Nafion/graphene oxide composite membranes for low humidifying polymer electrolyte membrane fuel cell
Graphene oxide was prepared from graphite using Hummer's method. Pt nanoparticles with 1.8nm in average size are successfully obtained via in-situ Pt nanoparticles deposition onto graphene oxide (GO) using a microwave method, finally resulting in Pt-graphene (Pt-G). Water uptake of GO is increa...
Ausführliche Beschreibung
Autor*in: |
Lee, D.C. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
9 |
---|
Übergeordnetes Werk: |
Enthalten in: Steering charge kinetics in W - Yue, Xin-Zheng ELSEVIER, 2019, the official journal of the North American Membrane Society, New York, NY [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:452 ; year:2014 ; day:15 ; month:02 ; pages:20-28 ; extent:9 |
Links: |
---|
DOI / URN: |
10.1016/j.memsci.2013.10.018 |
---|
Katalog-ID: |
ELV017537452 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV017537452 | ||
003 | DE-627 | ||
005 | 20230625122419.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180602s2014 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.memsci.2013.10.018 |2 doi | |
028 | 5 | 2 | |a GBVA2014012000015.pica |
035 | |a (DE-627)ELV017537452 | ||
035 | |a (ELSEVIER)S0376-7388(13)00819-3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 570 | |
082 | 0 | 4 | |a 570 |q DE-600 |
082 | 0 | 4 | |a 540 |q VZ |
084 | |a 35.17 |2 bkl | ||
084 | |a 58.50 |2 bkl | ||
084 | |a 43.12 |2 bkl | ||
100 | 1 | |a Lee, D.C. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Nafion/graphene oxide composite membranes for low humidifying polymer electrolyte membrane fuel cell |
264 | 1 | |c 2014transfer abstract | |
300 | |a 9 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Graphene oxide was prepared from graphite using Hummer's method. Pt nanoparticles with 1.8nm in average size are successfully obtained via in-situ Pt nanoparticles deposition onto graphene oxide (GO) using a microwave method, finally resulting in Pt-graphene (Pt-G). Water uptake of GO is increased with GO content in a Nafion/GO composite membrane due to the hydrophilic GO while that of Nafion/Pt-G composite membrane is much lower than that of Nafion/GO composite membrane. The MEAs fabricated with the Nafion/GO composite membrane show significant enhancement in cell performance: that is, 0.802A, 1.27A, 0.827A at 0.6V under 100% relative humidity (RH) for 0.5wt%, 3.0wt% and 4.5wt% of GO content in the composite membrane, respectively, compared to 0.435A for casting Nafion membrane. The Nafion/Pt-G composite membrane, however, does not show sufficient enhancement under various RHs. It is attributed to poor water retention ability of hydrophobic graphene and electron loss due to the formation of electrical network by too much Pt within the membrane. Constant open circuit voltage (OCV) down to low RH indicates that GO and graphene could be prospective as filler in low humidifying polymer electrolyte fuel cell. | ||
520 | |a Graphene oxide was prepared from graphite using Hummer's method. Pt nanoparticles with 1.8nm in average size are successfully obtained via in-situ Pt nanoparticles deposition onto graphene oxide (GO) using a microwave method, finally resulting in Pt-graphene (Pt-G). Water uptake of GO is increased with GO content in a Nafion/GO composite membrane due to the hydrophilic GO while that of Nafion/Pt-G composite membrane is much lower than that of Nafion/GO composite membrane. The MEAs fabricated with the Nafion/GO composite membrane show significant enhancement in cell performance: that is, 0.802A, 1.27A, 0.827A at 0.6V under 100% relative humidity (RH) for 0.5wt%, 3.0wt% and 4.5wt% of GO content in the composite membrane, respectively, compared to 0.435A for casting Nafion membrane. The Nafion/Pt-G composite membrane, however, does not show sufficient enhancement under various RHs. It is attributed to poor water retention ability of hydrophobic graphene and electron loss due to the formation of electrical network by too much Pt within the membrane. Constant open circuit voltage (OCV) down to low RH indicates that GO and graphene could be prospective as filler in low humidifying polymer electrolyte fuel cell. | ||
650 | 7 | |a OCV |2 Elsevier | |
650 | 7 | |a Proton conductivity |2 Elsevier | |
650 | 7 | |a Water uptake |2 Elsevier | |
650 | 7 | |a Graphene oxide |2 Elsevier | |
650 | 7 | |a Cell performance |2 Elsevier | |
700 | 1 | |a Yang, H.N. |4 oth | |
700 | 1 | |a Park, S.H. |4 oth | |
700 | 1 | |a Kim, W.J. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Yue, Xin-Zheng ELSEVIER |t Steering charge kinetics in W |d 2019 |d the official journal of the North American Membrane Society |g New York, NY [u.a.] |w (DE-627)ELV002478420 |
773 | 1 | 8 | |g volume:452 |g year:2014 |g day:15 |g month:02 |g pages:20-28 |g extent:9 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.memsci.2013.10.018 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 35.17 |j Katalyse |q VZ |
936 | b | k | |a 58.50 |j Umwelttechnik: Allgemeines |q VZ |
936 | b | k | |a 43.12 |j Umweltchemie |q VZ |
