Modification of cyanobacterial bloom-derived biomass using potassium permanganate enhanced the removal of microcystins and adsorption capacity toward cadmium (II)
• Potassium permanganate removed microcystins in the cyanobacterial bloom-derived biomass (CBDB). • Potassium permanganate oxidation caused the transformation of hydroxyl to carboxyl on the CBDB. • Manganese dioxide was formed on the surface of CBDB. • Potassium permanganate oxidation process increa...
Ausführliche Beschreibung
Autor*in: |
Shao, Jihai [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014 |
---|
Schlagwörter: |
---|
Umfang: |
6 |
---|
Übergeordnetes Werk: |
Enthalten in: Summer bloom of - Moreira-González, Angel R. ELSEVIER, 2020, environmental control, risk assessment, impact and management, New York, NY [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:272 ; year:2014 ; day:15 ; month:05 ; pages:83-88 ; extent:6 |
Links: |
---|
DOI / URN: |
10.1016/j.jhazmat.2014.03.013 |
---|
Katalog-ID: |
ELV017494028 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV017494028 | ||
003 | DE-627 | ||
005 | 20230623135059.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180602s2014 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jhazmat.2014.03.013 |2 doi | |
028 | 5 | 2 | |a GBVA2014010000022.pica |
035 | |a (DE-627)ELV017494028 | ||
035 | |a (ELSEVIER)S0304-3894(14)00189-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 530 | |
082 | 0 | 4 | |a 530 |q DE-600 |
082 | 0 | 4 | |a 333.7 |a 610 |q VZ |
084 | |a 43.12 |2 bkl | ||
084 | |a 43.13 |2 bkl | ||
084 | |a 44.13 |2 bkl | ||
100 | 1 | |a Shao, Jihai |e verfasserin |4 aut | |
245 | 1 | 0 | |a Modification of cyanobacterial bloom-derived biomass using potassium permanganate enhanced the removal of microcystins and adsorption capacity toward cadmium (II) |
264 | 1 | |c 2014 | |
300 | |a 6 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a • Potassium permanganate removed microcystins in the cyanobacterial bloom-derived biomass (CBDB). • Potassium permanganate oxidation caused the transformation of hydroxyl to carboxyl on the CBDB. • Manganese dioxide was formed on the surface of CBDB. • Potassium permanganate oxidation process increased the adsorption capacity of CBDB toward Cd(II). | ||
650 | 7 | |a Manganese dioxide |2 Elsevier | |
650 | 7 | |a Cyanobacterial bloom |2 Elsevier | |
650 | 7 | |a Cadmium |2 Elsevier | |
650 | 7 | |a Adsorption |2 Elsevier | |
650 | 7 | |a Cyanobacterial biomass |2 Elsevier | |
650 | 7 | |a Microcystins |2 Elsevier | |
700 | 1 | |a Gu, Ji-Dong |4 oth | |
700 | 1 | |a Peng, Liang |4 oth | |
700 | 1 | |a Luo, Si |4 oth | |
700 | 1 | |a Luo, Huili |4 oth | |
700 | 1 | |a Yan, Zhiyong |4 oth | |
700 | 1 | |a Wu, Genyi |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Science Direct |a Moreira-González, Angel R. ELSEVIER |t Summer bloom of |d 2020 |d environmental control, risk assessment, impact and management |g New York, NY [u.a.] |w (DE-627)ELV005292484 |
773 | 1 | 8 | |g volume:272 |g year:2014 |g day:15 |g month:05 |g pages:83-88 |g extent:6 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jhazmat.2014.03.013 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OPC-GGO | ||
936 | b | k | |a 43.12 |j Umweltchemie |q VZ |
936 | b | k | |a 43.13 |j Umwelttoxikologie |q VZ |
936 | b | k | |a 44.13 |j Medizinische Ökologie |q VZ |
951 | |a AR | ||
952 | |d 272 |j 2014 |b 15 |c 0515 |h 83-88 |g 6 | ||
953 | |2 045F |a 530 |
author_variant |
j s js |
---|---|
matchkey_str |
shaojihaigujidongpengliangluosiluohuiliy:2014----:oiiainfynbceillodrvdimsuigoasupragntehneteeoaomcoytn |
hierarchy_sort_str |
2014 |
bklnumber |
43.12 43.13 44.13 |
publishDate |
2014 |
allfields |
10.1016/j.jhazmat.2014.03.013 doi GBVA2014010000022.pica (DE-627)ELV017494028 (ELSEVIER)S0304-3894(14)00189-7 DE-627 ger DE-627 rakwb eng 530 530 DE-600 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Shao, Jihai verfasserin aut Modification of cyanobacterial bloom-derived biomass using potassium permanganate enhanced the removal of microcystins and adsorption capacity toward cadmium (II) 2014 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Potassium permanganate removed microcystins in the cyanobacterial bloom-derived biomass (CBDB). • Potassium permanganate oxidation caused the transformation of hydroxyl to carboxyl on the CBDB. • Manganese dioxide was formed on the surface of CBDB. • Potassium permanganate oxidation process increased the adsorption capacity of CBDB toward Cd(II). Manganese dioxide Elsevier Cyanobacterial bloom Elsevier Cadmium Elsevier Adsorption Elsevier Cyanobacterial biomass Elsevier Microcystins Elsevier Gu, Ji-Dong oth Peng, Liang oth Luo, Si oth Luo, Huili oth Yan, Zhiyong oth Wu, Genyi oth Enthalten in Science Direct Moreira-González, Angel R. ELSEVIER Summer bloom of 2020 environmental control, risk assessment, impact and management New York, NY [u.a.] (DE-627)ELV005292484 volume:272 year:2014 day:15 month:05 pages:83-88 extent:6 https://doi.org/10.1016/j.jhazmat.2014.03.013 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 272 2014 15 0515 83-88 6 045F 530 |
