Drinking water biofilm cohesiveness changes under chlorination or hydrodynamic stress
Attempts at removal of drinking water biofilms rely on various preventive and curative strategies such as nutrient reduction in drinking water, disinfection or water flushing, which have demonstrated limited efficiency. The main reason for these failures is the cohesiveness of the biofilm driven by...
Ausführliche Beschreibung
Autor*in: |
Mathieu, L. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
10 |
---|
Übergeordnetes Werk: |
Enthalten in: Matches, mismatches and priorities of pathways from a climate-resilient development perspective in the mountains of Nepal - Pandey, Avash ELSEVIER, 2021, a journal of the International Association on Water Quality (IAWQ), Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:55 ; year:2014 ; day:15 ; month:05 ; pages:175-184 ; extent:10 |
Links: |
---|
DOI / URN: |
10.1016/j.watres.2014.01.054 |
---|
Katalog-ID: |
ELV017211182 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV017211182 | ||
003 | DE-627 | ||
005 | 20230625121849.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180602s2014 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.watres.2014.01.054 |2 doi | |
028 | 5 | 2 | |a GBVA2014001000027.pica |
035 | |a (DE-627)ELV017211182 | ||
035 | |a (ELSEVIER)S0043-1354(14)00094-3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 550 | |
082 | 0 | 4 | |a 550 |q DE-600 |
082 | 0 | 4 | |a 333.7 |a 320 |q VZ |
100 | 1 | |a Mathieu, L. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Drinking water biofilm cohesiveness changes under chlorination or hydrodynamic stress |
264 | 1 | |c 2014transfer abstract | |
300 | |a 10 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Attempts at removal of drinking water biofilms rely on various preventive and curative strategies such as nutrient reduction in drinking water, disinfection or water flushing, which have demonstrated limited efficiency. The main reason for these failures is the cohesiveness of the biofilm driven by the physico-chemical properties of its exopolymeric matrix (EPS). Effective cleaning procedures should break up the matrix and/or change the elastic properties of bacterial biofilms. The aim of this study was to evaluate the change in the cohesive strength of two-month-old drinking water biofilms under increasing hydrodynamic shear stress τ w (from ∼0.2 to ∼10 Pa) and shock chlorination (applied concentration at T0: 10 mg Cl2/L; 60 min contact time). Biofilm erosion (cell loss per unit surface area) and cohesiveness (changes in the detachment shear stress and cluster volumes measured by atomic force microscopy (AFM)) were studied. | ||
520 | |a Attempts at removal of drinking water biofilms rely on various preventive and curative strategies such as nutrient reduction in drinking water, disinfection or water flushing, which have demonstrated limited efficiency. The main reason for these failures is the cohesiveness of the biofilm driven by the physico-chemical properties of its exopolymeric matrix (EPS). Effective cleaning procedures should break up the matrix and/or change the elastic properties of bacterial biofilms. The aim of this study was to evaluate the change in the cohesive strength of two-month-old drinking water biofilms under increasing hydrodynamic shear stress τ w (from ∼0.2 to ∼10 Pa) and shock chlorination (applied concentration at T0: 10 mg Cl2/L; 60 min contact time). Biofilm erosion (cell loss per unit surface area) and cohesiveness (changes in the detachment shear stress and cluster volumes measured by atomic force microscopy (AFM)) were studied. | ||
650 | 7 | |a Entanglement rate |2 Elsevier | |
650 | 7 | |a Chlorination |2 Elsevier | |
650 | 7 | |a Cohesiveness |2 Elsevier | |
650 | 7 | |a Hydrodynamic shear rate |2 Elsevier | |
650 | 7 | |a Drinking water biofilm |2 Elsevier | |
650 | 7 | |a AFM |2 Elsevier | |
700 | 1 | |a Bertrand, I. |4 oth | |
700 | 1 | |a Abe, Y. |4 oth | |
700 | 1 | |a Angel, E. |4 oth | |
700 | 1 | |a Block, J.C. |4 oth | |
700 | 1 | |a Skali-Lami, S. |4 oth | |
700 | 1 | |a Francius, G. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Pandey, Avash ELSEVIER |t Matches, mismatches and priorities of pathways from a climate-resilient development perspective in the mountains of Nepal |d 2021 |d a journal of the International Association on Water Quality (IAWQ) |g Amsterdam [u.a.] |w (DE-627)ELV006716016 |
773 | 1 | 8 | |g volume:55 |g year:2014 |g day:15 |g month:05 |g pages:175-184 |g extent:10 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.watres.2014.01.054 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