951 | |a AR | ||
952 | |d 452 |j 2014 |b 15 |c 0215 |h 20-28 |g 9 | ||
953 | |2 045F |a 570 |
author_variant |
d l dl |
---|---|
matchkey_str |
leedcyanghnparkshkimwj:2014----:ainrpeexdcmoieebaefrohmdfigoyeeet |
hierarchy_sort_str |
2014transfer abstract |
bklnumber |
35.17 58.50 43.12 |
publishDate |
2014 |
allfields |
10.1016/j.memsci.2013.10.018 doi GBVA2014012000015.pica (DE-627)ELV017537452 (ELSEVIER)S0376-7388(13)00819-3 DE-627 ger DE-627 rakwb eng 570 570 DE-600 540 VZ 35.17 bkl 58.50 bkl 43.12 bkl Lee, D.C. verfasserin aut Nafion/graphene oxide composite membranes for low humidifying polymer electrolyte membrane fuel cell 2014transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Graphene oxide was prepared from graphite using Hummer's method. Pt nanoparticles with 1.8nm in average size are successfully obtained via in-situ Pt nanoparticles deposition onto graphene oxide (GO) using a microwave method, finally resulting in Pt-graphene (Pt-G). Water uptake of GO is increased with GO content in a Nafion/GO composite membrane due to the hydrophilic GO while that of Nafion/Pt-G composite membrane is much lower than that of Nafion/GO composite membrane. The MEAs fabricated with the Nafion/GO composite membrane show significant enhancement in cell performance: that is, 0.802A, 1.27A, 0.827A at 0.6V under 100% relative humidity (RH) for 0.5wt%, 3.0wt% and 4.5wt% of GO content in the composite membrane, respectively, compared to 0.435A for casting Nafion membrane. The Nafion/Pt-G composite membrane, however, does not show sufficient enhancement under various RHs. It is attributed to poor water retention ability of hydrophobic graphene and electron loss due to the formation of electrical network by too much Pt within the membrane. Constant open circuit voltage (OCV) down to low RH indicates that GO and graphene could be prospective as filler in low humidifying polymer electrolyte fuel cell. Graphene oxide was prepared from graphite using Hummer's method. Pt nanoparticles with 1.8nm in average size are successfully obtained via in-situ Pt nanoparticles deposition onto graphene oxide (GO) using a microwave method, finally resulting in Pt-graphene (Pt-G). Water uptake of GO is increased with GO content in a Nafion/GO composite membrane due to the hydrophilic GO while that of Nafion/Pt-G composite membrane is much lower than that of Nafion/GO composite membrane. The MEAs fabricated with the Nafion/GO composite membrane show significant enhancement in cell performance: that is, 0.802A, 1.27A, 0.827A at 0.6V under 100% relative humidity (RH) for 0.5wt%, 3.0wt% and 4.5wt% of GO content in the composite membrane, respectively, compared to 0.435A for casting Nafion membrane. The Nafion/Pt-G composite membrane, however, does not show sufficient enhancement under various RHs. It is attributed to poor water retention ability of hydrophobic graphene and electron loss due to the formation of electrical network by too much Pt within the membrane. Constant open circuit voltage (OCV) down to low RH indicates that GO and graphene could be prospective as filler in low humidifying polymer electrolyte fuel cell. OCV Elsevier Proton conductivity Elsevier Water uptake Elsevier Graphene oxide Elsevier Cell performance Elsevier Yang, H.N. oth Park, S.H. oth Kim, W.J. oth Enthalten in Elsevier Yue, Xin-Zheng ELSEVIER Steering charge kinetics in W 2019 the official journal of the North American Membrane Society New York, NY [u.a.] (DE-627)ELV002478420 volume:452 year:2014 day:15 month:02 pages:20-28 extent:9 https://doi.org/10.1016/j.memsci.2013.10.018 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.17 Katalyse VZ 58.50 Umwelttechnik: Allgemeines VZ 43.12 Umweltchemie VZ AR 452 2014 15 0215 20-28 9 045F 570 |
spelling |
10.1016/j.memsci.2013.10.018 doi GBVA2014012000015.pica (DE-627)ELV017537452 (ELSEVIER)S0376-7388(13)00819-3 DE-627 ger DE-627 rakwb eng 570 570 DE-600 540 VZ 35.17 bkl 58.50 bkl 43.12 bkl Lee, D.C. verfasserin aut Nafion/graphene oxide composite membranes for low humidifying polymer electrolyte membrane fuel cell 2014transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Graphene oxide was prepared from graphite using Hummer's method. Pt nanoparticles with 1.8nm in average size are successfully obtained via in-situ Pt nanoparticles deposition onto graphene oxide (GO) using a microwave method, finally resulting in Pt-graphene (Pt-G). Water uptake of GO is increased with GO content in a Nafion/GO composite membrane due to the hydrophilic GO while that of Nafion/Pt-G composite membrane is much lower than that of Nafion/GO composite membrane. The MEAs fabricated with the Nafion/GO composite membrane show significant enhancement in cell performance: that is, 0.802A, 1.27A, 0.827A at 0.6V under 100% relative humidity (RH) for 0.5wt%, 3.0wt% and 4.5wt% of GO content in the composite membrane, respectively, compared to 0.435A for casting Nafion membrane. The Nafion/Pt-G composite membrane, however, does not show sufficient enhancement under various RHs. It is attributed to poor water retention