spelling |
10.1016/j.jhazmat.2014.03.013 doi GBVA2014010000022.pica (DE-627)ELV017494028 (ELSEVIER)S0304-3894(14)00189-7 DE-627 ger DE-627 rakwb eng 530 530 DE-600 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Shao, Jihai verfasserin aut Modification of cyanobacterial bloom-derived biomass using potassium permanganate enhanced the removal of microcystins and adsorption capacity toward cadmium (II) 2014 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Potassium permanganate removed microcystins in the cyanobacterial bloom-derived biomass (CBDB). • Potassium permanganate oxidation caused the transformation of hydroxyl to carboxyl on the CBDB. • Manganese dioxide was formed on the surface of CBDB. • Potassium permanganate oxidation process increased the adsorption capacity of CBDB toward Cd(II). Manganese dioxide Elsevier Cyanobacterial bloom Elsevier Cadmium Elsevier Adsorption Elsevier Cyanobacterial biomass Elsevier Microcystins Elsevier Gu, Ji-Dong oth Peng, Liang oth Luo, Si oth Luo, Huili oth Yan, Zhiyong oth Wu, Genyi oth Enthalten in Science Direct Moreira-González, Angel R. ELSEVIER Summer bloom of 2020 environmental control, risk assessment, impact and management New York, NY [u.a.] (DE-627)ELV005292484 volume:272 year:2014 day:15 month:05 pages:83-88 extent:6 https://doi.org/10.1016/j.jhazmat.2014.03.013 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 272 2014 15 0515 83-88 6 045F 530 |
allfields_unstemmed |
10.1016/j.jhazmat.2014.03.013 doi GBVA2014010000022.pica (DE-627)ELV017494028 (ELSEVIER)S0304-3894(14)00189-7 DE-627 ger DE-627 rakwb eng 530 530 DE-600 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Shao, Jihai verfasserin aut Modification of cyanobacterial bloom-derived biomass using potassium permanganate enhanced the removal of microcystins and adsorption capacity toward cadmium (II) 2014 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Potassium permanganate removed microcystins in the cyanobacterial bloom-derived biomass (CBDB). • Potassium permanganate oxidation caused the transformation of hydroxyl to carboxyl on the CBDB. • Manganese dioxide was formed on the surface of CBDB. • Potassium permanganate oxidation process increased the adsorption capacity of CBDB toward Cd(II). Manganese dioxide Elsevier Cyanobacterial bloom Elsevier Cadmium Elsevier Adsorption Elsevier Cyanobacterial biomass Elsevier Microcystins Elsevier Gu, Ji-Dong oth Peng, Liang oth Luo, Si oth Luo, Huili oth Yan, Zhiyong oth Wu, Genyi oth Enthalten in Science Direct Moreira-González, Angel R. ELSEVIER Summer bloom of 2020 environmental control, risk assessment, impact and management New York, NY [u.a.] (DE-627)ELV005292484 volume:272 year:2014 day:15 month:05 pages:83-88 extent:6 https://doi.org/10.1016/j.jhazmat.2014.03.013 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 272 2014 15 0515 83-88 6 045F 530 |
allfieldsGer |
10.1016/j.jhazmat.2014.03.013 doi GBVA2014010000022.pica (DE-627)ELV017494028 (ELSEVIER)S0304-3894(14)00189-7 DE-627 ger DE-627 rakwb eng 530 530 DE-600 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Shao, Jihai verfasserin aut Modification of cyanobacterial bloom-derived biomass using potassium permanganate enhanced the removal of microcystins and adsorption capacity toward cadmium (II) 2014 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Potassium permanganate removed microcystins in the cyanobacterial bloom-derived biomass (CBDB). • Potassium permanganate oxidation caused the transformation of hydroxyl to carboxyl on the CBDB. • Manganese dioxide was formed on the surface of CBDB. • Potassium permanganate oxidation process increased the adsorption capacity of CBDB toward Cd(II). Manganese dioxide Elsevier Cyanobacterial bloom Elsevier Cadmium Elsevier Adsorption Elsevier Cyanobacterial biomass Elsevier Microcystins Elsevier Gu, Ji-Dong oth Peng, Liang oth Luo, Si oth Luo, Huili oth Yan, Zhiyong oth Wu, Genyi oth Enthalten in Science Direct Moreira-González, Angel R. ELSEVIER Summer bloom of 2020 environmental control, risk assessment, impact and management New York, NY [u.a.] (DE-627)ELV005292484 volume:272 year:2014 day:15 month:05 pages:83-88 extent:6 https://doi.org/10.1016/j.jhazmat.2014.03.013 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 272 2014 15 0515 83-88 6 045F 530 |
