Overexpression of constitutively active OsCPK10 increases Arabidopsis resistance against Pseudomonas syringae pv. tomato and rice resistance against Magnaporthe grisea
Calcium-dependent protein kinases (CDPKs) are crucial calcium sensors involved in plant responses to pathogen infection. Here, we report isolation and functional characterization of the pathogen-responsive rice OsCPK10 gene. The expression of OsCPK10 was strongly induced following treatment with a M...
Ausführliche Beschreibung
Autor*in: |
Fu, Liwen [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2013transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
9 |
---|
Übergeordnetes Werk: |
Enthalten in: Generalized finite difference method with irregular mesh for a class of three-dimensional variable-order time-fractional advection-diffusion equations - Wang, Zhaoyang ELSEVIER, 2021, PPB : an official journal of the Federation of European Societies of Plant Physiology, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:73 ; year:2013 ; pages:202-210 ; extent:9 |
Links: |
---|
DOI / URN: |
10.1016/j.plaphy.2013.10.004 |
---|
Katalog-ID: |
ELV017024021 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV017024021 | ||
003 | DE-627 | ||
005 | 20230625121346.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180602s2013 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.plaphy.2013.10.004 |2 doi | |
028 | 5 | 2 | |a GBVA2013016000020.pica |
035 | |a (DE-627)ELV017024021 | ||
035 | |a (ELSEVIER)S0981-9428(13)00350-1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 630 |a 640 |a 580 | |
082 | 0 | 4 | |a 630 |q DE-600 |
082 | 0 | 4 | |a 640 |q DE-600 |
082 | 0 | 4 | |a 580 |q DE-600 |
082 | 0 | 4 | |a 690 |a 620 |q VZ |
084 | |a 50.03 |2 bkl | ||
100 | 1 | |a Fu, Liwen |e verfasserin |4 aut | |
245 | 1 | 0 | |a Overexpression of constitutively active OsCPK10 increases Arabidopsis resistance against Pseudomonas syringae pv. tomato and rice resistance against Magnaporthe grisea |
264 | 1 | |c 2013transfer abstract | |
300 | |a 9 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Calcium-dependent protein kinases (CDPKs) are crucial calcium sensors involved in plant responses to pathogen infection. Here, we report isolation and functional characterization of the pathogen-responsive rice OsCPK10 gene. The expression of OsCPK10 was strongly induced following treatment with a Magnaporthe grisea elicitor. Kinase activity assay showed that the functional OsCPK10 protein not only autophosphorylated, but also phosphorylated Casein in a calcium-dependent manner. Overexpression of constitutively active OsCPK10 in Arabidopsis enhanced the resistance to infection with Pseudomonas syringae pv. tomato, associated with elevated expression of both SA- and JA-related defense genes. Similarly, transgenic rice plants containing constitutively active OsCPK10 exhibited enhanced resistance to blast fungus M. grisea. The enhanced resistance in the transgenic lines was associated with activated expression of SA- and JA-related defense genes. Collectively, our results indicate that rice OsCPK10 is a crucial regulator in plant immune responses, and that it may regulate disease resistance by activating both SA- and JA-dependent defense responses. | ||
520 | |a Calcium-dependent protein kinases (CDPKs) are crucial calcium sensors involved in plant responses to pathogen infection. Here, we report isolation and functional characterization of the pathogen-responsive rice OsCPK10 gene. The expression of OsCPK10 was strongly induced following treatment with a Magnaporthe grisea elicitor. Kinase activity assay showed that the functional OsCPK10 protein not only autophosphorylated, but also phosphorylated Casein in a calcium-dependent manner. Overexpression of constitutively active OsCPK10 in Arabidopsis enhanced the resistance to infection with Pseudomonas syringae pv. tomato, associated with elevated expression of both SA- and JA-related defense genes. Similarly, transgenic rice plants containing constitutively active OsCPK10 exhibited enhanced resistance to blast fungus M. grisea. The enhanced resistance in the transgenic lines was associated with activated expression of SA- and JA-related defense genes. Collectively, our results indicate that rice OsCPK10 is a crucial regulator in plant immune responses, and that it may regulate disease resistance by activating both SA- and JA-dependent defense responses. | ||
650 | 7 | |a CDPK |2 Elsevier | |
650 | 7 | |a Plant immunity |2 Elsevier | |
700 | 1 | |a Yu, Xiangchun |4 oth | |
700 | 1 | |a An, Chengcai |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Wang, Zhaoyang ELSEVIER |t Generalized finite difference method with irregular mesh for a class of three-dimensional variable-order time-fractional advection-diffusion equations |d 2021 |d PPB : an official journal of the Federation of European Societies of Plant Physiology |g Amsterdam [u.a.] |w (DE-627)ELV006529712 |
773 | 1 | 8 | |g volume:73 |g year:2013 |g pages:202-210 |g extent:9 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.plaphy.2013.10.004 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 50.03 |j Methoden und Techniken der Ingenieurwissenschaften |q VZ |