ability of hydrophobic graphene and electron loss due to the formation of electrical network by too much Pt within the membrane. Constant open circuit voltage (OCV) down to low RH indicates that GO and graphene could be prospective as filler in low humidifying polymer electrolyte fuel cell. Graphene oxide was prepared from graphite using Hummer's method. Pt nanoparticles with 1.8nm in average size are successfully obtained via in-situ Pt nanoparticles deposition onto graphene oxide (GO) using a microwave method, finally resulting in Pt-graphene (Pt-G). Water uptake of GO is increased with GO content in a Nafion/GO composite membrane due to the hydrophilic GO while that of Nafion/Pt-G composite membrane is much lower than that of Nafion/GO composite membrane. The MEAs fabricated with the Nafion/GO composite membrane show significant enhancement in cell performance: that is, 0.802A, 1.27A, 0.827A at 0.6V under 100% relative humidity (RH) for 0.5wt%, 3.0wt% and 4.5wt% of GO content in the composite membrane, respectively, compared to 0.435A for casting Nafion membrane. The Nafion/Pt-G composite membrane, however, does not show sufficient enhancement under various RHs. It is attributed to poor water retention ability of hydrophobic graphene and electron loss due to the formation of electrical network by too much Pt within the membrane. Constant open circuit voltage (OCV) down to low RH indicates that GO and graphene could be prospective as filler in low humidifying polymer electrolyte fuel cell. OCV Elsevier Proton conductivity Elsevier Water uptake Elsevier Graphene oxide Elsevier Cell performance Elsevier Yang, H.N. oth Park, S.H. oth Kim, W.J. oth Enthalten in Elsevier Yue, Xin-Zheng ELSEVIER Steering charge kinetics in W 2019 the official journal of the North American Membrane Society New York, NY [u.a.] (DE-627)ELV002478420 volume:452 year:2014 day:15 month:02 pages:20-28 extent:9 https://doi.org/10.1016/j.memsci.2013.10.018 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.17 Katalyse VZ 58.50 Umwelttechnik: Allgemeines VZ 43.12 Umweltchemie VZ AR 452 2014 15 0215 20-28 9 045F 570 |
allfields_unstemmed |
10.1016/j.memsci.2013.10.018 doi GBVA2014012000015.pica (DE-627)ELV017537452 (ELSEVIER)S0376-7388(13)00819-3 DE-627 ger DE-627 rakwb eng 570 570 DE-600 540 VZ 35.17 bkl 58.50 bkl 43.12 bkl Lee, D.C. verfasserin aut Nafion/graphene oxide composite membranes for low humidifying polymer electrolyte membrane fuel cell 2014transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Graphene oxide was prepared from graphite using Hummer's method. Pt nanoparticles with 1.8nm in average size are successfully obtained via in-situ Pt nanoparticles deposition onto graphene oxide (GO) using a microwave method, finally resulting in Pt-graphene (Pt-G). Water uptake of GO is increased with GO content in a Nafion/GO composite membrane due to the hydrophilic GO while that of Nafion/Pt-G composite membrane is much lower than that of Nafion/GO composite membrane. The MEAs fabricated with the Nafion/GO composite membrane show significant enhancement in cell performance: that is, 0.802A, 1.27A, 0.827A at 0.6V under 100% relative humidity (RH) for 0.5wt%, 3.0wt% and 4.5wt% of GO content in the composite membrane, respectively, compared to 0.435A for casting Nafion membrane. The Nafion/Pt-G composite membrane, however, does not show sufficient enhancement under various RHs. It is attributed to poor water retention ability of hydrophobic graphene and electron loss due to the formation of electrical network by too much Pt within the membrane. Constant open circuit voltage (OCV) down to low RH indicates that GO and graphene could be prospective as filler in low humidifying polymer electrolyte fuel cell. Graphene oxide was prepared from graphite using Hummer's method. Pt nanoparticles with 1.8nm in average size are successfully obtained via in-situ Pt nanoparticles deposition onto graphene oxide (GO) using a microwave method, finally resulting in Pt-graphene (Pt-G). Water uptake of GO is increased with GO content in a Nafion/GO composite membrane due to the hydrophilic GO while that of Nafion/Pt-G composite membrane is much lower than that of Nafion/GO composite membrane. The MEAs fabricated with the Nafion/GO composite membrane show significant enhancement in cell performance: that is, 0.802A, 1.27A, 0.827A at 0.6V under 100% relative humidity (RH) for 0.5wt%, 3.0wt% and 4.5wt% of GO content in the composite membrane, respectively, compared to 0.435A for casting Nafion membrane. The Nafion/Pt-G composite membrane, however, does not show sufficient enhancement under various RHs. It is attributed to poor water retention ability of hydrophobic graphene and electron loss due to the formation of electrical network by too much Pt within the membrane. Constant open circuit voltage (OCV) down to low RH indicates that GO and graphene could be prospective as filler in low humidifying polymer electrolyte fuel cell. OCV Elsevier Proton conductivity Elsevier Water uptake Elsevier Graphene oxide Elsevier Cell performance Elsevier Yang, H.N. oth Park, S.H. oth Kim, W.J. oth Enthalten in Elsevier Yue, Xin-Zheng ELSEVIER Steering charge kinetics in W 2019 the official journal of the North American Membrane Society New York, NY [u.a.] (DE-627)ELV002478420 volume:452 year:2014 day:15 month:02 pages:20-28 extent:9 https://doi.org/10.1016/j.memsci.2013.10.018 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.17 Katalyse VZ 58.50 Umwelttechnik: Allgemeines VZ 43.12 Umweltchemie VZ AR 452 2014 15 0215 20-28 9 045F 570 |