allfieldsSound |
10.1016/j.jhazmat.2014.03.013 doi GBVA2014010000022.pica (DE-627)ELV017494028 (ELSEVIER)S0304-3894(14)00189-7 DE-627 ger DE-627 rakwb eng 530 530 DE-600 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Shao, Jihai verfasserin aut Modification of cyanobacterial bloom-derived biomass using potassium permanganate enhanced the removal of microcystins and adsorption capacity toward cadmium (II) 2014 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Potassium permanganate removed microcystins in the cyanobacterial bloom-derived biomass (CBDB). • Potassium permanganate oxidation caused the transformation of hydroxyl to carboxyl on the CBDB. • Manganese dioxide was formed on the surface of CBDB. • Potassium permanganate oxidation process increased the adsorption capacity of CBDB toward Cd(II). Manganese dioxide Elsevier Cyanobacterial bloom Elsevier Cadmium Elsevier Adsorption Elsevier Cyanobacterial biomass Elsevier Microcystins Elsevier Gu, Ji-Dong oth Peng, Liang oth Luo, Si oth Luo, Huili oth Yan, Zhiyong oth Wu, Genyi oth Enthalten in Science Direct Moreira-González, Angel R. ELSEVIER Summer bloom of 2020 environmental control, risk assessment, impact and management New York, NY [u.a.] (DE-627)ELV005292484 volume:272 year:2014 day:15 month:05 pages:83-88 extent:6 https://doi.org/10.1016/j.jhazmat.2014.03.013 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 272 2014 15 0515 83-88 6 045F 530 |
language |
English |
source |
Enthalten in Summer bloom of New York, NY [u.a.] volume:272 year:2014 day:15 month:05 pages:83-88 extent:6 |
sourceStr |
Enthalten in Summer bloom of New York, NY [u.a.] volume:272 year:2014 day:15 month:05 pages:83-88 extent:6 |
format_phy_str_mv |
Article |
bklname |
Umweltchemie Umwelttoxikologie Medizinische Ökologie |
institution |
findex.gbv.de |
topic_facet |
Manganese dioxide Cyanobacterial bloom Cadmium Adsorption Cyanobacterial biomass Microcystins |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Summer bloom of |
authorswithroles_txt_mv |
Shao, Jihai @@aut@@ Gu, Ji-Dong @@oth@@ Peng, Liang @@oth@@ Luo, Si @@oth@@ Luo, Huili @@oth@@ Yan, Zhiyong @@oth@@ Wu, Genyi @@oth@@ |
publishDateDaySort_date |
2014-01-15T00:00:00Z |
hierarchy_top_id |
ELV005292484 |
dewey-sort |
3530 |
id |
ELV017494028 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV017494028</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230623135059.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jhazmat.2014.03.013</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014010000022.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV017494028</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0304-3894(14)00189-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shao, Jihai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modification of cyanobacterial bloom-derived biomass using potassium permanganate enhanced the removal of microcystins and adsorption capacity toward cadmium (II)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">6</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• Potassium permanganate removed microcystins in the cyanobacterial bloom-derived biomass (CBDB). • Potassium permanganate oxidation caused the transformation of hydroxyl to carboxyl on the CBDB. • Manganese dioxide was formed on the surface of CBDB. • Potassium permanganate oxidation process increased the adsorption capacity of CBDB toward Cd(II).</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Manganese dioxide</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cyanobacterial bloom</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cadmium</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Adsorption</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cyanobacterial biomass</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Microcystins</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gu, Ji-Dong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peng, Liang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Luo, Si</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Luo, Huili</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yan, Zhiyong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Genyi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Science Direct</subfield><subfield code="a">Moreira-González, Angel R. ELSEVIER</subfield><subfield code="t">Summer bloom of</subfield><subfield code="d">2020</subfield><subfield code="d">environmental control, risk assessment, impact and