Locally confined membrane modification of sulfonated membranes for fuel cell application
We report a method which protects sulfonated hydrocarbon based proton exchange membranes at the interface between active and non-active area and in the gas inlet/outlet areas, where stresses are maximal during fuel cell operation. The sensitive membrane regions are subjected to a locally confined he...
Ausführliche Beschreibung
Autor*in: |
Krishnan, N. Nambi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
10 |
---|
Übergeordnetes Werk: |
Enthalten in: Steering charge kinetics in W - Yue, Xin-Zheng ELSEVIER, 2019, the official journal of the North American Membrane Society, New York, NY [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:454 ; year:2014 ; day:15 ; month:03 ; pages:174-183 ; extent:10 |
Links: |
---|
DOI / URN: |
10.1016/j.memsci.2013.12.020 |
---|
Katalog-ID: |
ELV017538947 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV017538947 | ||
003 | DE-627 | ||
005 | 20230625122422.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180602s2014 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.memsci.2013.12.020 |2 doi | |
028 | 5 | 2 | |a GBVA2014012000015.pica |
035 | |a (DE-627)ELV017538947 | ||
035 | |a (ELSEVIER)S0376-7388(13)00973-3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 570 | |
082 | 0 | 4 | |a 570 |q DE-600 |
082 | 0 | 4 | |a 540 |q VZ |
084 | |a 35.17 |2 bkl | ||
084 | |a 58.50 |2 bkl | ||
084 | |a 43.12 |2 bkl | ||
100 | 1 | |a Krishnan, N. Nambi |e verfasserin |4 aut | |
245 | 1 | 0 | |a Locally confined membrane modification of sulfonated membranes for fuel cell application |
264 | 1 | |c 2014transfer abstract | |
300 | |a 10 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a We report a method which protects sulfonated hydrocarbon based proton exchange membranes at the interface between active and non-active area and in the gas inlet/outlet areas, where stresses are maximal during fuel cell operation. The sensitive membrane regions are subjected to a locally confined heat treatment using a stainless steel frame, under which desulfonation and/or crosslinking reactions occur. While modifications in air limit the reaction temperature to 180°C, inert atmosphere allows to raise the temperature and thus to shorten the necessary reaction time from 24h to less than 30min. Membranes are prepared from a commercially available copolymer (SES0005, AquafoneTM), which has a high IEC (2.08meqg−1) and a water uptake of 64%. As expected, modified membranes show reduced IEC values, reduced water uptake, and increased dimensional stability. Catalyst coated membranes (CCMs) are assembled into single cells for fuel cell testing. A membrane modified on all edges shows a stable performance in H2/air fuel cell operation and an H2 crossover current density of 0.52mAcm−2, while a membrane modified only on two edges fails within 50h. Tensile and fuel cell tests show that the interface between modified and pristine area is not the preferred breaking point. | ||
520 | |a We report a method which protects sulfonated hydrocarbon based proton exchange membranes at the interface between active and non-active area and in the gas inlet/outlet areas, where stresses are maximal during fuel cell operation. The sensitive membrane regions are subjected to a locally confined heat treatment using a stainless steel frame, under which desulfonation and/or crosslinking reactions occur. While modifications in air limit the reaction temperature to 180°C, inert atmosphere allows to raise the temperature and thus to shorten the necessary reaction time from 24h to less than 30min. Membranes are prepared from a commercially available copolymer (SES0005, AquafoneTM), which has a high IEC (2.08meqg−1) and a water uptake of 64%. As expected, modified membranes show reduced IEC values, reduced water uptake, and increased dimensional stability. Catalyst coated membranes (CCMs) are assembled into single cells for fuel cell testing. A membrane modified on all edges shows a stable performance in H2/air fuel cell operation and an H2 crossover current density of 0.52mAcm−2, while a membrane modified only on two edges fails within 50h. Tensile and fuel cell tests show that the interface between modified and pristine area is not the preferred breaking point. | ||
650 | 7 | |a Degradation |2 Elsevier | |
650 | 7 | |a Desulfonation |2 Elsevier | |
650 | 7 | |a Crosslinking |2 Elsevier | |
650 | 7 | |a Life time |2 Elsevier | |
650 | 7 | |a Membrane modification |2 Elsevier | |
650 | 7 | |a Polymer electrolyte fuel cell |2 Elsevier | |
700 | 1 | |a Henkensmeier, Dirk |4 oth | |
700 | 1 | |a Jang, Jong Hyun |4 oth | |
700 | 1 | |a Hink, Steffen |4 oth | |
700 | 1 | |a Kim, Hyoung-Juhn |4 oth | |
700 | 1 | |a Nam, Suk-Woo |4 oth | |
700 | 1 | |a Lim, Tae-Hoon |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Yue, Xin-Zheng ELSEVIER |t Steering charge kinetics in W |d 2019 |d the official journal of the North American Membrane Society |g New York, NY [u.a.] |w (DE-627)ELV002478420 |
