation and unwanted interaction with other components in food. Iron-binding proteins represent a possibility to avoid these problems and other side effects, as the iron is protected. However, there are several technical problems associated with protein–iron complex formation. In this paper, the iron-binding phosphorylated human-like collagen (Fe-G6P-HLC) was prepared under physiological conditions through phosphorylated modification. One molecule of Fe-G6P-HLC possesses about 24 atoms of Fe. Spectroscopy analysis, differential scanning calorimetry (DSC) and equilibrium dialysis techniques were employed to investigate the characteristics of the Fe-G6P-HLC. The binding sites (n b ) and apparent association constant (K app ) between iron and phosphorylated HLC were measured at n b =23.7 and log K app =4.57, respectively. The amount of iron (Fe2+ sulfate) binding to phosphorylated HLC was found to be a function of pH and phosphate content. In addition, the solubility and thermal stability of HLC were not significantly affected. The results should facilitate the utilization of HLC as a bioactive iron supplement in the food and medical industry and provide an important theoretical evidence for the application of HLC chelates. Iron incorporated into food can induce precipitation and unwanted interaction with other components in food. Iron-binding proteins represent a possibility to avoid these problems and other side effects, as the iron is protected. However, there are several technical problems associated with protein–iron complex formation. In this paper, the iron-binding phosphorylated human-like collagen (Fe-G6P-HLC) was prepared under physiological conditions through phosphorylated modification. One molecule of Fe-G6P-HLC possesses about 24 atoms of Fe. Spectroscopy analysis, differential scanning calorimetry (DSC) and equilibrium dialysis techniques were employed to investigate the characteristics of the Fe-G6P-HLC. The binding sites (n b ) and apparent association constant (K app ) between iron and phosphorylated HLC were measured at n b =23.7 and log K app =4.57, respectively. The amount of iron (Fe2+ sulfate) binding to phosphorylated HLC was found to be a function of pH and phosphate content. In addition, the solubility and thermal stability of HLC were not significantly affected. The results should facilitate the utilization of HLC as a bioactive iron supplement in the food and medical industry and provide an important theoretical evidence for the application of HLC chelates. Chen, Fei oth Fan, Daidi oth Zhu, Chenhui oth Ma, Xiaoxuan oth Xue, Wenjiao oth Enthalten in Elsevier Kameda, Tomohito ELSEVIER Adsorption of various metals by carboxymethyl-β-cyclodextrin-modified Zn 2020 Amsterdam (DE-627)ELV003774007 volume:33 year:2013 number:7 pages:4361-4368 extent:8 https://doi.org/10.1016/j.msec.2013.06.024 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO 38.30 Mineralogie VZ 58.45 Gesteinshüttenkunde VZ 38.69 Bodenkunde: Sonstiges Geowissenschaften VZ 56.20 Ingenieurgeologie Bodenmechanik VZ AR 33 2013 7 4361-4368 8 045F 600 |
language |
English |
source |
Enthalten in Adsorption of various metals by carboxymethyl-β-cyclodextrin-modified Zn Amsterdam volume:33 year:2013 number:7 pages:4361-4368 extent:8 |
sourceStr |
Enthalten in Adsorption of various metals by carboxymethyl-β-cyclodextrin-modified Zn Amsterdam volume:33 year:2013 number:7 pages:4361-4368 extent:8 |
format_phy_str_mv |
Article |
bklname |
Mineralogie Gesteinshüttenkunde Bodenkunde: Sonstiges Ingenieurgeologie Bodenmechanik |
institution |
findex.gbv.de |
dewey-raw |
600 |
isfreeaccess_bool |
false |
container_title |
Adsorption of various metals by carboxymethyl-β-cyclodextrin-modified Zn |
authorswithroles_txt_mv |
Deng, Jianjun @@aut@@ Chen, Fei @@oth@@ Fan, Daidi @@oth@@ Zhu, Chenhui @@oth@@ Ma, Xiaoxuan @@oth@@ Xue, Wenjiao @@oth@@ |
publishDateDaySort_date |
2013-01-01T00:00:00Z |
hierarchy_top_id |
ELV003774007 |
dewey-sort |
3600 |
id |
ELV016988965 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV016988965</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625121301.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.msec.2013.06.024</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2013015000010.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV016988965</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0928-4931(13)00383-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.30</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.45</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.69</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">56.20</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Deng, Jianjun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Formation and characterization of iron-binding phosphorylated human-like collagen as a potential iron supplement</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Iron incorporated into food can induce precipitation and unwanted interaction with other components in food. Iron-binding proteins represent a possibility to avoid these problems and other side effects, as the iron is protected. However, there are several technical problems associated with protein–iron complex formation. In this paper, the iron-binding phosphorylated human-like collagen (Fe-G6P-HLC) was prepared