management</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV005292484</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:272</subfield><subfield code="g">year:2014</subfield><subfield code="g">day:15</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:83-88</subfield><subfield code="g">extent:6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jhazmat.2014.03.013</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.12</subfield><subfield code="j">Umweltchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.13</subfield><subfield code="j">Umwelttoxikologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.13</subfield><subfield code="j">Medizinische Ökologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">272</subfield><subfield code="j">2014</subfield><subfield code="b">15</subfield><subfield code="c">0515</subfield><subfield code="h">83-88</subfield><subfield code="g">6</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">530</subfield></datafield></record></collection>
|
author |
Shao, Jihai |
spellingShingle |
Shao, Jihai ddc 530 ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Elsevier Manganese dioxide Elsevier Cyanobacterial bloom Elsevier Cadmium Elsevier Adsorption Elsevier Cyanobacterial biomass Elsevier Microcystins Modification of cyanobacterial bloom-derived biomass using potassium permanganate enhanced the removal of microcystins and adsorption capacity toward cadmium (II) |
authorStr |
Shao, Jihai |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV005292484 |
format |
electronic Article |
dewey-ones |
530 - Physics 333 - Economics of land & energy 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
530 530 DE-600 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Modification of cyanobacterial bloom-derived biomass using potassium permanganate enhanced the removal of microcystins and adsorption capacity toward cadmium (II) Manganese dioxide Elsevier Cyanobacterial bloom Elsevier Cadmium Elsevier Adsorption Elsevier Cyanobacterial biomass Elsevier Microcystins Elsevier |
topic |
ddc 530 ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Elsevier Manganese dioxide Elsevier Cyanobacterial bloom Elsevier Cadmium Elsevier Adsorption Elsevier Cyanobacterial biomass Elsevier Microcystins |
topic_unstemmed |
ddc 530 ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Elsevier Manganese dioxide Elsevier Cyanobacterial bloom Elsevier Cadmium Elsevier Adsorption Elsevier Cyanobacterial biomass Elsevier Microcystins |
topic_browse |
ddc 530 ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Elsevier Manganese dioxide Elsevier Cyanobacterial bloom Elsevier Cadmium Elsevier Adsorption Elsevier Cyanobacterial biomass Elsevier Microcystins |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
j d g jdg l p lp s l sl h l hl z y zy g w gw |
hierarchy_parent_title |
Summer bloom of |
hierarchy_parent_id |
ELV005292484 |
dewey-tens |
530 - Physics 330 - Economics 610 - Medicine & health |
hierarchy_top_title |
Summer bloom of |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV005292484 |
title |
Modification of cyanobacterial bloom-derived biomass using potassium permanganate enhanced the removal of microcystins and adsorption capacity toward cadmium (II) |
ctrlnum |
(DE-627)ELV017494028 (ELSEVIER)S0304-3894(14)00189-7 |
title_full |
Modification of cyanobacterial bloom-derived biomass using potassium permanganate enhanced the removal of microcystins and adsorption capacity toward cadmium (II) |
author_sort |
Shao, Jihai |
journal |
Summer bloom of |
journalStr |
Summer bloom of |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 300 - Social sciences 600 - Technology |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
zzz |
container_start_page |
83 |
author_browse |
Shao, Jihai |
container_volume |
272 |
physical |
6 |
class |
530 530 DE-600 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Shao, Jihai |
doi_str_mv |
10.1016/j.jhazmat.2014.03.013 |
dewey-full |
530 333.7 610 |
title_sort |
modification of cyanobacterial bloom-derived biomass using potassium permanganate enhanced the removal of microcystins and adsorption capacity toward cadmium (ii) |
title_auth |
Modification of cyanobacterial bloom-derived biomass using potassium permanganate enhanced the removal of microcystins and adsorption capacity toward cadmium (II) |
abstract |
• Potassium permanganate removed microcystins in the cyanobacterial bloom-derived biomass (CBDB). • Potassium permanganate oxidation caused the transformation of hydroxyl to carboxyl on the CBDB. • Manganese dioxide was formed on the surface of CBDB. • Potassium permanganate oxidation process increased the adsorption capacity of CBDB toward Cd(II). |
