Strong convergence theorems for Bregman totally quasi-asymptotically nonexpansive mappings in reflexive Banach spaces
The purpose of this article is by using the shrinking projection method introduced by Takahashi, Kubota and Takeuchi to propose an iteration algorithm for Bregman total quasi- ϕ -asymptotically nonexpansive mapping to have the strong convergence under a limit condition only in the framework of refle...
Ausführliche Beschreibung
Autor*in: |
Chang, S.S. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014transfer abstract |
---|
Schlagwörter: |
Bregman total quasi-asymptotically nonexpansive mapping Bregman quasi-asymptotically nonexpansive mapping Bregman strongly nonexpansive mapping |
---|
Systematik: |
|
---|
Umfang: |
11 |
---|
Übergeordnetes Werk: |
Enthalten in: Geodesic synchrotron radiation in black hole spacetimes: Analytical investigation - Moreira, Zeus S. ELSEVIER, 2021, New York, NY |
---|---|
Übergeordnetes Werk: |
volume:228 ; year:2014 ; day:1 ; month:02 ; pages:38-48 ; extent:11 |
Links: |
---|
DOI / URN: |
10.1016/j.amc.2013.11.074 |
---|
Katalog-ID: |
ELV017228778 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV017228778 | ||
003 | DE-627 | ||
005 | 20230625121907.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180602s2014 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.amc.2013.11.074 |2 doi | |
028 | 5 | 2 | |a GBVA2014002000005.pica |
035 | |a (DE-627)ELV017228778 | ||
035 | |a (ELSEVIER)S0096-3003(13)01243-5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 510 | |
082 | 0 | 4 | |a 510 |q DE-600 |
082 | 0 | 4 | |a 530 |q VZ |
084 | |a UA 1000 |q VZ |2 rvk |0 (DE-625)rvk/145215: | ||
084 | |a 33.40 |2 bkl | ||
084 | |a 33.50 |2 bkl | ||
084 | |a 39.22 |2 bkl | ||
100 | 1 | |a Chang, S.S. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Strong convergence theorems for Bregman totally quasi-asymptotically nonexpansive mappings in reflexive Banach spaces |
264 | 1 | |c 2014transfer abstract | |
300 | |a 11 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a The purpose of this article is by using the shrinking projection method introduced by Takahashi, Kubota and Takeuchi to propose an iteration algorithm for Bregman total quasi- ϕ -asymptotically nonexpansive mapping to have the strong convergence under a limit condition only in the framework of reflexive Banach spaces. As applications, we apply our results to a system of equilibrium problems and zero point problem of maximal monotone mappings in reflexive Banach spaces. The results presented in the paper improve and extend the corresponding results of Reich and Sabach (2010) [12], Suantai et al. (2012) [13], Nilsrakoo and Saejung (2011) [11], Qin et al. (2009) [5], Wang et al. (2011) [6], Su et al. (2010) [7], Martinez-Yanes and Xu (2006) [3] and others. | ||
520 | |a The purpose of this article is by using the shrinking projection method introduced by Takahashi, Kubota and Takeuchi to propose an iteration algorithm for Bregman total quasi- ϕ -asymptotically nonexpansive mapping to have the strong convergence under a limit condition only in the framework of reflexive Banach spaces. As applications, we apply our results to a system of equilibrium problems and zero point problem of maximal monotone mappings in reflexive Banach spaces. The results presented in the paper improve and extend the corresponding results of Reich and Sabach (2010) [12], Suantai et al. (2012) [13], Nilsrakoo and Saejung (2011) [11], Qin et al. (2009) [5], Wang et al. (2011) [6], Su et al. (2010) [7], Martinez-Yanes and Xu (2006) [3] and others. | ||
650 | 7 | |a Bregman total quasi-asymptotically nonexpansive mapping |2 Elsevier | |
650 | 7 | |a Bregman quasi-asymptotically nonexpansive mapping |2 Elsevier | |
650 | 7 | |a Bregman strongly nonexpansive mapping |2 Elsevier | |
650 | 7 | |a Bregman quasi-nonexpansive mapping |2 Elsevier | |
650 | 7 | |a Legendre function |2 Elsevier | |
650 | 7 | |a Totally convex function |2 Elsevier | |
650 | 7 | |a Bregman projection |2 Elsevier | |
700 | 1 | |a Wang, L. |4 oth | |
700 | 1 | |a Wang, X.R. |4 oth | |
700 | 1 | |a Chan, C.K. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Moreira, Zeus S. ELSEVIER |t Geodesic synchrotron radiation in black hole spacetimes: Analytical investigation |d 2021 |g New York, NY |w (DE-627)ELV006733727 |
773 | 1 | 8 | |g volume:228 |g year:2014 |g day:1 |g month:02 |g pages:38-48 |g extent:11 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.amc.2013.11.074 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OPC-AST | ||
936 | r | v | |a UA 1000 |b Referateblätter und Zeitschriften |k Physik |k Referateblätter und Zeitschriften |0 (DE-625)rvk/145215: |0 (DE-576)329175343 |
936 | b | k | |a 33.40 |j Kernphysik |q VZ |