951 | |a AR | ||
952 | |d 73 |j 2013 |h 202-210 |g 9 | ||
953 | |2 045F |a 630 |
author_variant |
l f lf |
---|---|
matchkey_str |
fuliwenyuxiangchunanchengcai:2013----:vrxrsinfosiuieyciesp1icessrbdpirssacaantsuooasrnaptmtad |
hierarchy_sort_str |
2013transfer abstract |
bklnumber |
50.03 |
publishDate |
2013 |
allfields |
10.1016/j.plaphy.2013.10.004 doi GBVA2013016000020.pica (DE-627)ELV017024021 (ELSEVIER)S0981-9428(13)00350-1 DE-627 ger DE-627 rakwb eng 630 640 580 630 DE-600 640 DE-600 580 DE-600 690 620 VZ 50.03 bkl Fu, Liwen verfasserin aut Overexpression of constitutively active OsCPK10 increases Arabidopsis resistance against Pseudomonas syringae pv. tomato and rice resistance against Magnaporthe grisea 2013transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Calcium-dependent protein kinases (CDPKs) are crucial calcium sensors involved in plant responses to pathogen infection. Here, we report isolation and functional characterization of the pathogen-responsive rice OsCPK10 gene. The expression of OsCPK10 was strongly induced following treatment with a Magnaporthe grisea elicitor. Kinase activity assay showed that the functional OsCPK10 protein not only autophosphorylated, but also phosphorylated Casein in a calcium-dependent manner. Overexpression of constitutively active OsCPK10 in Arabidopsis enhanced the resistance to infection with Pseudomonas syringae pv. tomato, associated with elevated expression of both SA- and JA-related defense genes. Similarly, transgenic rice plants containing constitutively active OsCPK10 exhibited enhanced resistance to blast fungus M. grisea. The enhanced resistance in the transgenic lines was associated with activated expression of SA- and JA-related defense genes. Collectively, our results indicate that rice OsCPK10 is a crucial regulator in plant immune responses, and that it may regulate disease resistance by activating both SA- and JA-dependent defense responses. Calcium-dependent protein kinases (CDPKs) are crucial calcium sensors involved in plant responses to pathogen infection. Here, we report isolation and functional characterization of the pathogen-responsive rice OsCPK10 gene. The expression of OsCPK10 was strongly induced following treatment with a Magnaporthe grisea elicitor. Kinase activity assay showed that the functional OsCPK10 protein not only autophosphorylated, but also phosphorylated Casein in a calcium-dependent manner. Overexpression of constitutively active OsCPK10 in Arabidopsis enhanced the resistance to infection with Pseudomonas syringae pv. tomato, associated with elevated expression of both SA- and JA-related defense genes. Similarly, transgenic rice plants containing constitutively active OsCPK10 exhibited enhanced resistance to blast fungus M. grisea. The enhanced resistance in the transgenic lines was associated with activated expression of SA- and JA-related defense genes. Collectively, our results indicate that rice OsCPK10 is a crucial regulator in plant immune responses, and that it may regulate disease resistance by activating both SA- and JA-dependent defense responses. CDPK Elsevier Plant immunity Elsevier Yu, Xiangchun oth An, Chengcai oth Enthalten in Elsevier Science Wang, Zhaoyang ELSEVIER Generalized finite difference method with irregular mesh for a class of three-dimensional variable-order time-fractional advection-diffusion equations 2021 PPB : an official journal of the Federation of European Societies of Plant Physiology Amsterdam [u.a.] (DE-627)ELV006529712 volume:73 year:2013 pages:202-210 extent:9 https://doi.org/10.1016/j.plaphy.2013.10.004 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.03 Methoden und Techniken der Ingenieurwissenschaften VZ AR 73 2013 202-210 9 045F 630 |
spelling |
10.1016/j.plaphy.2013.10.004 doi GBVA2013016000020.pica (DE-627)ELV017024021 (ELSEVIER)S0981-9428(13)00350-1 DE-627 ger DE-627 rakwb eng 630 640 580 630 DE-600 640 DE-600 580 DE-600 690 620 VZ 50.03 bkl Fu, Liwen verfasserin aut Overexpression of constitutively active OsCPK10 increases Arabidopsis resistance against Pseudomonas syringae pv. tomato and rice resistance against Magnaporthe grisea 2013transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Calcium-dependent protein kinases (CDPKs) are crucial calcium sensors involved in plant responses to pathogen infection. Here, we report isolation and functional characterization of the pathogen-responsive rice OsCPK10 gene. The expression of OsCPK10 was strongly induced following treatment with a Magnaporthe grisea elicitor. Kinase activity assay showed that the functional OsCPK10 protein not only autophosphorylated, but also phosphorylated Casein in a calcium-dependent manner. Overexpression of constitutively active OsCPK10 in Arabidopsis enhanced the resistance to infection with Pseudomonas syringae pv. tomato, associated with elevated expression of both SA- and JA-related defense genes. Similarly, transgenic rice plants containing constitutively active OsCPK10 exhibited enhanced resistance to blast fungus M. grisea. The enhanced resistance in the transgenic lines was associated with activated expression of SA- and JA-related defense genes. Collectively, our results indicate that rice OsCPK10 is a crucial regulator in plant immune responses, and that it may regulate disease resistance by activating both SA- and JA-dependent defense responses. Calcium-dependent protein kinases (CDPKs) are crucial calcium sensors involved in plant responses to pathogen infection. Here, we report isolation and functional characterization of the pathogen-responsive rice OsCPK10 gene. The expression of OsCPK10 was strongly induced following treatment with a Magnaporthe grisea elicitor. Kinase activity assay showed that the functional OsCPK10 protein not only autophosphorylated, but also phosphorylated Casein in a calcium-dependent manner. Overexpression of constitutively active OsCPK10 in Arabidopsis enhanced the resistance to infection with Pseudomonas syringae pv. tomato, associated with elevated expression of both SA- and JA-related defense genes. Similarly, transgenic rice plants containing constitutively active OsCPK10 exhibited enhanced resistance to blast fungus M. grisea. The enhanced resistance in the transgenic lines was associated with activated expression of SA- and JA-related defense genes. Collectively, our results indicate that rice OsCPK10 is a crucial regulator in plant immune responses, and that it may regulate disease resistance by activating both SA- and JA-dependent defense responses. CDPK Elsevier Plant immunity Elsevier Yu, Xiangchun oth An, Chengcai oth Enthalten in Elsevier Science Wang, Zhaoyang ELSEVIER Generalized finite difference method with irregular mesh for a class of three-dimensional variable-order time-fractional advection-diffusion equations 2021 PPB : an official journal of the Federation of European Societies of Plant Physiology Amsterdam [u.a.] (DE-627)ELV006529712 volume:73 year:2013 pages:202-210 extent:9 https://doi.org/10.1016/j.plaphy.2013.10.004 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.03 Methoden und Techniken der Ingenieurwissenschaften VZ AR 73 2013 202-210 9 045F 630 |
allfields_unstemmed |
10.1016/j.plaphy.2013.10.004 doi GBVA2013016000020.pica (DE-627)ELV017024021 (ELSEVIER)S0981-9428(13)00350-1 DE-627 ger DE-627 rakwb eng 630 640 580 630 DE-600 640 DE-600 580 DE-600 690 620 VZ 50.03 bkl Fu, Liwen verfasserin aut Overexpression of constitutively active OsCPK10 increases Arabidopsis resistance against Pseudomonas syringae pv. tomato and rice resistance against Magnaporthe grisea 2013transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Calcium-dependent protein kinases (CDPKs) are crucial calcium sensors involved in plant responses to pathogen infection. Here, we report isolation and functional characterization of the pathogen-responsive rice OsCPK10 gene. The expression of OsCPK10 was strongly induced following treatment with a Magnaporthe grisea elicitor. Kinase activity assay showed that the functional OsCPK10 protein not only autophosphorylated, but also phosphorylated Casein in a calcium-dependent manner. Overexpression of constitutively active OsCPK10 in Arabidopsis enhanced the resistance to infection with Pseudomonas syringae pv. tomato, associated with elevated expression of both SA- and JA-related defense genes. Similarly, transgenic rice plants containing constitutively active OsCPK10 exhibited enhanced resistance to blast fungus M. grisea. The enhanced resistance in the transgenic lines was associated with activated expression of SA- and JA-related defense genes. Collectively, our results indicate that rice OsCPK10 is a crucial regulator in plant immune responses, and that it may regulate disease resistance by activating both SA- and JA-dependent defense responses. Calcium-dependent protein kinases (CDPKs) are crucial calcium sensors involved in plant responses to pathogen infection. Here, we report isolation and functional characterization of the pathogen-responsive rice OsCPK10 gene. The expression of OsCPK10 was strongly induced following treatment with a Magnaporthe grisea elicitor. Kinase activity assay showed that the functional OsCPK10 protein not only autophosphorylated, but also phosphorylated Casein in a calcium-dependent manner. Overexpression of constitutively active OsCPK10 in Arabidopsis enhanced the resistance to infection with Pseudomonas syringae pv. tomato, associated with elevated expression of both SA- and JA-related defense genes. Similarly, transgenic rice plants containing constitutively active OsCPK10 exhibited enhanced resistance to blast fungus M. grisea. The enhanced resistance in the transgenic lines was associated with activated expression of SA- and JA-related defense genes. Collectively, our results indicate that rice OsCPK10 is a crucial regulator in plant immune responses, and that it may regulate disease resistance by activating both SA- and JA-dependent defense responses. CDPK Elsevier Plant immunity Elsevier Yu, Xiangchun oth An, Chengcai oth Enthalten in Elsevier Science Wang, Zhaoyang ELSEVIER Generalized finite difference method with irregular mesh for a class of three-dimensional variable-order time-fractional advection-diffusion equations 2021 PPB : an official journal of the Federation of European Societies of Plant Physiology Amsterdam [u.a.] (DE-627)ELV006529712 volume:73 year:2013 pages:202-210 extent:9 https://doi.org/10.1016/j.plaphy.2013.10.004 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.03 Methoden und Techniken der Ingenieurwissenschaften VZ AR 73 2013 202-210 9 045F 630 |