951 | |a AR | ||
952 | |d 55 |j 2014 |b 15 |c 0515 |h 175-184 |g 10 | ||
953 | |2 045F |a 550 |
author_variant |
l m lm |
---|---|
matchkey_str |
mathieulbertrandiabeyangeleblockjcskalil:2014----:rnigaeboimoeieeshneudrhoiain |
hierarchy_sort_str |
2014transfer abstract |
publishDate |
2014 |
allfields |
10.1016/j.watres.2014.01.054 doi GBVA2014001000027.pica (DE-627)ELV017211182 (ELSEVIER)S0043-1354(14)00094-3 DE-627 ger DE-627 rakwb eng 550 550 DE-600 333.7 320 VZ Mathieu, L. verfasserin aut Drinking water biofilm cohesiveness changes under chlorination or hydrodynamic stress 2014transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Attempts at removal of drinking water biofilms rely on various preventive and curative strategies such as nutrient reduction in drinking water, disinfection or water flushing, which have demonstrated limited efficiency. The main reason for these failures is the cohesiveness of the biofilm driven by the physico-chemical properties of its exopolymeric matrix (EPS). Effective cleaning procedures should break up the matrix and/or change the elastic properties of bacterial biofilms. The aim of this study was to evaluate the change in the cohesive strength of two-month-old drinking water biofilms under increasing hydrodynamic shear stress τ w (from ∼0.2 to ∼10 Pa) and shock chlorination (applied concentration at T0: 10 mg Cl2/L; 60 min contact time). Biofilm erosion (cell loss per unit surface area) and cohesiveness (changes in the detachment shear stress and cluster volumes measured by atomic force microscopy (AFM)) were studied. Attempts at removal of drinking water biofilms rely on various preventive and curative strategies such as nutrient reduction in drinking water, disinfection or water flushing, which have demonstrated limited efficiency. The main reason for these failures is the cohesiveness of the biofilm driven by the physico-chemical properties of its exopolymeric matrix (EPS). Effective cleaning procedures should break up the matrix and/or change the elastic properties of bacterial biofilms. The aim of this study was to evaluate the change in the cohesive strength of two-month-old drinking water biofilms under increasing hydrodynamic shear stress τ w (from ∼0.2 to ∼10 Pa) and shock chlorination (applied concentration at T0: 10 mg Cl2/L; 60 min contact time). Biofilm erosion (cell loss per unit surface area) and cohesiveness (changes in the detachment shear stress and cluster volumes measured by atomic force microscopy (AFM)) were studied. Entanglement rate Elsevier Chlorination Elsevier Cohesiveness Elsevier Hydrodynamic shear rate Elsevier Drinking water biofilm Elsevier AFM Elsevier Bertrand, I. oth Abe, Y. oth Angel, E. oth Block, J.C. oth Skali-Lami, S. oth Francius, G. oth Enthalten in Elsevier Science Pandey, Avash ELSEVIER Matches, mismatches and priorities of pathways from a climate-resilient development perspective in the mountains of Nepal 2021 a journal of the International Association on Water Quality (IAWQ) Amsterdam [u.a.] (DE-627)ELV006716016 volume:55 year:2014 day:15 month:05 pages:175-184 extent:10 https://doi.org/10.1016/j.watres.2014.01.054 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U AR 55 2014 15 0515 175-184 10 045F 550 |
spelling |
10.1016/j.watres.2014.01.054 doi GBVA2014001000027.pica (DE-627)ELV017211182 (ELSEVIER)S0043-1354(14)00094-3 DE-627 ger DE-627 rakwb eng 550 550 DE-600 333.7 320 VZ Mathieu, L. verfasserin aut Drinking water biofilm cohesiveness changes under chlorination or hydrodynamic stress 2014transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Attempts at removal of drinking water biofilms rely on various preventive and curative strategies such as nutrient reduction in drinking water, disinfection or water flushing, which have demonstrated limited efficiency. The main reason for these failures is the cohesiveness of the biofilm driven by the physico-chemical properties of its exopolymeric matrix (EPS). Effective cleaning procedures should break up the matrix and/or change the elastic properties of bacterial biofilms. The aim of this study was to evaluate the change in the cohesive strength of two-month-old drinking water biofilms under increasing hydrodynamic shear stress τ w (from ∼0.2 to ∼10 Pa) and shock chlorination (applied concentration at T0: 10 mg Cl2/L; 60 min contact time). Biofilm erosion (cell loss per unit surface area) and cohesiveness (changes in the detachment shear stress and cluster volumes measured