773 | 1 | 8 | |g volume:454 |g year:2014 |g day:15 |g month:03 |g pages:174-183 |g extent:10 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.memsci.2013.12.020 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 35.17 |j Katalyse |q VZ |
936 | b | k | |a 58.50 |j Umwelttechnik: Allgemeines |q VZ |
936 | b | k | |a 43.12 |j Umweltchemie |q VZ |
951 | |a AR | ||
952 | |d 454 |j 2014 |b 15 |c 0315 |h 174-183 |g 10 | ||
953 | |2 045F |a 570 |
author_variant |
n n k nn nnk |
---|---|
matchkey_str |
krishnannnambihenkensmeierdirkjangjonghy:2014----:oalcniemmrnmdfctoosloaemmrns |
hierarchy_sort_str |
2014transfer abstract |
bklnumber |
35.17 58.50 43.12 |
publishDate |
2014 |
allfields |
10.1016/j.memsci.2013.12.020 doi GBVA2014012000015.pica (DE-627)ELV017538947 (ELSEVIER)S0376-7388(13)00973-3 DE-627 ger DE-627 rakwb eng 570 570 DE-600 540 VZ 35.17 bkl 58.50 bkl 43.12 bkl Krishnan, N. Nambi verfasserin aut Locally confined membrane modification of sulfonated membranes for fuel cell application 2014transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We report a method which protects sulfonated hydrocarbon based proton exchange membranes at the interface between active and non-active area and in the gas inlet/outlet areas, where stresses are maximal during fuel cell operation. The sensitive membrane regions are subjected to a locally confined heat treatment using a stainless steel frame, under which desulfonation and/or crosslinking reactions occur. While modifications in air limit the reaction temperature to 180°C, inert atmosphere allows to raise the temperature and thus to shorten the necessary reaction time from 24h to less than 30min. Membranes are prepared from a commercially available copolymer (SES0005, AquafoneTM), which has a high IEC (2.08meqg−1) and a water uptake of 64%. As expected, modified membranes show reduced IEC values, reduced water uptake, and increased dimensional stability. Catalyst coated membranes (CCMs) are assembled into single cells for fuel cell testing. A membrane modified on all edges shows a stable performance in H2/air fuel cell operation and an H2 crossover current density of 0.52mAcm−2, while a membrane modified only on two edges fails within 50h. Tensile and fuel cell tests show that the interface between modified and pristine area is not the preferred breaking point. We report a method which protects sulfonated hydrocarbon based proton exchange membranes at the interface between active and non-active area and in the gas inlet/outlet areas, where stresses are maximal during fuel cell operation. The sensitive membrane regions are subjected to a locally confined heat treatment using a stainless steel frame, under which desulfonation and/or crosslinking reactions occur. While modifications in air limit the reaction temperature to 180°C, inert atmosphere allows to raise the temperature and thus to shorten the necessary reaction time from 24h to less than 30min. Membranes are prepared from a commercially available copolymer (SES0005, AquafoneTM), which has a high IEC (2.08meqg−1) and a water uptake of 64%. As expected, modified membranes show reduced IEC values, reduced water uptake, and increased dimensional stability. Catalyst coated membranes (CCMs) are assembled into single cells for fuel cell testing. A membrane modified on all edges shows a stable performance in H2/air fuel cell operation and an H2 crossover current density of 0.52mAcm−2, while a membrane modified only on two edges fails within 50h. Tensile and fuel cell tests show that the interface between modified and pristine area is not the preferred breaking point. Degradation Elsevier Desulfonation Elsevier Crosslinking Elsevier Life time Elsevier Membrane modification Elsevier Polymer electrolyte fuel cell Elsevier Henkensmeier, Dirk oth Jang, Jong Hyun oth Hink, Steffen oth Kim, Hyoung-Juhn oth Nam, Suk-Woo oth Lim, Tae-Hoon oth Enthalten in Elsevier Yue, Xin-Zheng ELSEVIER Steering charge kinetics in W 2019 the official journal of the North American Membrane Society New York, NY [u.a.] (DE-627)ELV002478420 volume:454 year:2014 day:15 month:03 pages:174-183 extent:10 https://doi.org/10.1016/j.memsci.2013.12.020 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.17 Katalyse VZ 58.50 Umwelttechnik: Allgemeines VZ 43.12 Umweltchemie VZ AR 454 2014 15 0315 174-183 10 045F 570 |
spelling |