936 | b | k | |a 33.50 |j Physik der Elementarteilchen und Felder: Allgemeines |q VZ |
936 | b | k | |a 39.22 |j Astrophysik |q VZ |
951 | |a AR | ||
952 | |d 228 |j 2014 |b 1 |c 0201 |h 38-48 |g 11 | ||
953 | |2 045F |a 510 |
author_variant |
s c sc |
---|---|
matchkey_str |
changsswanglwangxrchanck:2014----:togovrectermfrrgattlyusaypoialnnxasvmpi |
hierarchy_sort_str |
2014transfer abstract |
bklnumber |
33.40 33.50 39.22 |
publishDate |
2014 |
allfields |
10.1016/j.amc.2013.11.074 doi GBVA2014002000005.pica (DE-627)ELV017228778 (ELSEVIER)S0096-3003(13)01243-5 DE-627 ger DE-627 rakwb eng 510 510 DE-600 530 VZ UA 1000 VZ rvk (DE-625)rvk/145215: 33.40 bkl 33.50 bkl 39.22 bkl Chang, S.S. verfasserin aut Strong convergence theorems for Bregman totally quasi-asymptotically nonexpansive mappings in reflexive Banach spaces 2014transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The purpose of this article is by using the shrinking projection method introduced by Takahashi, Kubota and Takeuchi to propose an iteration algorithm for Bregman total quasi- ϕ -asymptotically nonexpansive mapping to have the strong convergence under a limit condition only in the framework of reflexive Banach spaces. As applications, we apply our results to a system of equilibrium problems and zero point problem of maximal monotone mappings in reflexive Banach spaces. The results presented in the paper improve and extend the corresponding results of Reich and Sabach (2010) [12], Suantai et al. (2012) [13], Nilsrakoo and Saejung (2011) [11], Qin et al. (2009) [5], Wang et al. (2011) [6], Su et al. (2010) [7], Martinez-Yanes and Xu (2006) [3] and others. The purpose of this article is by using the shrinking projection method introduced by Takahashi, Kubota and Takeuchi to propose an iteration algorithm for Bregman total quasi- ϕ -asymptotically nonexpansive mapping to have the strong convergence under a limit condition only in the framework of reflexive Banach spaces. As applications, we apply our results to a system of equilibrium problems and zero point problem of maximal monotone mappings in reflexive Banach spaces. The results presented in the paper improve and extend the corresponding results of Reich and Sabach (2010) [12], Suantai et al. (2012) [13], Nilsrakoo and Saejung (2011) [11], Qin et al. (2009) [5], Wang et al. (2011) [6], Su et al. (2010) [7], Martinez-Yanes and Xu (2006) [3] and others. Bregman total quasi-asymptotically nonexpansive mapping Elsevier Bregman quasi-asymptotically nonexpansive mapping Elsevier Bregman strongly nonexpansive mapping Elsevier Bregman quasi-nonexpansive mapping Elsevier Legendre function Elsevier Totally convex function Elsevier Bregman projection Elsevier Wang, L. oth Wang, X.R. oth Chan, C.K. oth Enthalten in Elsevier Moreira, Zeus S. ELSEVIER Geodesic synchrotron radiation in black hole spacetimes: Analytical investigation 2021 New York, NY (DE-627)ELV006733727 volume:228 year:2014 day:1 month:02 pages:38-48 extent:11 https://doi.org/10.1016/j.amc.2013.11.074 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHY SSG-OPC-AST UA 1000 Referateblätter und Zeitschriften Physik Referateblätter und Zeitschriften (DE-625)rvk/145215: (DE-576)329175343 33.40 Kernphysik VZ 33.50 Physik der Elementarteilchen und Felder: Allgemeines VZ 39.22 Astrophysik VZ AR 228 2014 1 0201 38-48 11 045F 510 |
spelling |
10.1016/j.amc.2013.11.074 doi GBVA2014002000005.pica (DE-627)ELV017228778 (ELSEVIER)S0096-3003(13)01243-5 DE-627 ger DE-627 rakwb eng 510 510 DE-600 530 VZ UA 1000 VZ rvk (DE-625)rvk/145215: 33.40 bkl 33.50 bkl 39.22 bkl Chang, S.S. verfasserin aut Strong convergence theorems for Bregman totally quasi-asymptotically nonexpansive mappings in reflexive Banach spaces 2014transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The purpose of this article is by using the shrinking projection method introduced by Takahashi, Kubota and Takeuchi to propose an iteration algorithm for Bregman total quasi- ϕ -asymptotically nonexpansive mapping to have the strong convergence under a limit condition only in the framework of reflexive Banach spaces. As applications, we apply our results to a system of equilibrium problems and zero point problem of maximal monotone mappings in reflexive Banach spaces. The results presented in the paper improve and extend the corresponding results of Reich and Sabach (2010) [12], Suantai et al. (2012) [13], Nilsrakoo and Saejung (2011) [11], Qin et al. (2009) [5], Wang et al. (2011) [6], Su et al. (2010) [7], Martinez-Yanes and Xu (2006) [3] and others. The purpose of this article is by using the shrinking projection method introduced by Takahashi, Kubota and Takeuchi to propose an iteration algorithm for Bregman total quasi- ϕ -asymptotically nonexpansive mapping to have the strong convergence under a limit condition only in the framework of reflexive Banach spaces. As applications, we apply our results to a system of equilibrium problems and zero point problem of maximal monotone mappings in reflexive Banach spaces. The results presented in the paper improve and extend the corresponding results of Reich and Sabach (2010) [12], Suantai et al. (2012) [13], Nilsrakoo and Saejung (2011) [11], Qin et al. (2009) [5], Wang et al. (2011) [6], Su et al. (2010) [7], Martinez-Yanes and Xu (2006) [3] and others. Bregman total quasi-asymptotically nonexpansive mapping Elsevier Bregman quasi-asymptotically nonexpansive mapping Elsevier Bregman strongly nonexpansive mapping Elsevier Bregman quasi-nonexpansive mapping Elsevier Legendre function Elsevier Totally convex function Elsevier Bregman projection Elsevier Wang, L. oth Wang, X.R. oth Chan, C.K. oth Enthalten in Elsevier Moreira, Zeus S. ELSEVIER Geodesic synchrotron radiation in black hole spacetimes: Analytical investigation 2021 New York, NY (DE-627)ELV006733727 volume:228 year:2014 day:1 month:02 pages:38-48 extent:11 https://doi.org/10.1016/j.amc.2013.11.074 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHY SSG-OPC-AST UA 1000 Referateblätter und Zeitschriften Physik Referateblätter und Zeitschriften (DE-625)rvk/145215: (DE-576)329175343 33.40 Kernphysik VZ 33.50 Physik der Elementarteilchen und Felder: Allgemeines VZ 39.22 Astrophysik VZ AR 228 2014 1 0201 38-48 11 045F 510 |
allfields_unstemmed |
10.1016/j.amc.2013.11.074 doi GBVA2014002000005.pica (DE-627)ELV017228778 (ELSEVIER)S0096-3003(13)01243-5 DE-627 ger DE-627 rakwb eng 510 510 DE-600 530 VZ UA 1000 VZ rvk (DE-625)rvk/145215: 33.40 bkl 33.50 bkl 39.22 bkl Chang, S.S. verfasserin aut Strong convergence theorems for Bregman totally quasi-asymptotically nonexpansive mappings in reflexive Banach spaces 2014transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The purpose of this article is by using the shrinking projection method introduced by Takahashi, Kubota and Takeuchi to propose an iteration algorithm for Bregman total quasi- ϕ -asymptotically nonexpansive mapping to have the strong convergence under a limit condition only in the framework of reflexive Banach spaces. As applications, we apply our results to a system of equilibrium problems and zero point problem of maximal monotone mappings in reflexive Banach spaces. The results presented in the paper improve and extend the corresponding results of Reich and Sabach (2010) [12], Suantai et al. (2012) [13], Nilsrakoo and Saejung (2011) [11], Qin et al. (2009) [5], Wang et al. (2011) [6], Su et al. (2010) [7], Martinez-Yanes and Xu (2006) [3] and others. The purpose of this article is by using the shrinking projection method introduced by Takahashi, Kubota and Takeuchi to propose an iteration algorithm for Bregman total quasi- ϕ -asymptotically nonexpansive mapping to have the strong convergence under a limit condition only in the framework of reflexive Banach spaces. As applications, we apply our results to a system of equilibrium problems and zero point problem of maximal monotone mappings in reflexive Banach spaces. The results presented in the paper improve and extend the corresponding results of Reich and Sabach (2010) [12], Suantai et al. (2012) [13], Nilsrakoo and Saejung (2011) [11], Qin et al. (2009) [5], Wang et al. (2011) [6], Su et al. (2010) [7], Martinez-Yanes and Xu (2006) [3] and others. Bregman total quasi-asymptotically nonexpansive mapping Elsevier Bregman quasi-asymptotically nonexpansive mapping Elsevier Bregman strongly nonexpansive mapping Elsevier Bregman quasi-nonexpansive mapping Elsevier Legendre function Elsevier Totally convex function Elsevier Bregman projection Elsevier Wang, L. oth Wang, X.R. oth Chan, C.K. oth Enthalten in Elsevier Moreira, Zeus S. ELSEVIER Geodesic synchrotron radiation in black hole spacetimes: Analytical investigation 2021 New York, NY (DE-627)ELV006733727 volume:228 year:2014 day:1 month:02 pages:38-48 extent:11 https://doi.org/10.1016/j.amc.2013.11.074 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHY SSG-OPC-AST UA 1000 Referateblätter und Zeitschriften Physik Referateblätter und Zeitschriften (DE-625)rvk/145215: (DE-576)329175343 33.40 Kernphysik VZ 33.50 Physik der Elementarteilchen und Felder: Allgemeines VZ 39.22 Astrophysik VZ AR 228 2014 1 0201 38-48 11 045F 510 |
allfieldsGer |