by atomic force microscopy (AFM)) were studied. Attempts at removal of drinking water biofilms rely on various preventive and curative strategies such as nutrient reduction in drinking water, disinfection or water flushing, which have demonstrated limited efficiency. The main reason for these failures is the cohesiveness of the biofilm driven by the physico-chemical properties of its exopolymeric matrix (EPS). Effective cleaning procedures should break up the matrix and/or change the elastic properties of bacterial biofilms. The aim of this study was to evaluate the change in the cohesive strength of two-month-old drinking water biofilms under increasing hydrodynamic shear stress τ w (from ∼0.2 to ∼10 Pa) and shock chlorination (applied concentration at T0: 10 mg Cl2/L; 60 min contact time). Biofilm erosion (cell loss per unit surface area) and cohesiveness (changes in the detachment shear stress and cluster volumes measured by atomic force microscopy (AFM)) were studied. Entanglement rate Elsevier Chlorination Elsevier Cohesiveness Elsevier Hydrodynamic shear rate Elsevier Drinking water biofilm Elsevier AFM Elsevier Bertrand, I. oth Abe, Y. oth Angel, E. oth Block, J.C. oth Skali-Lami, S. oth Francius, G. oth Enthalten in Elsevier Science Pandey, Avash ELSEVIER Matches, mismatches and priorities of pathways from a climate-resilient development perspective in the mountains of Nepal 2021 a journal of the International Association on Water Quality (IAWQ) Amsterdam [u.a.] (DE-627)ELV006716016 volume:55 year:2014 day:15 month:05 pages:175-184 extent:10 https://doi.org/10.1016/j.watres.2014.01.054 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U AR 55 2014 15 0515 175-184 10 045F 550 |
allfields_unstemmed |
10.1016/j.watres.2014.01.054 doi GBVA2014001000027.pica (DE-627)ELV017211182 (ELSEVIER)S0043-1354(14)00094-3 DE-627 ger DE-627 rakwb eng 550 550 DE-600 333.7 320 VZ Mathieu, L. verfasserin aut Drinking water biofilm cohesiveness changes under chlorination or hydrodynamic stress 2014transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Attempts at removal of drinking water biofilms rely on various preventive and curative strategies such as nutrient reduction in drinking water, disinfection or water flushing, which have demonstrated limited efficiency. The main reason for these failures is the cohesiveness of the biofilm driven by the physico-chemical properties of its exopolymeric matrix (EPS). Effective cleaning procedures should break up the matrix and/or change the elastic properties of bacterial biofilms. The aim of this study was to evaluate the change in the cohesive strength of two-month-old drinking water biofilms under increasing hydrodynamic shear stress τ w (from ∼0.2 to ∼10 Pa) and shock chlorination (applied concentration at T0: 10 mg Cl2/L; 60 min contact time). Biofilm erosion (cell loss per unit surface area) and cohesiveness (changes in the detachment shear stress and cluster volumes measured by atomic force microscopy (AFM)) were studied. Attempts at removal of drinking water biofilms rely on various preventive and curative strategies such as nutrient reduction in drinking water, disinfection or water flushing, which have demonstrated limited efficiency. The main reason for these failures is the cohesiveness of the biofilm driven by the physico-chemical properties of its exopolymeric matrix (EPS). Effective cleaning procedures should break up the matrix and/or change the elastic properties of bacterial biofilms. The aim of this study was to evaluate the change in the cohesive strength of two-month-old drinking water biofilms under increasing hydrodynamic shear stress τ w (from ∼0.2 to ∼10 Pa) and shock chlorination (applied concentration at T0: 10 mg Cl2/L; 60 min contact time). Biofilm erosion (cell loss per unit surface area) and cohesiveness (changes in the detachment shear stress and cluster volumes measured by atomic force microscopy (AFM)) were studied. Entanglement rate Elsevier Chlorination Elsevier Cohesiveness Elsevier Hydrodynamic shear rate Elsevier Drinking water biofilm Elsevier AFM Elsevier Bertrand, I. oth Abe, Y. oth Angel, E. oth Block, J.C. oth Skali-Lami, S. oth Francius, G. oth Enthalten in Elsevier Science Pandey, Avash ELSEVIER Matches, mismatches and priorities of pathways from a climate-resilient development perspective in the mountains of Nepal 2021 a journal of the International Association on Water Quality (IAWQ) Amsterdam [u.a.] (DE-627)ELV006716016 volume:55 year:2014 day:15 month:05 pages:175-184 extent:10 https://doi.org/10.1016/j.watres.2014.01.054 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U AR 55 2014 15 0515 175-184 10 045F 550 |