under physiological conditions through phosphorylated modification. One molecule of Fe-G6P-HLC possesses about 24 atoms of Fe. Spectroscopy analysis, differential scanning calorimetry (DSC) and equilibrium dialysis techniques were employed to investigate the characteristics of the Fe-G6P-HLC. The binding sites (n b ) and apparent association constant (K app ) between iron and phosphorylated HLC were measured at n b =23.7 and log K app =4.57, respectively. The amount of iron (Fe2+ sulfate) binding to phosphorylated HLC was found to be a function of pH and phosphate content. In addition, the solubility and thermal stability of HLC were not significantly affected. The results should facilitate the utilization of HLC as a bioactive iron supplement in the food and medical industry and provide an important theoretical evidence for the application of HLC chelates.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Iron incorporated into food can induce precipitation and unwanted interaction with other components in food. Iron-binding proteins represent a possibility to avoid these problems and other side effects, as the iron is protected. However, there are several technical problems associated with protein–iron complex formation. In this paper, the iron-binding phosphorylated human-like collagen (Fe-G6P-HLC) was prepared under physiological conditions through phosphorylated modification. One molecule of Fe-G6P-HLC possesses about 24 atoms of Fe. Spectroscopy analysis, differential scanning calorimetry (DSC) and equilibrium dialysis techniques were employed to investigate the characteristics of the Fe-G6P-HLC. The binding sites (n b ) and apparent association constant (K app ) between iron and phosphorylated HLC were measured at n b =23.7 and log K app =4.57, respectively. The amount of iron (Fe2+ sulfate) binding to phosphorylated HLC was found to be a function of pH and phosphate content. In addition, the solubility and thermal stability of HLC were not significantly affected. The results should facilitate the utilization of HLC as a bioactive iron supplement in the food and medical industry and provide an important theoretical evidence for the application of HLC chelates.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Fei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fan, Daidi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Chenhui</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Xiaoxuan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xue, Wenjiao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Kameda, Tomohito ELSEVIER</subfield><subfield code="t">Adsorption of various metals by carboxymethyl-β-cyclodextrin-modified Zn</subfield><subfield code="d">2020</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV003774007</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:33</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:7</subfield><subfield code="g">pages:4361-4368</subfield><subfield code="g">extent:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.msec.2013.06.024</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.30</subfield><subfield code="j">Mineralogie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.45</subfield><subfield code="j">Gesteinshüttenkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.69</subfield><subfield code="j">Bodenkunde: Sonstiges</subfield><subfield code="x">Geowissenschaften</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">56.20</subfield><subfield code="j">Ingenieurgeologie</subfield><subfield code="j">Bodenmechanik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">33</subfield><subfield code="j">2013</subfield><subfield code="e">7</subfield><subfield code="h">4361-4368</subfield><subfield code="g">8</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">600</subfield></datafield></record></collection>
|
author |
Deng, Jianjun |
spellingShingle |
Deng, Jianjun ddc 600 ddc 550 bkl 38.30 bkl 58.45 bkl 38.69 bkl 56.20 Formation and characterization of iron-binding phosphorylated human-like collagen as a potential iron supplement |
authorStr |
Deng, Jianjun |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV003774007 |
format |
electronic Article |
dewey-ones |
600 - Technology 550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
600 600 DE-600 550 VZ 38.30 bkl 58.45 bkl 38.69 bkl 56.20 bkl Formation and characterization of iron-binding phosphorylated human-like collagen as a potential iron supplement |
topic |
ddc 600 ddc 550 bkl 38.30 bkl 58.45 bkl 38.69 bkl 56.20 |
topic_unstemmed |
ddc 600 ddc 550 bkl 38.30 bkl 58.45 bkl 38.69 bkl 56.20 |
topic_browse |
ddc 600 ddc 550 bkl 38.30 bkl 58.45 bkl 38.69 bkl 56.20 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
f c fc d f df c z cz x m xm w x wx |
hierarchy_parent_title |
Adsorption of various metals by carboxymethyl-β-cyclodextrin-modified Zn |
hierarchy_parent_id |
ELV003774007 |
dewey-tens |
600 - Technology 550 - Earth sciences & geology |
hierarchy_top_title |
Adsorption of various metals by carboxymethyl-β-cyclodextrin-modified Zn |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV003774007 |
title |
Formation and characterization of iron-binding phosphorylated human-like collagen as a potential iron supplement |
ctrlnum |
(DE-627)ELV016988965 (ELSEVIER)S0928-4931(13)00383-4 |
title_full |