allfieldsGer |
10.1016/j.plaphy.2013.10.004 doi GBVA2013016000020.pica (DE-627)ELV017024021 (ELSEVIER)S0981-9428(13)00350-1 DE-627 ger DE-627 rakwb eng 630 640 580 630 DE-600 640 DE-600 580 DE-600 690 620 VZ 50.03 bkl Fu, Liwen verfasserin aut Overexpression of constitutively active OsCPK10 increases Arabidopsis resistance against Pseudomonas syringae pv. tomato and rice resistance against Magnaporthe grisea 2013transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Calcium-dependent protein kinases (CDPKs) are crucial calcium sensors involved in plant responses to pathogen infection. Here, we report isolation and functional characterization of the pathogen-responsive rice OsCPK10 gene. The expression of OsCPK10 was strongly induced following treatment with a Magnaporthe grisea elicitor. Kinase activity assay showed that the functional OsCPK10 protein not only autophosphorylated, but also phosphorylated Casein in a calcium-dependent manner. Overexpression of constitutively active OsCPK10 in Arabidopsis enhanced the resistance to infection with Pseudomonas syringae pv. tomato, associated with elevated expression of both SA- and JA-related defense genes. Similarly, transgenic rice plants containing constitutively active OsCPK10 exhibited enhanced resistance to blast fungus M. grisea. The enhanced resistance in the transgenic lines was associated with activated expression of SA- and JA-related defense genes. Collectively, our results indicate that rice OsCPK10 is a crucial regulator in plant immune responses, and that it may regulate disease resistance by activating both SA- and JA-dependent defense responses. Calcium-dependent protein kinases (CDPKs) are crucial calcium sensors involved in plant responses to pathogen infection. Here, we report isolation and functional characterization of the pathogen-responsive rice OsCPK10 gene. The expression of OsCPK10 was strongly induced following treatment with a Magnaporthe grisea elicitor. Kinase activity assay showed that the functional OsCPK10 protein not only autophosphorylated, but also phosphorylated Casein in a calcium-dependent manner. Overexpression of constitutively active OsCPK10 in Arabidopsis enhanced the resistance to infection with Pseudomonas syringae pv. tomato, associated with elevated expression of both SA- and JA-related defense genes. Similarly, transgenic rice plants containing constitutively active OsCPK10 exhibited enhanced resistance to blast fungus M. grisea. The enhanced resistance in the transgenic lines was associated with activated expression of SA- and JA-related defense genes. Collectively, our results indicate that rice OsCPK10 is a crucial regulator in plant immune responses, and that it may regulate disease resistance by activating both SA- and JA-dependent defense responses. CDPK Elsevier Plant immunity Elsevier Yu, Xiangchun oth An, Chengcai oth Enthalten in Elsevier Science Wang, Zhaoyang ELSEVIER Generalized finite difference method with irregular mesh for a class of three-dimensional variable-order time-fractional advection-diffusion equations 2021 PPB : an official journal of the Federation of European Societies of Plant Physiology Amsterdam [u.a.] (DE-627)ELV006529712 volume:73 year:2013 pages:202-210 extent:9 https://doi.org/10.1016/j.plaphy.2013.10.004 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.03 Methoden und Techniken der Ingenieurwissenschaften VZ AR 73 2013 202-210 9 045F 630 |
allfieldsSound |
10.1016/j.plaphy.2013.10.004 doi GBVA2013016000020.pica (DE-627)ELV017024021 (ELSEVIER)S0981-9428(13)00350-1 DE-627 ger DE-627 rakwb eng 630 640 580 630 DE-600 640 DE-600 580 DE-600 690 620 VZ 50.03 bkl Fu, Liwen verfasserin aut Overexpression of constitutively active OsCPK10 increases Arabidopsis resistance against Pseudomonas syringae pv. tomato and rice resistance against Magnaporthe grisea 2013transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Calcium-dependent protein kinases (CDPKs) are crucial calcium sensors involved in plant responses to pathogen infection. Here, we report isolation and functional characterization of the pathogen-responsive rice OsCPK10 gene. The expression of OsCPK10 was strongly induced following treatment with a Magnaporthe grisea elicitor. Kinase activity assay showed that the functional OsCPK10 protein not only autophosphorylated, but also phosphorylated Casein in a calcium-dependent manner. Overexpression of constitutively active OsCPK10 in Arabidopsis enhanced the resistance to infection with Pseudomonas syringae