allfieldsGer |
10.1016/j.watres.2014.01.054 doi GBVA2014001000027.pica (DE-627)ELV017211182 (ELSEVIER)S0043-1354(14)00094-3 DE-627 ger DE-627 rakwb eng 550 550 DE-600 333.7 320 VZ Mathieu, L. verfasserin aut Drinking water biofilm cohesiveness changes under chlorination or hydrodynamic stress 2014transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Attempts at removal of drinking water biofilms rely on various preventive and curative strategies such as nutrient reduction in drinking water, disinfection or water flushing, which have demonstrated limited efficiency. The main reason for these failures is the cohesiveness of the biofilm driven by the physico-chemical properties of its exopolymeric matrix (EPS). Effective cleaning procedures should break up the matrix and/or change the elastic properties of bacterial biofilms. The aim of this study was to evaluate the change in the cohesive strength of two-month-old drinking water biofilms under increasing hydrodynamic shear stress τ w (from ∼0.2 to ∼10 Pa) and shock chlorination (applied concentration at T0: 10 mg Cl2/L; 60 min contact time). Biofilm erosion (cell loss per unit surface area) and cohesiveness (changes in the detachment shear stress and cluster volumes measured by atomic force microscopy (AFM)) were studied. Attempts at removal of drinking water biofilms rely on various preventive and curative strategies such as nutrient reduction in drinking water, disinfection or water flushing, which have demonstrated limited efficiency. The main reason for these failures is the cohesiveness of the biofilm driven by the physico-chemical properties of its exopolymeric matrix (EPS). Effective cleaning procedures should break up the matrix and/or change the elastic properties of bacterial biofilms. The aim of this study was to evaluate the change in the cohesive strength of two-month-old drinking water biofilms under increasing hydrodynamic shear stress τ w (from ∼0.2 to ∼10 Pa) and shock chlorination (applied concentration at T0: 10 mg Cl2/L; 60 min contact time). Biofilm erosion (cell loss per unit surface area) and cohesiveness (changes in the detachment shear stress and cluster volumes measured by atomic force microscopy (AFM)) were studied. Entanglement rate Elsevier Chlorination Elsevier Cohesiveness Elsevier Hydrodynamic shear rate Elsevier Drinking water biofilm Elsevier AFM Elsevier Bertrand, I. oth Abe, Y. oth Angel, E. oth Block, J.C. oth Skali-Lami, S. oth Francius, G. oth Enthalten in Elsevier Science Pandey, Avash ELSEVIER Matches, mismatches and priorities of pathways from a climate-resilient development perspective in the mountains of Nepal 2021 a journal of the International Association on Water Quality (IAWQ) Amsterdam [u.a.] (DE-627)ELV006716016 volume:55 year:2014 day:15 month:05 pages:175-184 extent:10 https://doi.org/10.1016/j.watres.2014.01.054 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U AR 55 2014 15 0515 175-184 10 045F 550 |
allfieldsSound |
10.1016/j.watres.2014.01.054 doi GBVA2014001000027.pica (DE-627)ELV017211182 (ELSEVIER)S0043-1354(14)00094-3 DE-627 ger DE-627 rakwb eng 550 550 DE-600 333.7 320 VZ Mathieu, L. verfasserin aut Drinking water biofilm cohesiveness changes under chlorination or hydrodynamic stress 2014transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Attempts at removal of drinking water biofilms rely on various preventive and curative strategies such as nutrient reduction in drinking water, disinfection or water flushing, which have demonstrated limited efficiency. The main reason for these failures is the cohesiveness of the biofilm driven by the physico-chemical properties of its exopolymeric matrix (EPS). Effective cleaning procedures should break up the matrix and/or change the elastic properties of bacterial biofilms. The aim of this study was to evaluate the change in the cohesive strength of two-month-old drinking water biofilms under increasing hydrodynamic shear stress τ w (from ∼0.2 to ∼10 Pa) and shock chlorination (applied concentration at T0: 10 mg Cl2/L; 60 min contact time). Biofilm erosion (cell loss per unit surface area) and cohesiveness (changes in the detachment shear stress and cluster volumes measured by atomic force microscopy (AFM)) were studied. Attempts at removal of drinking water biofilms rely on various preventive and curative strategies such as nutrient reduction in drinking water, disinfection or water flushing, which have demonstrated limited