allfieldsGer |
10.1016/j.memsci.2013.10.018 doi GBVA2014012000015.pica (DE-627)ELV017537452 (ELSEVIER)S0376-7388(13)00819-3 DE-627 ger DE-627 rakwb eng 570 570 DE-600 540 VZ 35.17 bkl 58.50 bkl 43.12 bkl Lee, D.C. verfasserin aut Nafion/graphene oxide composite membranes for low humidifying polymer electrolyte membrane fuel cell 2014transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Graphene oxide was prepared from graphite using Hummer's method. Pt nanoparticles with 1.8nm in average size are successfully obtained via in-situ Pt nanoparticles deposition onto graphene oxide (GO) using a microwave method, finally resulting in Pt-graphene (Pt-G). Water uptake of GO is increased with GO content in a Nafion/GO composite membrane due to the hydrophilic GO while that of Nafion/Pt-G composite membrane is much lower than that of Nafion/GO composite membrane. The MEAs fabricated with the Nafion/GO composite membrane show significant enhancement in cell performance: that is, 0.802A, 1.27A, 0.827A at 0.6V under 100% relative humidity (RH) for 0.5wt%, 3.0wt% and 4.5wt% of GO content in the composite membrane, respectively, compared to 0.435A for casting Nafion membrane. The Nafion/Pt-G composite membrane, however, does not show sufficient enhancement under various RHs. It is attributed to poor water retention ability of hydrophobic graphene and electron loss due to the formation of electrical network by too much Pt within the membrane. Constant open circuit voltage (OCV) down to low RH indicates that GO and graphene could be prospective as filler in low humidifying polymer electrolyte fuel cell. Graphene oxide was prepared from graphite using Hummer's method. Pt nanoparticles with 1.8nm in average size are successfully obtained via in-situ Pt nanoparticles deposition onto graphene oxide (GO) using a microwave method, finally resulting in Pt-graphene (Pt-G). Water uptake of GO is increased with GO content in a Nafion/GO composite membrane due to the hydrophilic GO while that of Nafion/Pt-G composite membrane is much lower than that of Nafion/GO composite membrane. The MEAs fabricated with the Nafion/GO composite membrane show significant enhancement in cell performance: that is, 0.802A, 1.27A, 0.827A at 0.6V under 100% relative humidity (RH) for 0.5wt%, 3.0wt% and 4.5wt% of GO content in the composite membrane, respectively, compared to 0.435A for casting Nafion membrane. The Nafion/Pt-G composite membrane, however, does not show sufficient enhancement under various RHs. It is attributed to poor water retention ability of hydrophobic graphene and electron loss due to the formation of electrical network by too much Pt within the membrane. Constant open circuit voltage (OCV) down to low RH indicates that GO and graphene could be prospective as filler in low humidifying polymer electrolyte fuel cell. OCV Elsevier Proton conductivity Elsevier Water uptake Elsevier Graphene oxide Elsevier Cell performance Elsevier Yang, H.N. oth Park, S.H. oth Kim, W.J. oth Enthalten in Elsevier Yue, Xin-Zheng ELSEVIER Steering charge kinetics in W 2019 the official journal of the North American Membrane Society New York, NY [u.a.] (DE-627)ELV002478420 volume:452 year:2014 day:15 month:02 pages:20-28 extent:9 https://doi.org/10.1016/j.memsci.2013.10.018 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.17 Katalyse VZ 58.50 Umwelttechnik: Allgemeines VZ 43.12 Umweltchemie VZ AR 452 2014 15 0215 20-28 9 045F 570 |
allfieldsSound |
10.1016/j.memsci.2013.10.018 doi GBVA2014012000015.pica (DE-627)ELV017537452 (ELSEVIER)S0376-7388(13)00819-3 DE-627 ger DE-627 rakwb eng 570 570 DE-600 540 VZ 35.17 bkl 58.50 bkl 43.12 bkl Lee, D.C. verfasserin aut Nafion/graphene oxide composite membranes for low humidifying polymer electrolyte membrane fuel cell 2014transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Graphene oxide was prepared from graphite using Hummer's method. Pt nanoparticles with 1.8nm in average size are successfully obtained via in-situ Pt nanoparticles deposition onto graphene oxide (GO) using a microwave method, finally resulting in Pt-graphene (Pt-G). Water uptake of GO is increased with GO content in a Nafion/GO composite membrane due to the hydrophilic GO while that of Nafion/Pt-G composite membrane is much lower than that of Nafion/GO composite membrane. The MEAs fabricated with the Nafion/GO composite membrane show significant enhancement in cell performance: that is, 0.802A, 1.27A, 0.827A at 0.6V under 100% relative humidity (RH) for 0.5wt%, 3.0wt% and 4.5wt% of GO content in the composite membrane, respectively, compared to 