pv. tomato, associated with elevated expression of both SA- and JA-related defense genes. Similarly, transgenic rice plants containing constitutively active OsCPK10 exhibited enhanced resistance to blast fungus M. grisea. The enhanced resistance in the transgenic lines was associated with activated expression of SA- and JA-related defense genes. Collectively, our results indicate that rice OsCPK10 is a crucial regulator in plant immune responses, and that it may regulate disease resistance by activating both SA- and JA-dependent defense responses. Calcium-dependent protein kinases (CDPKs) are crucial calcium sensors involved in plant responses to pathogen infection. Here, we report isolation and functional characterization of the pathogen-responsive rice OsCPK10 gene. The expression of OsCPK10 was strongly induced following treatment with a Magnaporthe grisea elicitor. Kinase activity assay showed that the functional OsCPK10 protein not only autophosphorylated, but also phosphorylated Casein in a calcium-dependent manner. Overexpression of constitutively active OsCPK10 in Arabidopsis enhanced the resistance to infection with Pseudomonas syringae pv. tomato, associated with elevated expression of both SA- and JA-related defense genes. Similarly, transgenic rice plants containing constitutively active OsCPK10 exhibited enhanced resistance to blast fungus M. grisea. The enhanced resistance in the transgenic lines was associated with activated expression of SA- and JA-related defense genes. Collectively, our results indicate that rice OsCPK10 is a crucial regulator in plant immune responses, and that it may regulate disease resistance by activating both SA- and JA-dependent defense responses. CDPK Elsevier Plant immunity Elsevier Yu, Xiangchun oth An, Chengcai oth Enthalten in Elsevier Science Wang, Zhaoyang ELSEVIER Generalized finite difference method with irregular mesh for a class of three-dimensional variable-order time-fractional advection-diffusion equations 2021 PPB : an official journal of the Federation of European Societies of Plant Physiology Amsterdam [u.a.] (DE-627)ELV006529712 volume:73 year:2013 pages:202-210 extent:9 https://doi.org/10.1016/j.plaphy.2013.10.004 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.03 Methoden und Techniken der Ingenieurwissenschaften VZ AR 73 2013 202-210 9 045F 630 |
language |
English |
source |
Enthalten in Generalized finite difference method with irregular mesh for a class of three-dimensional variable-order time-fractional advection-diffusion equations Amsterdam [u.a.] volume:73 year:2013 pages:202-210 extent:9 |
sourceStr |
Enthalten in Generalized finite difference method with irregular mesh for a class of three-dimensional variable-order time-fractional advection-diffusion equations Amsterdam [u.a.] volume:73 year:2013 pages:202-210 extent:9 |
format_phy_str_mv |
Article |
bklname |
Methoden und Techniken der Ingenieurwissenschaften |
institution |
findex.gbv.de |
topic_facet |
CDPK Plant immunity |
dewey-raw |
630 |
isfreeaccess_bool |
false |
container_title |
Generalized finite difference method with irregular mesh for a class of three-dimensional variable-order time-fractional advection-diffusion equations |
authorswithroles_txt_mv |
Fu, Liwen @@aut@@ Yu, Xiangchun @@oth@@ An, Chengcai @@oth@@ |
publishDateDaySort_date |
2013-01-01T00:00:00Z |
hierarchy_top_id |
ELV006529712 |
dewey-sort |
3630 |
id |
ELV017024021 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV017024021</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625121346.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.plaphy.2013.10.004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2013016000020.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV017024021</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0981-9428(13)00350-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="a">580</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">640</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">580</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fu, Liwen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Overexpression of constitutively active OsCPK10 increases Arabidopsis resistance against Pseudomonas syringae pv. tomato and rice resistance against Magnaporthe grisea</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">9</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Calcium-dependent protein kinases (CDPKs) are crucial calcium sensors involved in plant responses to pathogen infection. Here, we report isolation and functional characterization of the pathogen-responsive rice OsCPK10 gene. The expression of OsCPK10 was strongly induced following treatment with a Magnaporthe grisea elicitor. Kinase activity assay showed that the functional OsCPK10 protein not only autophosphorylated, but also phosphorylated Casein in a calcium-dependent manner. Overexpression of constitutively active OsCPK10 in Arabidopsis enhanced the resistance to infection with Pseudomonas syringae pv. tomato, associated with elevated expression of both SA- and JA-related defense genes. Similarly, transgenic rice plants containing constitutively active OsCPK10 exhibited enhanced resistance to blast fungus M. grisea. The enhanced resistance in the transgenic lines was associated with activated expression of SA- and JA-related defense genes. Collectively, our results indicate that rice OsCPK10 is a crucial regulator in plant immune responses, and that it may regulate disease resistance by activating both SA- and JA-dependent defense responses.