efficiency. The main reason for these failures is the cohesiveness of the biofilm driven by the physico-chemical properties of its exopolymeric matrix (EPS). Effective cleaning procedures should break up the matrix and/or change the elastic properties of bacterial biofilms. The aim of this study was to evaluate the change in the cohesive strength of two-month-old drinking water biofilms under increasing hydrodynamic shear stress τ w (from ∼0.2 to ∼10 Pa) and shock chlorination (applied concentration at T0: 10 mg Cl2/L; 60 min contact time). Biofilm erosion (cell loss per unit surface area) and cohesiveness (changes in the detachment shear stress and cluster volumes measured by atomic force microscopy (AFM)) were studied. Entanglement rate Elsevier Chlorination Elsevier Cohesiveness Elsevier Hydrodynamic shear rate Elsevier Drinking water biofilm Elsevier AFM Elsevier Bertrand, I. oth Abe, Y. oth Angel, E. oth Block, J.C. oth Skali-Lami, S. oth Francius, G. oth Enthalten in Elsevier Science Pandey, Avash ELSEVIER Matches, mismatches and priorities of pathways from a climate-resilient development perspective in the mountains of Nepal 2021 a journal of the International Association on Water Quality (IAWQ) Amsterdam [u.a.] (DE-627)ELV006716016 volume:55 year:2014 day:15 month:05 pages:175-184 extent:10 https://doi.org/10.1016/j.watres.2014.01.054 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U AR 55 2014 15 0515 175-184 10 045F 550 |
language |
English |
source |
Enthalten in Matches, mismatches and priorities of pathways from a climate-resilient development perspective in the mountains of Nepal Amsterdam [u.a.] volume:55 year:2014 day:15 month:05 pages:175-184 extent:10 |
sourceStr |
Enthalten in Matches, mismatches and priorities of pathways from a climate-resilient development perspective in the mountains of Nepal Amsterdam [u.a.] volume:55 year:2014 day:15 month:05 pages:175-184 extent:10 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Entanglement rate Chlorination Cohesiveness Hydrodynamic shear rate Drinking water biofilm AFM |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Matches, mismatches and priorities of pathways from a climate-resilient development perspective in the mountains of Nepal |
authorswithroles_txt_mv |
Mathieu, L. @@aut@@ Bertrand, I. @@oth@@ Abe, Y. @@oth@@ Angel, E. @@oth@@ Block, J.C. @@oth@@ Skali-Lami, S. @@oth@@ Francius, G. @@oth@@ |
publishDateDaySort_date |
2014-01-15T00:00:00Z |
hierarchy_top_id |
ELV006716016 |
dewey-sort |
3550 |
id |
ELV017211182 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV017211182</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625121849.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.watres.2014.01.054</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014001000027.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV017211182</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0043-1354(14)00094-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">550</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="a">320</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mathieu, L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Drinking water biofilm cohesiveness changes under chlorination or hydrodynamic stress</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Attempts at removal of drinking water biofilms rely on various preventive and curative strategies such as nutrient reduction in drinking water, disinfection or water flushing, which have demonstrated limited efficiency. The main reason for these failures is the cohesiveness of the biofilm driven by the physico-chemical properties of its exopolymeric matrix (EPS). Effective cleaning procedures should break up the matrix and/or change the elastic properties of bacterial biofilms. The aim of this study was to evaluate the change in the cohesive strength of two-month-old drinking water biofilms under increasing hydrodynamic shear stress τ w (from ∼0.2 to ∼10 Pa) and shock chlorination (applied concentration at T0: 10 mg Cl2/L; 60 min contact time). Biofilm erosion (cell loss per unit surface area) and cohesiveness (changes in the detachment shear stress and cluster volumes measured by atomic force microscopy (AFM)) were studied.