10.1016/j.amc.2013.11.074 doi GBVA2014002000005.pica (DE-627)ELV017228778 (ELSEVIER)S0096-3003(13)01243-5 DE-627 ger DE-627 rakwb eng 510 510 DE-600 530 VZ UA 1000 VZ rvk (DE-625)rvk/145215: 33.40 bkl 33.50 bkl 39.22 bkl Chang, S.S. verfasserin aut Strong convergence theorems for Bregman totally quasi-asymptotically nonexpansive mappings in reflexive Banach spaces 2014transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The purpose of this article is by using the shrinking projection method introduced by Takahashi, Kubota and Takeuchi to propose an iteration algorithm for Bregman total quasi- ϕ -asymptotically nonexpansive mapping to have the strong convergence under a limit condition only in the framework of reflexive Banach spaces. As applications, we apply our results to a system of equilibrium problems and zero point problem of maximal monotone mappings in reflexive Banach spaces. The results presented in the paper improve and extend the corresponding results of Reich and Sabach (2010) [12], Suantai et al. (2012) [13], Nilsrakoo and Saejung (2011) [11], Qin et al. (2009) [5], Wang et al. (2011) [6], Su et al. (2010) [7], Martinez-Yanes and Xu (2006) [3] and others. The purpose of this article is by using the shrinking projection method introduced by Takahashi, Kubota and Takeuchi to propose an iteration algorithm for Bregman total quasi- ϕ -asymptotically nonexpansive mapping to have the strong convergence under a limit condition only in the framework of reflexive Banach spaces. As applications, we apply our results to a system of equilibrium problems and zero point problem of maximal monotone mappings in reflexive Banach spaces. The results presented in the paper improve and extend the corresponding results of Reich and Sabach (2010) [12], Suantai et al. (2012) [13], Nilsrakoo and Saejung (2011) [11], Qin et al. (2009) [5], Wang et al. (2011) [6], Su et al. (2010) [7], Martinez-Yanes and Xu (2006) [3] and others. Bregman total quasi-asymptotically nonexpansive mapping Elsevier Bregman quasi-asymptotically nonexpansive mapping Elsevier Bregman strongly nonexpansive mapping Elsevier Bregman quasi-nonexpansive mapping Elsevier Legendre function Elsevier Totally convex function Elsevier Bregman projection Elsevier Wang, L. oth Wang, X.R. oth Chan, C.K. oth Enthalten in Elsevier Moreira, Zeus S. ELSEVIER Geodesic synchrotron radiation in black hole spacetimes: Analytical investigation 2021 New York, NY (DE-627)ELV006733727 volume:228 year:2014 day:1 month:02 pages:38-48 extent:11 https://doi.org/10.1016/j.amc.2013.11.074 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHY SSG-OPC-AST UA 1000 Referateblätter und Zeitschriften Physik Referateblätter und Zeitschriften (DE-625)rvk/145215: (DE-576)329175343 33.40 Kernphysik VZ 33.50 Physik der Elementarteilchen und Felder: Allgemeines VZ 39.22 Astrophysik VZ AR 228 2014 1 0201 38-48 11 045F 510 |
allfieldsSound |
10.1016/j.amc.2013.11.074 doi GBVA2014002000005.pica (DE-627)ELV017228778 (ELSEVIER)S0096-3003(13)01243-5 DE-627 ger DE-627 rakwb eng 510 510 DE-600 530 VZ UA 1000 VZ rvk (DE-625)rvk/145215: 33.40 bkl 33.50 bkl 39.22 bkl Chang, S.S. verfasserin aut Strong convergence theorems for Bregman totally quasi-asymptotically nonexpansive mappings in reflexive Banach spaces 2014transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The purpose of this article is by using the shrinking projection method introduced by Takahashi, Kubota and Takeuchi to propose an iteration algorithm for Bregman total quasi- ϕ -asymptotically nonexpansive mapping to have the strong convergence under a limit condition only in the framework of reflexive Banach spaces. As applications, we apply our results to a system of equilibrium problems and zero point problem of maximal monotone mappings in reflexive Banach spaces. The results presented in the paper improve and extend the corresponding results of Reich and Sabach (2010) [12], Suantai et al. (2012) [13], Nilsrakoo and Saejung (2011) [11], Qin et al. (2009) [5], Wang et al. (2011) [6], Su et al. (2010) [7], Martinez-Yanes and Xu (2006) [3] and others. The purpose of this article is by using the shrinking projection method introduced by Takahashi, Kubota and Takeuchi to propose an iteration algorithm for Bregman total quasi- ϕ -asymptotically nonexpansive mapping to have the strong convergence under a limit condition only in the framework of reflexive Banach spaces. As applications, we apply our results to a system of equilibrium problems and zero point problem of maximal monotone mappings in reflexive Banach spaces. The results presented in the paper improve and extend the corresponding results of Reich and Sabach (2010) [12], Suantai et al. (2012) [13], Nilsrakoo and Saejung (2011) [11], Qin et al. (2009) [5], Wang et al. (2011) [6], Su et al. (2010) [7], Martinez-Yanes and Xu (2006) [3] and others. Bregman total quasi-asymptotically nonexpansive mapping Elsevier Bregman quasi-asymptotically nonexpansive mapping Elsevier Bregman strongly nonexpansive mapping Elsevier