0.435A for casting Nafion membrane. The Nafion/Pt-G composite membrane, however, does not show sufficient enhancement under various RHs. It is attributed to poor water retention ability of hydrophobic graphene and electron loss due to the formation of electrical network by too much Pt within the membrane. Constant open circuit voltage (OCV) down to low RH indicates that GO and graphene could be prospective as filler in low humidifying polymer electrolyte fuel cell. Graphene oxide was prepared from graphite using Hummer's method. Pt nanoparticles with 1.8nm in average size are successfully obtained via in-situ Pt nanoparticles deposition onto graphene oxide (GO) using a microwave method, finally resulting in Pt-graphene (Pt-G). Water uptake of GO is increased with GO content in a Nafion/GO composite membrane due to the hydrophilic GO while that of Nafion/Pt-G composite membrane is much lower than that of Nafion/GO composite membrane. The MEAs fabricated with the Nafion/GO composite membrane show significant enhancement in cell performance: that is, 0.802A, 1.27A, 0.827A at 0.6V under 100% relative humidity (RH) for 0.5wt%, 3.0wt% and 4.5wt% of GO content in the composite membrane, respectively, compared to 0.435A for casting Nafion membrane. The Nafion/Pt-G composite membrane, however, does not show sufficient enhancement under various RHs. It is attributed to poor water retention ability of hydrophobic graphene and electron loss due to the formation of electrical network by too much Pt within the membrane. Constant open circuit voltage (OCV) down to low RH indicates that GO and graphene could be prospective as filler in low humidifying polymer electrolyte fuel cell. OCV Elsevier Proton conductivity Elsevier Water uptake Elsevier Graphene oxide Elsevier Cell performance Elsevier Yang, H.N. oth Park, S.H. oth Kim, W.J. oth Enthalten in Elsevier Yue, Xin-Zheng ELSEVIER Steering charge kinetics in W 2019 the official journal of the North American Membrane Society New York, NY [u.a.] (DE-627)ELV002478420 volume:452 year:2014 day:15 month:02 pages:20-28 extent:9 https://doi.org/10.1016/j.memsci.2013.10.018 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.17 Katalyse VZ 58.50 Umwelttechnik: Allgemeines VZ 43.12 Umweltchemie VZ AR 452 2014 15 0215 20-28 9 045F 570 |
language |
English |
source |
Enthalten in Steering charge kinetics in W New York, NY [u.a.] volume:452 year:2014 day:15 month:02 pages:20-28 extent:9 |
sourceStr |
Enthalten in Steering charge kinetics in W New York, NY [u.a.] volume:452 year:2014 day:15 month:02 pages:20-28 extent:9 |
format_phy_str_mv |
Article |
bklname |
Katalyse Umwelttechnik: Allgemeines Umweltchemie |
institution |
findex.gbv.de |
topic_facet |
OCV Proton conductivity Water uptake Graphene oxide Cell performance |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
Steering charge kinetics in W |
authorswithroles_txt_mv |
Lee, D.C. @@aut@@ Yang, H.N. @@oth@@ Park, S.H. @@oth@@ Kim, W.J. @@oth@@ |
publishDateDaySort_date |
2014-01-15T00:00:00Z |
hierarchy_top_id |
ELV002478420 |
dewey-sort |
3570 |
id |
ELV017537452 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV017537452</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625122419.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.memsci.2013.10.018</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014012000015.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV017537452</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0376-7388(13)00819-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">570</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.17</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.50</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lee, D.C.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nafion/graphene oxide composite membranes for low humidifying polymer electrolyte membrane fuel cell</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">9</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Graphene oxide was prepared from graphite using Hummer's method. Pt nanoparticles with 1.8nm in average size are successfully obtained via in-situ Pt nanoparticles deposition onto graphene oxide (GO) using a microwave method, finally resulting in Pt-graphene (Pt-G). Water uptake of GO is increased with GO content in a Nafion/GO composite membrane due to the hydrophilic GO while that of Nafion/Pt-G composite membrane is much lower than that of Nafion/GO composite membrane. The MEAs fabricated with the Nafion/GO composite membrane show significant enhancement in cell performance: that is, 0.802A, 1.27A, 0.827A at 0.6V under 100% relative humidity (RH) for 0.5wt%, 3.0wt% and 4.5wt% of GO content in the composite membrane, respectively, compared to 0.435A for casting Nafion membrane. The Nafion/Pt-G composite membrane, however, does not show sufficient enhancement under various RHs. It is attributed to poor water retention ability of hydrophobic graphene and electron loss due to the formation of electrical network by too much Pt within the membrane. Constant open circuit voltage (OCV) down to low RH indicates that GO and graphene could be prospective as filler in low humidifying polymer electrolyte fuel cell.