Formation and characterization of iron-binding phosphorylated human-like collagen as a potential iron supplement |
author_sort |
Deng, Jianjun |
journal |
Adsorption of various metals by carboxymethyl-β-cyclodextrin-modified Zn |
journalStr |
Adsorption of various metals by carboxymethyl-β-cyclodextrin-modified Zn |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
zzz |
container_start_page |
4361 |
author_browse |
Deng, Jianjun |
container_volume |
33 |
physical |
8 |
class |
600 600 DE-600 550 VZ 38.30 bkl 58.45 bkl 38.69 bkl 56.20 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Deng, Jianjun |
doi_str_mv |
10.1016/j.msec.2013.06.024 |
dewey-full |
600 550 |
title_sort |
formation and characterization of iron-binding phosphorylated human-like collagen as a potential iron supplement |
title_auth |
Formation and characterization of iron-binding phosphorylated human-like collagen as a potential iron supplement |
abstract |
Iron incorporated into food can induce precipitation and unwanted interaction with other components in food. Iron-binding proteins represent a possibility to avoid these problems and other side effects, as the iron is protected. However, there are several technical problems associated with protein–iron complex formation. In this paper, the iron-binding phosphorylated human-like collagen (Fe-G6P-HLC) was prepared under physiological conditions through phosphorylated modification. One molecule of Fe-G6P-HLC possesses about 24 atoms of Fe. Spectroscopy analysis, differential scanning calorimetry (DSC) and equilibrium dialysis techniques were employed to investigate the characteristics of the Fe-G6P-HLC. The binding sites (n b ) and apparent association constant (K app ) between iron and phosphorylated HLC were measured at n b =23.7 and log K app =4.57, respectively. The amount of iron (Fe2+ sulfate) binding to phosphorylated HLC was found to be a function of pH and phosphate content. In addition, the solubility and thermal stability of HLC were not significantly affected. The results should facilitate the utilization of HLC as a bioactive iron supplement in the food and medical industry and provide an important theoretical evidence for the application of HLC chelates. |
abstractGer |
Iron incorporated into food can induce precipitation and unwanted interaction with other components in food. Iron-binding proteins represent a possibility to avoid these problems and other side effects, as the iron is protected. However, there are several technical problems associated with protein–iron complex formation. In this paper, the iron-binding phosphorylated human-like collagen (Fe-G6P-HLC) was prepared under physiological conditions through phosphorylated modification. One molecule of Fe-G6P-HLC possesses about 24 atoms of Fe. Spectroscopy analysis, differential scanning calorimetry (DSC) and equilibrium dialysis techniques were employed to investigate the characteristics of the Fe-G6P-HLC. The binding sites (n b ) and apparent association constant (K app ) between iron and phosphorylated HLC were measured at n b =23.7 and log K app =4.57, respectively. The amount of iron (Fe2+ sulfate) binding to phosphorylated HLC was found to be a function of pH and phosphate content. In addition, the solubility and thermal stability of HLC were not significantly affected. The results should facilitate the utilization of HLC as a bioactive iron supplement in the food and medical industry and provide an important theoretical evidence for the application of HLC chelates. |
abstract_unstemmed |
Iron incorporated into food can induce precipitation and unwanted interaction with other components in food. Iron-binding proteins represent a possibility to avoid these problems and other side effects, as the iron is protected. However, there are several technical problems associated with protein–iron complex formation. In this paper, the iron-binding phosphorylated human-like collagen (Fe-G6P-HLC) was prepared under physiological conditions through phosphorylated modification. One molecule of Fe-G6P-HLC possesses about 24 atoms of Fe. Spectroscopy analysis, differential scanning calorimetry (DSC) and equilibrium dialysis techniques were employed to investigate the characteristics of the Fe-G6P-HLC. The binding sites (n b ) and apparent association constant (K app ) between iron and phosphorylated HLC were measured at n b =23.7 and log K app =4.57, respectively. The amount of iron (Fe2+ sulfate) binding to phosphorylated HLC was found to be a function of pH and phosphate content. In addition, the solubility and thermal stability of HLC were not significantly affected. The results should facilitate the utilization of HLC as a bioactive iron supplement in the food and medical industry and provide an important theoretical evidence for the application of HLC chelates. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO |
container_issue |
7 |
title_short |
Formation and characterization of iron-binding phosphorylated human-like collagen as a potential iron supplement |
url |
https://doi.org/10.1016/j.msec.2013.06.024 |
remote_bool |
true |
author2 |
Chen, Fei Fan, Daidi Zhu, Chenhui Ma, Xiaoxuan Xue, Wenjiao |
author2Str |
Chen, Fei Fan, Daidi Zhu, Chenhui Ma, Xiaoxuan Xue, Wenjiao |
ppnlink |
ELV003774007 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth |
doi_str |
10.1016/j.msec.2013.06.024 |
up_date |
2024-07-06T20:50:18.001Z |
_version_ |
1803864263100465152 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV016988965</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625121301.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.msec.2013.06.024</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2013015000010.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV016988965</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0928-4931(13)00383-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.30</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.45</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.69</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">56.20</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Deng, Jianjun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Formation and characterization of iron-binding phosphorylated human-like collagen as a potential iron supplement</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Iron incorporated into food can induce precipitation and unwanted interaction with other components in food. Iron-binding proteins represent a possibility to avoid these problems and other side effects, as the iron is protected. However, there are several technical problems associated with protein–iron complex formation. In this paper, the iron-binding phosphorylated human-like collagen (Fe-G6P-HLC) was prepared under physiological conditions through phosphorylated modification. One molecule of Fe-G6P-HLC possesses about 24 atoms of Fe. Spectroscopy analysis, differential scanning calorimetry (DSC) and equilibrium dialysis techniques were employed to investigate the characteristics of the Fe-G6P-HLC. The binding sites (n b ) and apparent association constant (K app ) between iron and phosphorylated HLC were measured at n b =23.7 and log K app =4.57, respectively. The amount of iron (Fe2+ sulfate) binding to phosphorylated HLC was found to be a function of pH and phosphate content. In addition, the solubility and thermal stability of HLC were not significantly affected. The results should facilitate the utilization of HLC as a bioactive iron supplement in the food and medical industry and provide an important theoretical evidence for the application of HLC chelates.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Iron incorporated into food can induce precipitation and unwanted interaction with other components in food. Iron-binding proteins represent a possibility to avoid these problems and other side effects, as the iron is protected. However, there are several technical problems associated with protein–iron complex formation. In this paper, the iron-binding phosphorylated human-like collagen (Fe-G6P-HLC) was prepared under physiological conditions through phosphorylated modification. One molecule of Fe-G6P-HLC possesses about 24 atoms of Fe. Spectroscopy analysis, differential scanning calorimetry (DSC) and equilibrium dialysis techniques were employed to investigate the characteristics of the Fe-G6P-HLC. The binding sites (n b ) and apparent association constant (K app ) between iron and phosphorylated HLC were measured at n b =23.7 and log K app =4.57, respectively. The amount of iron (Fe2+ sulfate) binding to phosphorylated HLC was found to be a function of pH and phosphate content. In addition, the solubility and thermal stability of HLC were not significantly affected. The results should facilitate the utilization of HLC as a bioactive iron supplement in the food and medical industry and provide an important theoretical evidence for the application of HLC chelates.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Fei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fan, Daidi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Chenhui</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Xiaoxuan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xue, Wenjiao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Kameda, Tomohito ELSEVIER</subfield><subfield code="t">Adsorption of various metals by carboxymethyl-β-cyclodextrin-modified Zn</subfield><subfield code="d">2020</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV003774007</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:33</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:7</subfield><subfield code="g">pages:4361-4368</subfield><subfield code="g">extent:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.msec.2013.06.024</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.30</subfield><subfield code="j">Mineralogie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.45</subfield><subfield code="j">Gesteinshüttenkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.69</subfield><subfield code="j">Bodenkunde: Sonstiges</subfield><subfield code="x">Geowissenschaften</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">56.20</subfield><subfield code="j">Ingenieurgeologie</subfield><subfield code="j">Bodenmechanik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">33</subfield><subfield code="j">2013</subfield><subfield code="e">7</subfield><subfield code="h">4361-4368</subfield><subfield code="g">8</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">600</subfield></datafield></record></collection>
|
score |
7.4008055 |