Bregman quasi-nonexpansive mapping Elsevier Legendre function Elsevier Totally convex function Elsevier Bregman projection Elsevier Wang, L. oth Wang, X.R. oth Chan, C.K. oth Enthalten in Elsevier Moreira, Zeus S. ELSEVIER Geodesic synchrotron radiation in black hole spacetimes: Analytical investigation 2021 New York, NY (DE-627)ELV006733727 volume:228 year:2014 day:1 month:02 pages:38-48 extent:11 https://doi.org/10.1016/j.amc.2013.11.074 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHY SSG-OPC-AST UA 1000 Referateblätter und Zeitschriften Physik Referateblätter und Zeitschriften (DE-625)rvk/145215: (DE-576)329175343 33.40 Kernphysik VZ 33.50 Physik der Elementarteilchen und Felder: Allgemeines VZ 39.22 Astrophysik VZ AR 228 2014 1 0201 38-48 11 045F 510 |
language |
English |
source |
Enthalten in Geodesic synchrotron radiation in black hole spacetimes: Analytical investigation New York, NY volume:228 year:2014 day:1 month:02 pages:38-48 extent:11 |
sourceStr |
Enthalten in Geodesic synchrotron radiation in black hole spacetimes: Analytical investigation New York, NY volume:228 year:2014 day:1 month:02 pages:38-48 extent:11 |
format_phy_str_mv |
Article |
bklname |
Kernphysik Physik der Elementarteilchen und Felder: Allgemeines Astrophysik |
institution |
findex.gbv.de |
topic_facet |
Bregman total quasi-asymptotically nonexpansive mapping Bregman quasi-asymptotically nonexpansive mapping Bregman strongly nonexpansive mapping Bregman quasi-nonexpansive mapping Legendre function Totally convex function Bregman projection |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Geodesic synchrotron radiation in black hole spacetimes: Analytical investigation |
authorswithroles_txt_mv |
Chang, S.S. @@aut@@ Wang, L. @@oth@@ Wang, X.R. @@oth@@ Chan, C.K. @@oth@@ |
publishDateDaySort_date |
2014-01-01T00:00:00Z |
hierarchy_top_id |
ELV006733727 |
dewey-sort |
3510 |
id |
ELV017228778 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV017228778</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625121907.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.amc.2013.11.074</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014002000005.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV017228778</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0096-3003(13)01243-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UA 1000</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield><subfield code="0">(DE-625)rvk/145215:</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.40</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.50</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">39.22</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chang, S.S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Strong convergence theorems for Bregman totally quasi-asymptotically nonexpansive mappings in reflexive Banach spaces</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">11</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The purpose of this article is by using the shrinking projection method introduced by Takahashi, Kubota and Takeuchi to propose an iteration algorithm for Bregman total quasi- ϕ -asymptotically nonexpansive mapping to have the strong convergence under a limit condition only in the framework of reflexive Banach spaces. As applications, we apply our results to a system of equilibrium problems and zero point problem of maximal monotone mappings in reflexive Banach spaces. The results presented in the paper improve and extend the corresponding results of Reich and Sabach (2010) [12], Suantai et al. (2012) [13], Nilsrakoo and Saejung (2011) [11], Qin et al. (2009) [5], Wang et al. (2011) [6], Su et al. (2010) [7], Martinez-Yanes and Xu (2006) [3] and others.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The purpose of this article is by using the shrinking projection method introduced by Takahashi, Kubota and Takeuchi to propose an iteration algorithm for Bregman total quasi- ϕ -asymptotically nonexpansive mapping to have the strong convergence under a limit condition only in the framework of reflexive Banach spaces. As applications, we apply our results to a system of equilibrium problems and zero point problem of maximal monotone mappings in reflexive Banach spaces. The results presented in the paper improve and extend the corresponding results of Reich and Sabach (2010) [12], Suantai et al. (2012) [13], Nilsrakoo and Saejung (2011) [11], Qin et al. (2009) [5], Wang et al. (2011) [6], Su et al. (2010) [7], Martinez-Yanes and Xu (2006) [3] and others.