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Attempts at removal of drinking water biofilms rely on various preventive and curative strategies such as nutrient reduction in drinking water, disinfection or water flushing, which have demonstrated limited efficiency. The main reason for these failures is the cohesiveness of the biofilm driven by the physico-chemical properties of its exopolymeric matrix (EPS). Effective cleaning procedures should break up the matrix and/or change the elastic properties of bacterial biofilms. The aim of this study was to evaluate the change in the cohesive strength of two-month-old drinking water biofilms under increasing hydrodynamic shear stress τ w (from ∼0.2 to ∼10 Pa) and shock chlorination (applied concentration at T0: 10 mg Cl2/L; 60 min contact time). Biofilm erosion (cell loss per unit surface area) and cohesiveness (changes in the detachment shear stress and cluster volumes measured by atomic force microscopy (AFM)) were studied.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Entanglement rate</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Chlorination</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cohesiveness</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hydrodynamic shear rate</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Drinking water biofilm</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">AFM</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bertrand, I.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Abe, Y.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Angel, E.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Block, J.C.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Skali-Lami, S.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Francius, G.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Pandey, Avash ELSEVIER</subfield><subfield code="t">Matches, mismatches and priorities of pathways from a climate-resilient development perspective in the mountains of Nepal</subfield><subfield code="d">2021</subfield><subfield code="d">a journal of the International Association on Water Quality (IAWQ)</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV006716016</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:55</subfield><subfield code="g">year:2014</subfield><subfield code="g">day:15</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:175-184</subfield><subfield code="g">extent:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.watres.2014.01.054</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">55</subfield><subfield code="j">2014</subfield><subfield code="b">15</subfield><subfield code="c">0515</subfield><subfield code="h">175-184</subfield><subfield code="g">10</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">550</subfield></datafield></record></collection>
|
author |
Mathieu, L. |
spellingShingle |
Mathieu, L. ddc 550 ddc 333.7 Elsevier Entanglement rate Elsevier Chlorination Elsevier Cohesiveness Elsevier Hydrodynamic shear rate Elsevier Drinking water biofilm Elsevier AFM Drinking water biofilm cohesiveness changes under chlorination or hydrodynamic stress |
authorStr |
Mathieu, L. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV006716016 |
format |
electronic Article |
dewey-ones |
550 - Earth sciences 333 - Economics of land & energy 320 - Political science |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
550 550 DE-600 333.7 320 VZ Drinking water biofilm cohesiveness changes under chlorination or hydrodynamic stress Entanglement rate Elsevier Chlorination Elsevier Cohesiveness Elsevier Hydrodynamic shear rate Elsevier Drinking water biofilm Elsevier AFM Elsevier |
topic |
ddc 550 ddc 333.7 Elsevier Entanglement rate Elsevier Chlorination Elsevier Cohesiveness Elsevier Hydrodynamic shear rate Elsevier Drinking water biofilm Elsevier AFM |
topic_unstemmed |
ddc 550 ddc 333.7 Elsevier Entanglement rate Elsevier Chlorination Elsevier Cohesiveness Elsevier Hydrodynamic shear rate Elsevier Drinking water biofilm Elsevier AFM |
topic_browse |
ddc 550 ddc 333.7 Elsevier Entanglement rate Elsevier Chlorination Elsevier Cohesiveness Elsevier Hydrodynamic shear rate Elsevier Drinking water biofilm Elsevier AFM |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
i b ib y a ya e a ea j b jb s s l ssl g f gf |
hierarchy_parent_title |
Matches, mismatches and priorities of pathways from a climate-resilient development perspective in the mountains of Nepal |
hierarchy_parent_id |
ELV006716016 |
dewey-tens |
550 - Earth sciences & geology 330 - Economics 320 - Political science |
hierarchy_top_title |
Matches, mismatches and priorities of pathways from a climate-resilient development perspective in the mountains of Nepal |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV006716016 |
title |
Drinking water biofilm cohesiveness changes under chlorination or hydrodynamic stress |