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Calcium-dependent protein kinases (CDPKs) are crucial calcium sensors involved in plant responses to pathogen infection. Here, we report isolation and functional characterization of the pathogen-responsive rice OsCPK10 gene. The expression of OsCPK10 was strongly induced following treatment with a Magnaporthe grisea elicitor. Kinase activity assay showed that the functional OsCPK10 protein not only autophosphorylated, but also phosphorylated Casein in a calcium-dependent manner. Overexpression of constitutively active OsCPK10 in Arabidopsis enhanced the resistance to infection with Pseudomonas syringae pv. tomato, associated with elevated expression of both SA- and JA-related defense genes. Similarly, transgenic rice plants containing constitutively active OsCPK10 exhibited enhanced resistance to blast fungus M. grisea. The enhanced resistance in the transgenic lines was associated with activated expression of SA- and JA-related defense genes. Collectively, our results indicate that rice OsCPK10 is a crucial regulator in plant immune responses, and that it may regulate disease resistance by activating both SA- and JA-dependent defense responses.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">CDPK</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Plant immunity</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Xiangchun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">An, Chengcai</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Wang, Zhaoyang ELSEVIER</subfield><subfield code="t">Generalized finite difference method with irregular mesh for a class of three-dimensional variable-order time-fractional advection-diffusion equations</subfield><subfield code="d">2021</subfield><subfield code="d">PPB : an official journal of the Federation of European Societies of Plant Physiology</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV006529712</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:73</subfield><subfield code="g">year:2013</subfield><subfield code="g">pages:202-210</subfield><subfield code="g">extent:9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.plaphy.2013.10.004</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.03</subfield><subfield code="j">Methoden und Techniken der Ingenieurwissenschaften</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">73</subfield><subfield code="j">2013</subfield><subfield code="h">202-210</subfield><subfield code="g">9</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">630</subfield></datafield></record></collection>
|
author |
Fu, Liwen |
spellingShingle |
Fu, Liwen ddc 630 ddc 640 ddc 580 ddc 690 bkl 50.03 Elsevier CDPK Elsevier Plant immunity Overexpression of constitutively active OsCPK10 increases Arabidopsis resistance against Pseudomonas syringae pv. tomato and rice resistance against Magnaporthe grisea |
authorStr |
Fu, Liwen |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV006529712 |
format |
electronic Article |
dewey-ones |
630 - Agriculture & related technologies 640 - Home & family management 580 - Plants (Botany) 690 - Buildings 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
630 640 580 630 DE-600 640 DE-600 580 DE-600 690 620 VZ 50.03 bkl Overexpression of constitutively active OsCPK10 increases Arabidopsis resistance against Pseudomonas syringae pv. tomato and rice resistance against Magnaporthe grisea CDPK Elsevier Plant immunity Elsevier |
topic |
ddc 630 ddc 640 ddc 580 ddc 690 bkl 50.03 Elsevier CDPK Elsevier Plant immunity |
topic_unstemmed |
ddc 630 ddc 640 ddc 580 ddc 690 bkl 50.03 Elsevier CDPK Elsevier Plant immunity |
topic_browse |
ddc 630 ddc 640 ddc 580 ddc 690 bkl 50.03 Elsevier CDPK Elsevier Plant immunity |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
x y xy c a ca |
hierarchy_parent_title |
Generalized finite difference method with irregular mesh for a class of three-dimensional variable-order time-fractional advection-diffusion equations |
hierarchy_parent_id |
ELV006529712 |
dewey-tens |
630 - Agriculture 640 - Home & family management 580 - Plants (Botany) 690 - Building & construction 620 - Engineering |
hierarchy_top_title |
Generalized finite difference method with irregular mesh for a class of three-dimensional variable-order time-fractional advection-diffusion equations |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV006529712 |
title |
Overexpression of constitutively active OsCPK10 increases Arabidopsis resistance against Pseudomonas syringae pv. tomato and rice resistance against Magnaporthe grisea |
ctrlnum |