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bregman total quasi-asymptotically nonexpansive mapping</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bregman quasi-asymptotically nonexpansive mapping</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bregman strongly nonexpansive mapping</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bregman quasi-nonexpansive mapping</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Legendre function</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Totally convex function</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bregman projection</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, L.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, X.R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chan, C.K.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Moreira, Zeus S. ELSEVIER</subfield><subfield code="t">Geodesic synchrotron radiation in black hole spacetimes: Analytical investigation</subfield><subfield code="d">2021</subfield><subfield code="g">New York, NY</subfield><subfield code="w">(DE-627)ELV006733727</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:228</subfield><subfield code="g">year:2014</subfield><subfield code="g">day:1</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:38-48</subfield><subfield code="g">extent:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.amc.2013.11.074</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">UA 1000</subfield><subfield code="b">Referateblätter und Zeitschriften</subfield><subfield code="k">Physik</subfield><subfield code="k">Referateblätter und Zeitschriften</subfield><subfield code="0">(DE-625)rvk/145215:</subfield><subfield code="0">(DE-576)329175343</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.40</subfield><subfield code="j">Kernphysik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.50</subfield><subfield code="j">Physik der Elementarteilchen und Felder: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">39.22</subfield><subfield code="j">Astrophysik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">228</subfield><subfield code="j">2014</subfield><subfield code="b">1</subfield><subfield code="c">0201</subfield><subfield code="h">38-48</subfield><subfield code="g">11</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">510</subfield></datafield></record></collection>
|
author |
Chang, S.S. |
spellingShingle |
Chang, S.S. ddc 510 ddc 530 rvk UA 1000 bkl 33.40 bkl 33.50 bkl 39.22 Elsevier Bregman total quasi-asymptotically nonexpansive mapping Elsevier Bregman quasi-asymptotically nonexpansive mapping Elsevier Bregman strongly nonexpansive mapping Elsevier Bregman quasi-nonexpansive mapping Elsevier Legendre function Elsevier Totally convex function Elsevier Bregman projection Strong convergence theorems for Bregman totally quasi-asymptotically nonexpansive mappings in reflexive Banach spaces |
authorStr |
Chang, S.S. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV006733727 |
format |
electronic Article |
dewey-ones |
510 - Mathematics 530 - Physics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
510 510 DE-600 530 VZ UA 1000 VZ rvk (DE-625)rvk/145215 33.40 bkl 33.50 bkl 39.22 bkl Strong convergence theorems for Bregman totally quasi-asymptotically nonexpansive mappings in reflexive Banach spaces Bregman total quasi-asymptotically nonexpansive mapping Elsevier Bregman quasi-asymptotically nonexpansive mapping Elsevier Bregman strongly nonexpansive mapping Elsevier Bregman quasi-nonexpansive mapping Elsevier Legendre function Elsevier Totally convex function Elsevier Bregman projection Elsevier |
topic |
ddc 510 ddc 530 rvk UA 1000 bkl 33.40 bkl 33.50 bkl 39.22 Elsevier Bregman total quasi-asymptotically nonexpansive mapping Elsevier Bregman quasi-asymptotically nonexpansive mapping Elsevier Bregman strongly nonexpansive mapping Elsevier Bregman quasi-nonexpansive mapping Elsevier Legendre function Elsevier Totally convex function Elsevier Bregman projection |
topic_unstemmed |
ddc 510 ddc 530 rvk UA 1000 bkl 33.40 bkl 33.50 bkl 39.22 Elsevier Bregman total quasi-asymptotically nonexpansive mapping Elsevier Bregman quasi-asymptotically nonexpansive mapping Elsevier Bregman strongly nonexpansive mapping Elsevier Bregman quasi-nonexpansive mapping Elsevier Legendre function Elsevier Totally convex function Elsevier Bregman projection |
topic_browse |
ddc 510 ddc 530 rvk UA 1000 bkl 33.40 bkl 33.50 bkl 39.22 Elsevier Bregman total quasi-asymptotically nonexpansive mapping Elsevier Bregman quasi-asymptotically nonexpansive mapping Elsevier Bregman strongly nonexpansive mapping Elsevier Bregman quasi-nonexpansive mapping Elsevier Legendre function Elsevier Totally convex function Elsevier Bregman projection |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
l w lw x w xw c c cc |
hierarchy_parent_title |
Geodesic synchrotron radiation in black hole spacetimes: Analytical investigation |