10.1016/j.memsci.2013.12.020 doi GBVA2014012000015.pica (DE-627)ELV017538947 (ELSEVIER)S0376-7388(13)00973-3 DE-627 ger DE-627 rakwb eng 570 570 DE-600 540 VZ 35.17 bkl 58.50 bkl 43.12 bkl Krishnan, N. Nambi verfasserin aut Locally confined membrane modification of sulfonated membranes for fuel cell application 2014transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We report a method which protects sulfonated hydrocarbon based proton exchange membranes at the interface between active and non-active area and in the gas inlet/outlet areas, where stresses are maximal during fuel cell operation. The sensitive membrane regions are subjected to a locally confined heat treatment using a stainless steel frame, under which desulfonation and/or crosslinking reactions occur. While modifications in air limit the reaction temperature to 180°C, inert atmosphere allows to raise the temperature and thus to shorten the necessary reaction time from 24h to less than 30min. Membranes are prepared from a commercially available copolymer (SES0005, AquafoneTM), which has a high IEC (2.08meqg−1) and a water uptake of 64%. As expected, modified membranes show reduced IEC values, reduced water uptake, and increased dimensional stability. Catalyst coated membranes (CCMs) are assembled into single cells for fuel cell testing. A membrane modified on all edges shows a stable performance in H2/air fuel cell operation and an H2 crossover current density of 0.52mAcm−2, while a membrane modified only on two edges fails within 50h. Tensile and fuel cell tests show that the interface between modified and pristine area is not the preferred breaking point. We report a method which protects sulfonated hydrocarbon based proton exchange membranes at the interface between active and non-active area and in the gas inlet/outlet areas, where stresses are maximal during fuel cell operation. The sensitive membrane regions are subjected to a locally confined heat treatment using a stainless steel frame, under which desulfonation and/or crosslinking reactions occur. While modifications in air limit the reaction temperature to 180°C, inert atmosphere allows to raise the temperature and thus to shorten the necessary reaction time from 24h to less than 30min. Membranes are prepared from a commercially available copolymer (SES0005, AquafoneTM), which has a high IEC (2.08meqg−1) and a water uptake of 64%. As expected, modified membranes show reduced IEC values, reduced water uptake, and increased dimensional stability. Catalyst coated membranes (CCMs) are assembled into single cells for fuel cell testing. A membrane modified on all edges shows a stable performance in H2/air fuel cell operation and an H2 crossover current density of 0.52mAcm−2, while a membrane modified only on two edges fails within 50h. Tensile and fuel cell tests show that the interface between modified and pristine area is not the preferred breaking point. Degradation Elsevier Desulfonation Elsevier Crosslinking Elsevier Life time Elsevier Membrane modification Elsevier Polymer electrolyte fuel cell Elsevier Henkensmeier, Dirk oth Jang, Jong Hyun oth Hink, Steffen oth Kim, Hyoung-Juhn oth Nam, Suk-Woo oth Lim, Tae-Hoon oth Enthalten in Elsevier Yue, Xin-Zheng ELSEVIER Steering charge kinetics in W 2019 the official journal of the North American Membrane Society New York, NY [u.a.] (DE-627)ELV002478420 volume:454 year:2014 day:15 month:03 pages:174-183 extent:10 https://doi.org/10.1016/j.memsci.2013.12.020 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.17 Katalyse VZ 58.50 Umwelttechnik: Allgemeines VZ 43.12 Umweltchemie VZ AR 454 2014 15 0315 174-183 10 045F 570 |
allfields_unstemmed |
10.1016/j.memsci.2013.12.020 doi GBVA2014012000015.pica (DE-627)ELV017538947 (ELSEVIER)S0376-7388(13)00973-3 DE-627 ger DE-627 rakwb eng 570 570 DE-600 540 VZ 35.17 bkl 58.50 bkl 43.12 bkl Krishnan, N. Nambi verfasserin aut Locally confined membrane modification of sulfonated membranes for fuel cell application 2014transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We report a method which protects sulfonated hydrocarbon based proton exchange membranes at the interface between active and non-active area and in the gas inlet/outlet areas, where stresses are maximal during fuel cell operation. The sensitive membrane regions are subjected to a locally confined heat treatment using a stainless steel frame, under which desulfonation and/or crosslinking reactions occur. While modifications in air limit the reaction temperature to 180°C, inert atmosphere allows to raise the temperature and thus to shorten the necessary reaction time from 24h to less than 30min. Membranes are prepared from a commercially available copolymer (SES0005, AquafoneTM), which has a high IEC (2.08meqg−1) and a water uptake of 64%. As expected, modified membranes show reduced IEC values, reduced water uptake, and increased dimensional stability. Catalyst coated membranes (CCMs) are assembled into single cells for fuel cell testing. A membrane modified on all edges shows a stable performance in H2/air fuel cell operation and an H2 crossover current density of 0.52mAcm−2, while a membrane modified only on two edges fails within 50h. Tensile and fuel cell tests show that the interface between modified and pristine area is not the preferred breaking point. We report a method which protects sulfonated hydrocarbon based proton exchange membranes at the interface between active and non-active area and in the gas inlet/outlet areas, where stresses are maximal during fuel