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Graphene oxide was prepared from graphite using Hummer's method. Pt nanoparticles with 1.8nm in average size are successfully obtained via in-situ Pt nanoparticles deposition onto graphene oxide (GO) using a microwave method, finally resulting in Pt-graphene (Pt-G). Water uptake of GO is increased with GO content in a Nafion/GO composite membrane due to the hydrophilic GO while that of Nafion/Pt-G composite membrane is much lower than that of Nafion/GO composite membrane. The MEAs fabricated with the Nafion/GO composite membrane show significant enhancement in cell performance: that is, 0.802A, 1.27A, 0.827A at 0.6V under 100% relative humidity (RH) for 0.5wt%, 3.0wt% and 4.5wt% of GO content in the composite membrane, respectively, compared to 0.435A for casting Nafion membrane. The Nafion/Pt-G composite membrane, however, does not show sufficient enhancement under various RHs. It is attributed to poor water retention ability of hydrophobic graphene and electron loss due to the formation of electrical network by too much Pt within the membrane. Constant open circuit voltage (OCV) down to low RH indicates that GO and graphene could be prospective as filler in low humidifying polymer electrolyte fuel cell.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">OCV</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Proton conductivity</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Water uptake</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Graphene oxide</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cell performance</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, H.N.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Park, S.H.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, W.J.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Yue, Xin-Zheng ELSEVIER</subfield><subfield code="t">Steering charge kinetics in W</subfield><subfield code="d">2019</subfield><subfield code="d">the official journal of the North American Membrane Society</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV002478420</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:452</subfield><subfield code="g">year:2014</subfield><subfield code="g">day:15</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:20-28</subfield><subfield code="g">extent:9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.memsci.2013.10.018</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.17</subfield><subfield code="j">Katalyse</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.50</subfield><subfield code="j">Umwelttechnik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.12</subfield><subfield code="j">Umweltchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">452</subfield><subfield code="j">2014</subfield><subfield code="b">15</subfield><subfield code="c">0215</subfield><subfield code="h">20-28</subfield><subfield code="g">9</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">570</subfield></datafield></record></collection>
|
author |
Lee, D.C. |
spellingShingle |
Lee, D.C. ddc 570 ddc 540 bkl 35.17 bkl 58.50 bkl 43.12 Elsevier OCV Elsevier Proton conductivity Elsevier Water uptake Elsevier Graphene oxide Elsevier Cell performance Nafion/graphene oxide composite membranes for low humidifying polymer electrolyte membrane fuel cell |
authorStr |
Lee, D.C. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV002478420 |
format |
electronic Article |
dewey-ones |
570 - Life sciences; biology 540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
570 570 DE-600 540 VZ 35.17 bkl 58.50 bkl 43.12 bkl Nafion/graphene oxide composite membranes for low humidifying polymer electrolyte membrane fuel cell OCV Elsevier Proton conductivity Elsevier Water uptake Elsevier Graphene oxide Elsevier Cell performance Elsevier |
topic |
ddc 570 ddc 540 bkl 35.17 bkl 58.50 bkl 43.12 Elsevier OCV Elsevier Proton conductivity Elsevier Water uptake Elsevier Graphene oxide Elsevier Cell performance |
topic_unstemmed |
ddc 570 ddc 540 bkl 35.17 bkl 58.50 bkl 43.12 Elsevier OCV Elsevier Proton conductivity Elsevier Water uptake Elsevier Graphene oxide Elsevier Cell performance |
topic_browse |
ddc 570 ddc 540 bkl 35.17 bkl 58.50 bkl 43.12 Elsevier OCV Elsevier Proton conductivity Elsevier Water uptake Elsevier Graphene oxide Elsevier Cell performance |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
h y hy s p sp w k wk |
hierarchy_parent_title |
Steering charge kinetics in W |
hierarchy_parent_id |
ELV002478420 |
dewey-tens |
570 - Life sciences; biology 540 - Chemistry |
hierarchy_top_title |
Steering charge kinetics in W |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV002478420 |
title |
Nafion/graphene oxide composite membranes for low humidifying polymer electrolyte membrane fuel cell |
ctrlnum |
(DE-627)ELV017537452 (ELSEVIER)S0376-7388(13)00819-3 |
title_full |