hierarchy_parent_id |
ELV006733727 |
dewey-tens |
510 - Mathematics 530 - Physics |
hierarchy_top_title |
Geodesic synchrotron radiation in black hole spacetimes: Analytical investigation |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV006733727 |
title |
Strong convergence theorems for Bregman totally quasi-asymptotically nonexpansive mappings in reflexive Banach spaces |
ctrlnum |
(DE-627)ELV017228778 (ELSEVIER)S0096-3003(13)01243-5 |
title_full |
Strong convergence theorems for Bregman totally quasi-asymptotically nonexpansive mappings in reflexive Banach spaces |
author_sort |
Chang, S.S. |
journal |
Geodesic synchrotron radiation in black hole spacetimes: Analytical investigation |
journalStr |
Geodesic synchrotron radiation in black hole spacetimes: Analytical investigation |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
zzz |
container_start_page |
38 |
author_browse |
Chang, S.S. |
container_volume |
228 |
physical |
11 |
class |
510 510 DE-600 530 VZ UA 1000 VZ rvk (DE-625)rvk/145215 33.40 bkl 33.50 bkl 39.22 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Chang, S.S. |
doi_str_mv |
10.1016/j.amc.2013.11.074 |
normlink |
RVK/145215: 329175343 |
normlink_prefix_str_mv |
(DE-625)rvk/145215: (DE-576)329175343 |
dewey-full |
510 530 |
title_sort |
strong convergence theorems for bregman totally quasi-asymptotically nonexpansive mappings in reflexive banach spaces |
title_auth |
Strong convergence theorems for Bregman totally quasi-asymptotically nonexpansive mappings in reflexive Banach spaces |
abstract |
The purpose of this article is by using the shrinking projection method introduced by Takahashi, Kubota and Takeuchi to propose an iteration algorithm for Bregman total quasi- ϕ -asymptotically nonexpansive mapping to have the strong convergence under a limit condition only in the framework of reflexive Banach spaces. As applications, we apply our results to a system of equilibrium problems and zero point problem of maximal monotone mappings in reflexive Banach spaces. The results presented in the paper improve and extend the corresponding results of Reich and Sabach (2010) [12], Suantai et al. (2012) [13], Nilsrakoo and Saejung (2011) [11], Qin et al. (2009) [5], Wang et al. (2011) [6], Su et al. (2010) [7], Martinez-Yanes and Xu (2006) [3] and others. |
abstractGer |
The purpose of this article is by using the shrinking projection method introduced by Takahashi, Kubota and Takeuchi to propose an iteration algorithm for Bregman total quasi- ϕ -asymptotically nonexpansive mapping to have the strong convergence under a limit condition only in the framework of reflexive Banach spaces. As applications, we apply our results to a system of equilibrium problems and zero point problem of maximal monotone mappings in reflexive Banach spaces. The results presented in the paper improve and extend the corresponding results of Reich and Sabach (2010) [12], Suantai et al. (2012) [13], Nilsrakoo and Saejung (2011) [11], Qin et al. (2009) [5], Wang et al. (2011) [6], Su et al. (2010) [7], Martinez-Yanes and Xu (2006) [3] and others. |
abstract_unstemmed |
The purpose of this article is by using the shrinking projection method introduced by Takahashi, Kubota and Takeuchi to propose an iteration algorithm for Bregman total quasi- ϕ -asymptotically nonexpansive mapping to have the strong convergence under a limit condition only in the framework of reflexive Banach spaces. As applications, we apply our results to a system of equilibrium problems and zero point problem of maximal monotone mappings in reflexive Banach spaces. The results presented in the paper improve and extend the corresponding results of Reich and Sabach (2010) [12], Suantai et al. (2012) [13], Nilsrakoo and Saejung (2011) [11], Qin et al. (2009) [5], Wang et al. (2011) [6], Su et al. (2010) [7], Martinez-Yanes and Xu (2006) [3] and others. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHY SSG-OPC-AST |
title_short |
Strong convergence theorems for Bregman totally quasi-asymptotically nonexpansive mappings in reflexive Banach spaces |
url |
https://doi.org/10.1016/j.amc.2013.11.074 |
remote_bool |
true |
author2 |
Wang, L. Wang, X.R. Chan, C.K. |
author2Str |
Wang, L. Wang, X.R. Chan, C.K. |
ppnlink |
ELV006733727 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1016/j.amc.2013.11.074 |
up_date |
2024-07-06T21:27:58.839Z |
_version_ |