(DE-627)ELV017024021 (ELSEVIER)S0981-9428(13)00350-1 |
title_full |
Overexpression of constitutively active OsCPK10 increases Arabidopsis resistance against Pseudomonas syringae pv. tomato and rice resistance against Magnaporthe grisea |
author_sort |
Fu, Liwen |
journal |
Generalized finite difference method with irregular mesh for a class of three-dimensional variable-order time-fractional advection-diffusion equations |
journalStr |
Generalized finite difference method with irregular mesh for a class of three-dimensional variable-order time-fractional advection-diffusion equations |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
zzz |
container_start_page |
202 |
author_browse |
Fu, Liwen |
container_volume |
73 |
physical |
9 |
class |
630 640 580 630 DE-600 640 DE-600 580 DE-600 690 620 VZ 50.03 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Fu, Liwen |
doi_str_mv |
10.1016/j.plaphy.2013.10.004 |
dewey-full |
630 640 580 690 620 |
title_sort |
overexpression of constitutively active oscpk10 increases arabidopsis resistance against pseudomonas syringae pv. tomato and rice resistance against magnaporthe grisea |
title_auth |
Overexpression of constitutively active OsCPK10 increases Arabidopsis resistance against Pseudomonas syringae pv. tomato and rice resistance against Magnaporthe grisea |
abstract |
Calcium-dependent protein kinases (CDPKs) are crucial calcium sensors involved in plant responses to pathogen infection. Here, we report isolation and functional characterization of the pathogen-responsive rice OsCPK10 gene. The expression of OsCPK10 was strongly induced following treatment with a Magnaporthe grisea elicitor. Kinase activity assay showed that the functional OsCPK10 protein not only autophosphorylated, but also phosphorylated Casein in a calcium-dependent manner. Overexpression of constitutively active OsCPK10 in Arabidopsis enhanced the resistance to infection with Pseudomonas syringae pv. tomato, associated with elevated expression of both SA- and JA-related defense genes. Similarly, transgenic rice plants containing constitutively active OsCPK10 exhibited enhanced resistance to blast fungus M. grisea. The enhanced resistance in the transgenic lines was associated with activated expression of SA- and JA-related defense genes. Collectively, our results indicate that rice OsCPK10 is a crucial regulator in plant immune responses, and that it may regulate disease resistance by activating both SA- and JA-dependent defense responses. |
abstractGer |
Calcium-dependent protein kinases (CDPKs) are crucial calcium sensors involved in plant responses to pathogen infection. Here, we report isolation and functional characterization of the pathogen-responsive rice OsCPK10 gene. The expression of OsCPK10 was strongly induced following treatment with a Magnaporthe grisea elicitor. Kinase activity assay showed that the functional OsCPK10 protein not only autophosphorylated, but also phosphorylated Casein in a calcium-dependent manner. Overexpression of constitutively active OsCPK10 in Arabidopsis enhanced the resistance to infection with Pseudomonas syringae pv. tomato, associated with elevated expression of both SA- and JA-related defense genes. Similarly, transgenic rice plants containing constitutively active OsCPK10 exhibited enhanced resistance to blast fungus M. grisea. The enhanced resistance in the transgenic lines was associated with activated expression of SA- and JA-related defense genes. Collectively, our results indicate that rice OsCPK10 is a crucial regulator in plant immune responses, and that it may regulate disease resistance by activating both SA- and JA-dependent defense responses. |
abstract_unstemmed |
Calcium-dependent protein kinases (CDPKs) are crucial calcium sensors involved in plant responses to pathogen infection. Here, we report isolation and functional characterization of the pathogen-responsive rice OsCPK10 gene. The expression of OsCPK10 was strongly induced following treatment with a Magnaporthe grisea elicitor. Kinase activity assay showed that the functional OsCPK10 protein not only autophosphorylated, but also phosphorylated Casein in a calcium-dependent manner. Overexpression of constitutively active OsCPK10 in Arabidopsis enhanced the resistance to infection with Pseudomonas syringae pv. tomato, associated with elevated expression of both SA- and JA-related defense genes. Similarly, transgenic rice plants containing constitutively active OsCPK10 exhibited enhanced resistance to blast fungus M. grisea. The enhanced resistance in the transgenic lines was associated with activated expression of SA- and JA-related defense genes. Collectively, our results indicate that rice OsCPK10 is a crucial regulator in plant immune responses, and that it may regulate disease resistance by activating both SA- and JA-dependent defense responses. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
Overexpression of constitutively active OsCPK10 increases Arabidopsis resistance against Pseudomonas syringae pv. tomato and rice resistance against Magnaporthe grisea |