abstractGer |
• Potassium permanganate removed microcystins in the cyanobacterial bloom-derived biomass (CBDB). • Potassium permanganate oxidation caused the transformation of hydroxyl to carboxyl on the CBDB. • Manganese dioxide was formed on the surface of CBDB. • Potassium permanganate oxidation process increased the adsorption capacity of CBDB toward Cd(II). |
abstract_unstemmed |
• Potassium permanganate removed microcystins in the cyanobacterial bloom-derived biomass (CBDB). • Potassium permanganate oxidation caused the transformation of hydroxyl to carboxyl on the CBDB. • Manganese dioxide was formed on the surface of CBDB. • Potassium permanganate oxidation process increased the adsorption capacity of CBDB toward Cd(II). |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO |
title_short |
Modification of cyanobacterial bloom-derived biomass using potassium permanganate enhanced the removal of microcystins and adsorption capacity toward cadmium (II) |
url |
https://doi.org/10.1016/j.jhazmat.2014.03.013 |
remote_bool |
true |
author2 |
Gu, Ji-Dong Peng, Liang Luo, Si Luo, Huili Yan, Zhiyong Wu, Genyi |
author2Str |
Gu, Ji-Dong Peng, Liang Luo, Si Luo, Huili Yan, Zhiyong Wu, Genyi |
ppnlink |
ELV005292484 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth |
doi_str |
10.1016/j.jhazmat.2014.03.013 |
up_date |
2024-07-06T22:07:51.856Z |
_version_ |
1803869143021125633 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV017494028</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230623135059.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jhazmat.2014.03.013</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014010000022.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV017494028</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0304-3894(14)00189-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shao, Jihai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modification of cyanobacterial bloom-derived biomass using potassium permanganate enhanced the removal of microcystins and adsorption capacity toward cadmium (II)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">6</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• Potassium permanganate removed microcystins in the cyanobacterial bloom-derived biomass (CBDB). • Potassium permanganate oxidation caused the transformation of hydroxyl to carboxyl on the CBDB. • Manganese dioxide was formed on the surface of CBDB. • Potassium permanganate oxidation process increased the adsorption capacity of CBDB toward Cd(II).</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Manganese dioxide</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cyanobacterial bloom</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cadmium</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Adsorption</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cyanobacterial biomass</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Microcystins</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gu, Ji-Dong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peng, Liang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Luo, Si</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Luo, Huili</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yan, Zhiyong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Genyi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Science Direct</subfield><subfield code="a">Moreira-González, Angel R. ELSEVIER</subfield><subfield code="t">Summer bloom of</subfield><subfield code="d">2020</subfield><subfield code="d">environmental control, risk assessment, impact and management</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV005292484</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:272</subfield><subfield code="g">year:2014</subfield><subfield code="g">day:15</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:83-88</subfield><subfield code="g">extent:6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jhazmat.2014.03.013</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.12</subfield><subfield code="j">Umweltchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.13</subfield><subfield code="j">Umwelttoxikologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.13</subfield><subfield code="j">Medizinische Ökologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">272</subfield><subfield code="j">2014</subfield><subfield code="b">15</subfield><subfield code="c">0515</subfield><subfield code="h">83-88</subfield><subfield code="g">6</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">530</subfield></datafield></record></collection>
|
score |
7.4032135 |