Nafion/graphene oxide composite membranes for low humidifying polymer electrolyte membrane fuel cell |
author_sort |
Lee, D.C. |
journal |
Steering charge kinetics in W |
journalStr |
Steering charge kinetics in W |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
zzz |
container_start_page |
20 |
author_browse |
Lee, D.C. |
container_volume |
452 |
physical |
9 |
class |
570 570 DE-600 540 VZ 35.17 bkl 58.50 bkl 43.12 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Lee, D.C. |
doi_str_mv |
10.1016/j.memsci.2013.10.018 |
dewey-full |
570 540 |
title_sort |
nafion/graphene oxide composite membranes for low humidifying polymer electrolyte membrane fuel cell |
title_auth |
Nafion/graphene oxide composite membranes for low humidifying polymer electrolyte membrane fuel cell |
abstract |
Graphene oxide was prepared from graphite using Hummer's method. Pt nanoparticles with 1.8nm in average size are successfully obtained via in-situ Pt nanoparticles deposition onto graphene oxide (GO) using a microwave method, finally resulting in Pt-graphene (Pt-G). Water uptake of GO is increased with GO content in a Nafion/GO composite membrane due to the hydrophilic GO while that of Nafion/Pt-G composite membrane is much lower than that of Nafion/GO composite membrane. The MEAs fabricated with the Nafion/GO composite membrane show significant enhancement in cell performance: that is, 0.802A, 1.27A, 0.827A at 0.6V under 100% relative humidity (RH) for 0.5wt%, 3.0wt% and 4.5wt% of GO content in the composite membrane, respectively, compared to 0.435A for casting Nafion membrane. The Nafion/Pt-G composite membrane, however, does not show sufficient enhancement under various RHs. It is attributed to poor water retention ability of hydrophobic graphene and electron loss due to the formation of electrical network by too much Pt within the membrane. Constant open circuit voltage (OCV) down to low RH indicates that GO and graphene could be prospective as filler in low humidifying polymer electrolyte fuel cell. |
abstractGer |
Graphene oxide was prepared from graphite using Hummer's method. Pt nanoparticles with 1.8nm in average size are successfully obtained via in-situ Pt nanoparticles deposition onto graphene oxide (GO) using a microwave method, finally resulting in Pt-graphene (Pt-G). Water uptake of GO is increased with GO content in a Nafion/GO composite membrane due to the hydrophilic GO while that of Nafion/Pt-G composite membrane is much lower than that of Nafion/GO composite membrane. The MEAs fabricated with the Nafion/GO composite membrane show significant enhancement in cell performance: that is, 0.802A, 1.27A, 0.827A at 0.6V under 100% relative humidity (RH) for 0.5wt%, 3.0wt% and 4.5wt% of GO content in the composite membrane, respectively, compared to 0.435A for casting Nafion membrane. The Nafion/Pt-G composite membrane, however, does not show sufficient enhancement under various RHs. It is attributed to poor water retention ability of hydrophobic graphene and electron loss due to the formation of electrical network by too much Pt within the membrane. Constant open circuit voltage (OCV) down to low RH indicates that GO and graphene could be prospective as filler in low humidifying polymer electrolyte fuel cell. |
abstract_unstemmed |
Graphene oxide was prepared from graphite using Hummer's method. Pt nanoparticles with 1.8nm in average size are successfully obtained via in-situ Pt nanoparticles deposition onto graphene oxide (GO) using a microwave method, finally resulting in Pt-graphene (Pt-G). Water uptake of GO is increased with GO content in a Nafion/GO composite membrane due to the hydrophilic GO while that of Nafion/Pt-G composite membrane is much lower than that of Nafion/GO composite membrane. The MEAs fabricated with the Nafion/GO composite membrane show significant enhancement in cell performance: that is, 0.802A, 1.27A, 0.827A at 0.6V under 100% relative humidity (RH) for 0.5wt%, 3.0wt% and 4.5wt% of GO content in the composite membrane, respectively, compared to 0.435A for casting Nafion membrane. The Nafion/Pt-G composite membrane, however, does not show sufficient enhancement under various RHs. It is attributed to poor water retention ability of hydrophobic graphene and electron loss due to the formation of electrical network by too much Pt within the membrane. Constant open circuit voltage (OCV) down to low RH indicates that GO and graphene could be prospective as filler in low humidifying polymer electrolyte fuel cell. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
title_short |
Nafion/graphene oxide composite membranes for low humidifying polymer electrolyte membrane fuel cell |
url |
https://doi.org/10.1016/j.memsci.2013.10.018 |
remote_bool |
true |
author2 |
Yang, H.N. Park, S.H. Kim, W.J. |
author2Str |
Yang, H.N. Park, S.H. Kim, W.J. |
ppnlink |
ELV002478420 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1016/j.memsci.2013.10.018 |
up_date |
2024-07-06T16:34:14.532Z |
_version_ |