ctrlnum |
(DE-627)ELV017211182 (ELSEVIER)S0043-1354(14)00094-3 |
title_full |
Drinking water biofilm cohesiveness changes under chlorination or hydrodynamic stress |
author_sort |
Mathieu, L. |
journal |
Matches, mismatches and priorities of pathways from a climate-resilient development perspective in the mountains of Nepal |
journalStr |
Matches, mismatches and priorities of pathways from a climate-resilient development perspective in the mountains of Nepal |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 300 - Social sciences |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
zzz |
container_start_page |
175 |
author_browse |
Mathieu, L. |
container_volume |
55 |
physical |
10 |
class |
550 550 DE-600 333.7 320 VZ |
format_se |
Elektronische Aufsätze |
author-letter |
Mathieu, L. |
doi_str_mv |
10.1016/j.watres.2014.01.054 |
dewey-full |
550 333.7 320 |
title_sort |
drinking water biofilm cohesiveness changes under chlorination or hydrodynamic stress |
title_auth |
Drinking water biofilm cohesiveness changes under chlorination or hydrodynamic stress |
abstract |
Attempts at removal of drinking water biofilms rely on various preventive and curative strategies such as nutrient reduction in drinking water, disinfection or water flushing, which have demonstrated limited efficiency. The main reason for these failures is the cohesiveness of the biofilm driven by the physico-chemical properties of its exopolymeric matrix (EPS). Effective cleaning procedures should break up the matrix and/or change the elastic properties of bacterial biofilms. The aim of this study was to evaluate the change in the cohesive strength of two-month-old drinking water biofilms under increasing hydrodynamic shear stress τ w (from ∼0.2 to ∼10 Pa) and shock chlorination (applied concentration at T0: 10 mg Cl2/L; 60 min contact time). Biofilm erosion (cell loss per unit surface area) and cohesiveness (changes in the detachment shear stress and cluster volumes measured by atomic force microscopy (AFM)) were studied. |
abstractGer |
Attempts at removal of drinking water biofilms rely on various preventive and curative strategies such as nutrient reduction in drinking water, disinfection or water flushing, which have demonstrated limited efficiency. The main reason for these failures is the cohesiveness of the biofilm driven by the physico-chemical properties of its exopolymeric matrix (EPS). Effective cleaning procedures should break up the matrix and/or change the elastic properties of bacterial biofilms. The aim of this study was to evaluate the change in the cohesive strength of two-month-old drinking water biofilms under increasing hydrodynamic shear stress τ w (from ∼0.2 to ∼10 Pa) and shock chlorination (applied concentration at T0: 10 mg Cl2/L; 60 min contact time). Biofilm erosion (cell loss per unit surface area) and cohesiveness (changes in the detachment shear stress and cluster volumes measured by atomic force microscopy (AFM)) were studied. |
abstract_unstemmed |
Attempts at removal of drinking water biofilms rely on various preventive and curative strategies such as nutrient reduction in drinking water, disinfection or water flushing, which have demonstrated limited efficiency. The main reason for these failures is the cohesiveness of the biofilm driven by the physico-chemical properties of its exopolymeric matrix (EPS). Effective cleaning procedures should break up the matrix and/or change the elastic properties of bacterial biofilms. The aim of this study was to evaluate the change in the cohesive strength of two-month-old drinking water biofilms under increasing hydrodynamic shear stress τ w (from ∼0.2 to ∼10 Pa) and shock chlorination (applied concentration at T0: 10 mg Cl2/L; 60 min contact time). Biofilm erosion (cell loss per unit surface area) and cohesiveness (changes in the detachment shear stress and cluster volumes measured by atomic force microscopy (AFM)) were studied. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
Drinking water biofilm cohesiveness changes under chlorination or hydrodynamic stress |
url |
https://doi.org/10.1016/j.watres.2014.01.054 |
remote_bool |
true |
author2 |
Bertrand, I. Abe, Y. Angel, E. Block, J.C. Skali-Lami, S. Francius, G. |
author2Str |
Bertrand, I. Abe, Y. Angel, E. Block, J.C. Skali-Lami, S. Francius, G. |
ppnlink |
ELV006716016 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth |
doi_str |
10.1016/j.watres.2014.01.054 |
up_date |
2024-07-06T21:25:10.905Z |
_version_ |