1803866633761980416 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV017228778</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625121907.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.amc.2013.11.074</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014002000005.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV017228778</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0096-3003(13)01243-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UA 1000</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield><subfield code="0">(DE-625)rvk/145215:</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.40</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.50</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">39.22</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chang, S.S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Strong convergence theorems for Bregman totally quasi-asymptotically nonexpansive mappings in reflexive Banach spaces</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">11</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The purpose of this article is by using the shrinking projection method introduced by Takahashi, Kubota and Takeuchi to propose an iteration algorithm for Bregman total quasi- ϕ -asymptotically nonexpansive mapping to have the strong convergence under a limit condition only in the framework of reflexive Banach spaces. As applications, we apply our results to a system of equilibrium problems and zero point problem of maximal monotone mappings in reflexive Banach spaces. The results presented in the paper improve and extend the corresponding results of Reich and Sabach (2010) [12], Suantai et al. (2012) [13], Nilsrakoo and Saejung (2011) [11], Qin et al. (2009) [5], Wang et al. (2011) [6], Su et al. (2010) [7], Martinez-Yanes and Xu (2006) [3] and others.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The purpose of this article is by using the shrinking projection method introduced by Takahashi, Kubota and Takeuchi to propose an iteration algorithm for Bregman total quasi- ϕ -asymptotically nonexpansive mapping to have the strong convergence under a limit condition only in the framework of reflexive Banach spaces. As applications, we apply our results to a system of equilibrium problems and zero point problem of maximal monotone mappings in reflexive Banach spaces. The results presented in the paper improve and extend the corresponding results of Reich and Sabach (2010) [12], Suantai et al. (2012) [13], Nilsrakoo and Saejung (2011) [11], Qin et al. (2009) [5], Wang et al. (2011) [6], Su et al. (2010) [7], Martinez-Yanes and Xu (2006) [3] and others.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bregman total quasi-asymptotically nonexpansive mapping</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bregman quasi-asymptotically nonexpansive mapping</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bregman strongly nonexpansive mapping</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bregman quasi-nonexpansive mapping</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Legendre function</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Totally convex function</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bregman projection</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, L.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, X.R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chan, C.K.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Moreira, Zeus S. ELSEVIER</subfield><subfield code="t">Geodesic synchrotron radiation in black hole spacetimes: Analytical investigation</subfield><subfield code="d">2021</subfield><subfield code="g">New York, NY</subfield><subfield code="w">(DE-627)ELV006733727</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:228</subfield><subfield code="g">year:2014</subfield><subfield code="g">day:1</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:38-48</subfield><subfield code="g">extent:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.amc.2013.11.074</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">UA 1000</subfield><subfield code="b">Referateblätter und Zeitschriften</subfield><subfield code="k">Physik</subfield><subfield code="k">Referateblätter und Zeitschriften</subfield><subfield code="0">(DE-625)rvk/145215:</subfield><subfield code="0">(DE-576)329175343</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.40</subfield><subfield code="j">Kernphysik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.50</subfield><subfield code="j">Physik der Elementarteilchen und Felder: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">39.22</subfield><subfield code="j">Astrophysik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">228</subfield><subfield code="j">2014</subfield><subfield code="b">1</subfield><subfield code="c">0201</subfield><subfield code="h">38-48</subfield><subfield code="g">11</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">510</subfield></datafield></record></collection>
|
score |
7.401473 |