url |
https://doi.org/10.1016/j.plaphy.2013.10.004 |
remote_bool |
true |
author2 |
Yu, Xiangchun An, Chengcai |
author2Str |
Yu, Xiangchun An, Chengcai |
ppnlink |
ELV006529712 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1016/j.plaphy.2013.10.004 |
up_date |
2024-07-06T20:55:33.093Z |
_version_ |
1803864593498374144 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV017024021</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625121346.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.plaphy.2013.10.004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2013016000020.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV017024021</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0981-9428(13)00350-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="a">580</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">640</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">580</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fu, Liwen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Overexpression of constitutively active OsCPK10 increases Arabidopsis resistance against Pseudomonas syringae pv. tomato and rice resistance against Magnaporthe grisea</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">9</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Calcium-dependent protein kinases (CDPKs) are crucial calcium sensors involved in plant responses to pathogen infection. Here, we report isolation and functional characterization of the pathogen-responsive rice OsCPK10 gene. The expression of OsCPK10 was strongly induced following treatment with a Magnaporthe grisea elicitor. Kinase activity assay showed that the functional OsCPK10 protein not only autophosphorylated, but also phosphorylated Casein in a calcium-dependent manner. Overexpression of constitutively active OsCPK10 in Arabidopsis enhanced the resistance to infection with Pseudomonas syringae pv. tomato, associated with elevated expression of both SA- and JA-related defense genes. Similarly, transgenic rice plants containing constitutively active OsCPK10 exhibited enhanced resistance to blast fungus M. grisea. The enhanced resistance in the transgenic lines was associated with activated expression of SA- and JA-related defense genes. Collectively, our results indicate that rice OsCPK10 is a crucial regulator in plant immune responses, and that it may regulate disease resistance by activating both SA- and JA-dependent defense responses.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Calcium-dependent protein kinases (CDPKs) are crucial calcium sensors involved in plant responses to pathogen infection. Here, we report isolation and functional characterization of the pathogen-responsive rice OsCPK10 gene. The expression of OsCPK10 was strongly induced following treatment with a Magnaporthe grisea elicitor. Kinase activity assay showed that the functional OsCPK10 protein not only autophosphorylated, but also phosphorylated Casein in a calcium-dependent manner. Overexpression of constitutively active OsCPK10 in Arabidopsis enhanced the resistance to infection with Pseudomonas syringae pv. tomato, associated with elevated expression of both SA- and JA-related defense genes. Similarly, transgenic rice plants containing constitutively active OsCPK10 exhibited enhanced resistance to blast fungus M. grisea. The enhanced resistance in the transgenic lines was associated with activated expression of SA- and JA-related defense genes. Collectively, our results indicate that rice OsCPK10 is a crucial regulator in plant immune responses, and that it may regulate disease resistance by activating both SA- and JA-dependent defense responses.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">CDPK</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Plant immunity</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Xiangchun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">An, Chengcai</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Wang, Zhaoyang ELSEVIER</subfield><subfield code="t">Generalized finite difference method with irregular mesh for a class of three-dimensional variable-order time-fractional advection-diffusion equations</subfield><subfield code="d">2021</subfield><subfield code="d">PPB : an official journal of the Federation of European Societies of Plant Physiology</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV006529712</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:73</subfield><subfield code="g">year:2013</subfield><subfield code="g">pages:202-210</subfield><subfield code="g">extent:9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.plaphy.2013.10.004</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.03</subfield><subfield code="j">Methoden und Techniken der Ingenieurwissenschaften</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">73</subfield><subfield code="j">2013</subfield><subfield code="h">202-210</subfield><subfield code="g">9</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">630</subfield></datafield></record></collection>
|
score |
7.4009867 |