1803848153335595008 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV017537452</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625122419.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.memsci.2013.10.018</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014012000015.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV017537452</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0376-7388(13)00819-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">570</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.17</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.50</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lee, D.C.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nafion/graphene oxide composite membranes for low humidifying polymer electrolyte membrane fuel cell</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">9</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Graphene oxide was prepared from graphite using Hummer's method. Pt nanoparticles with 1.8nm in average size are successfully obtained via in-situ Pt nanoparticles deposition onto graphene oxide (GO) using a microwave method, finally resulting in Pt-graphene (Pt-G). Water uptake of GO is increased with GO content in a Nafion/GO composite membrane due to the hydrophilic GO while that of Nafion/Pt-G composite membrane is much lower than that of Nafion/GO composite membrane. The MEAs fabricated with the Nafion/GO composite membrane show significant enhancement in cell performance: that is, 0.802A, 1.27A, 0.827A at 0.6V under 100% relative humidity (RH) for 0.5wt%, 3.0wt% and 4.5wt% of GO content in the composite membrane, respectively, compared to 0.435A for casting Nafion membrane. The Nafion/Pt-G composite membrane, however, does not show sufficient enhancement under various RHs. It is attributed to poor water retention ability of hydrophobic graphene and electron loss due to the formation of electrical network by too much Pt within the membrane. Constant open circuit voltage (OCV) down to low RH indicates that GO and graphene could be prospective as filler in low humidifying polymer electrolyte fuel cell.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Graphene oxide was prepared from graphite using Hummer's method. Pt nanoparticles with 1.8nm in average size are successfully obtained via in-situ Pt nanoparticles deposition onto graphene oxide (GO) using a microwave method, finally resulting in Pt-graphene (Pt-G). Water uptake of GO is increased with GO content in a Nafion/GO composite membrane due to the hydrophilic GO while that of Nafion/Pt-G composite membrane is much lower than that of Nafion/GO composite membrane. The MEAs fabricated with the Nafion/GO composite membrane show significant enhancement in cell performance: that is, 0.802A, 1.27A, 0.827A at 0.6V under 100% relative humidity (RH) for 0.5wt%, 3.0wt% and 4.5wt% of GO content in the composite membrane, respectively, compared to 0.435A for casting Nafion membrane. The Nafion/Pt-G composite membrane, however, does not show sufficient enhancement under various RHs. It is attributed to poor water retention ability of hydrophobic graphene and electron loss due to the formation of electrical network by too much Pt within the membrane. Constant open circuit voltage (OCV) down to low RH indicates that GO and graphene could be prospective as filler in low humidifying polymer electrolyte fuel cell.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">OCV</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Proton conductivity</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Water uptake</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Graphene oxide</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cell performance</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, H.N.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Park, S.H.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, W.J.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Yue, Xin-Zheng ELSEVIER</subfield><subfield code="t">Steering charge kinetics in W</subfield><subfield code="d">2019</subfield><subfield code="d">the official journal of the North American Membrane Society</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV002478420</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:452</subfield><subfield code="g">year:2014</subfield><subfield code="g">day:15</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:20-28</subfield><subfield code="g">extent:9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.memsci.2013.10.018</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.17</subfield><subfield code="j">Katalyse</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.50</subfield><subfield code="j">Umwelttechnik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.12</subfield><subfield code="j">Umweltchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">452</subfield><subfield code="j">2014</subfield><subfield code="b">15</subfield><subfield code="c">0215</subfield><subfield code="h">20-28</subfield><subfield code="g">9</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">570</subfield></datafield></record></collection>
|
score |
7.400918 |