1803866457670418432 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV017211182</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625121849.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.watres.2014.01.054</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014001000027.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV017211182</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0043-1354(14)00094-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">550</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="a">320</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mathieu, L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Drinking water biofilm cohesiveness changes under chlorination or hydrodynamic stress</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Attempts at removal of drinking water biofilms rely on various preventive and curative strategies such as nutrient reduction in drinking water, disinfection or water flushing, which have demonstrated limited efficiency. The main reason for these failures is the cohesiveness of the biofilm driven by the physico-chemical properties of its exopolymeric matrix (EPS). Effective cleaning procedures should break up the matrix and/or change the elastic properties of bacterial biofilms. The aim of this study was to evaluate the change in the cohesive strength of two-month-old drinking water biofilms under increasing hydrodynamic shear stress τ w (from ∼0.2 to ∼10 Pa) and shock chlorination (applied concentration at T0: 10 mg Cl2/L; 60 min contact time). Biofilm erosion (cell loss per unit surface area) and cohesiveness (changes in the detachment shear stress and cluster volumes measured by atomic force microscopy (AFM)) were studied.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Attempts at removal of drinking water biofilms rely on various preventive and curative strategies such as nutrient reduction in drinking water, disinfection or water flushing, which have demonstrated limited efficiency. The main reason for these failures is the cohesiveness of the biofilm driven by the physico-chemical properties of its exopolymeric matrix (EPS). Effective cleaning procedures should break up the matrix and/or change the elastic properties of bacterial biofilms. The aim of this study was to evaluate the change in the cohesive strength of two-month-old drinking water biofilms under increasing hydrodynamic shear stress τ w (from ∼0.2 to ∼10 Pa) and shock chlorination (applied concentration at T0: 10 mg Cl2/L; 60 min contact time). Biofilm erosion (cell loss per unit surface area) and cohesiveness (changes in the detachment shear stress and cluster volumes measured by atomic force microscopy (AFM)) were studied.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Entanglement rate</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Chlorination</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cohesiveness</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hydrodynamic shear rate</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Drinking water biofilm</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">AFM</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bertrand, I.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Abe, Y.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Angel, E.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Block, J.C.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Skali-Lami, S.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Francius, G.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Pandey, Avash ELSEVIER</subfield><subfield code="t">Matches, mismatches and priorities of pathways from a climate-resilient development perspective in the mountains of Nepal</subfield><subfield code="d">2021</subfield><subfield code="d">a journal of the International Association on Water Quality (IAWQ)</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV006716016</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:55</subfield><subfield code="g">year:2014</subfield><subfield code="g">day:15</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:175-184</subfield><subfield code="g">extent:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.watres.2014.01.054</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">55</subfield><subfield code="j">2014</subfield><subfield code="b">15</subfield><subfield code="c">0515</subfield><subfield code="h">175-184</subfield><subfield code="g">10</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">550</subfield></datafield></record></collection>
|
score |
7.401787 |