cell operation. The sensitive membrane regions are subjected to a locally confined heat treatment using a stainless steel frame, under which desulfonation and/or crosslinking reactions occur. While modifications in air limit the reaction temperature to 180°C, inert atmosphere allows to raise the temperature and thus to shorten the necessary reaction time from 24h to less than 30min. Membranes are prepared from a commercially available copolymer (SES0005, AquafoneTM), which has a high IEC (2.08meqg−1) and a water uptake of 64%. As expected, modified membranes show reduced IEC values, reduced water uptake, and increased dimensional stability. Catalyst coated membranes (CCMs) are assembled into single cells for fuel cell testing. A membrane modified on all edges shows a stable performance in H2/air fuel cell operation and an H2 crossover current density of 0.52mAcm−2, while a membrane modified only on two edges fails within 50h. Tensile and fuel cell tests show that the interface between modified and pristine area is not the preferred breaking point. Degradation Elsevier Desulfonation Elsevier Crosslinking Elsevier Life time Elsevier Membrane modification Elsevier Polymer electrolyte fuel cell Elsevier Henkensmeier, Dirk oth Jang, Jong Hyun oth Hink, Steffen oth Kim, Hyoung-Juhn oth Nam, Suk-Woo oth Lim, Tae-Hoon oth Enthalten in Elsevier Yue, Xin-Zheng ELSEVIER Steering charge kinetics in W 2019 the official journal of the North American Membrane Society New York, NY [u.a.] (DE-627)ELV002478420 volume:454 year:2014 day:15 month:03 pages:174-183 extent:10 https://doi.org/10.1016/j.memsci.2013.12.020 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.17 Katalyse VZ 58.50 Umwelttechnik: Allgemeines VZ 43.12 Umweltchemie VZ AR 454 2014 15 0315 174-183 10 045F 570 |
allfieldsGer |
10.1016/j.memsci.2013.12.020 doi GBVA2014012000015.pica (DE-627)ELV017538947 (ELSEVIER)S0376-7388(13)00973-3 DE-627 ger DE-627 rakwb eng 570 570 DE-600 540 VZ 35.17 bkl 58.50 bkl 43.12 bkl Krishnan, N. Nambi verfasserin aut Locally confined membrane modification of sulfonated membranes for fuel cell application 2014transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We report a method which protects sulfonated hydrocarbon based proton exchange membranes at the interface between active and non-active area and in the gas inlet/outlet areas, where stresses are maximal during fuel cell operation. The sensitive membrane regions are subjected to a locally confined heat treatment using a stainless steel frame, under which desulfonation and/or crosslinking reactions occur. While modifications in air limit the reaction temperature to 180°C, inert atmosphere allows to raise the temperature and thus to shorten the necessary reaction time from 24h to less than 30min. Membranes are prepared from a commercially available copolymer (SES0005, AquafoneTM), which has a high IEC (2.08meqg−1) and a water uptake of 64%. As expected, modified membranes show reduced IEC values, reduced water uptake, and increased dimensional stability. Catalyst coated membranes (CCMs) are assembled into single cells for fuel cell testing. A membrane modified on all edges shows a stable performance in H2/air fuel cell operation and an H2 crossover current density of 0.52mAcm−2, while a membrane modified only on two edges fails within 50h. Tensile and fuel cell tests show that the interface between modified and pristine area is not the preferred breaking point. We report a method which protects sulfonated hydrocarbon based proton exchange membranes at the interface between active and non-active area and in the gas inlet/outlet areas, where stresses are maximal during fuel cell operation. The sensitive membrane regions are subjected to a locally confined heat treatment using a stainless steel frame, under which desulfonation and/or crosslinking reactions occur. While modifications in air limit the reaction temperature to 180°C, inert atmosphere allows to raise the temperature and thus to shorten the necessary reaction time from 24h to less than 30min. Membranes are prepared from a commercially available copolymer (SES0005, AquafoneTM), which has a high IEC (2.08meqg−1) and a water uptake of 64%. As expected, modified membranes show reduced IEC values, reduced water uptake, and increased dimensional stability. Catalyst coated membranes (CCMs) are assembled into single cells for fuel cell testing. A membrane modified on all edges shows a stable performance in H2/air fuel cell operation and an H2 crossover current density of 0.52mAcm−2, while a membrane modified only on two edges fails within 50h. Tensile and fuel cell tests show that the interface between modified and pristine area is not the preferred breaking point. Degradation Elsevier Desulfonation Elsevier Crosslinking Elsevier Life time Elsevier Membrane modification Elsevier Polymer electrolyte fuel cell Elsevier Henkensmeier, Dirk oth Jang, Jong Hyun oth Hink, Steffen oth Kim, Hyoung-Juhn oth Nam, Suk-Woo oth Lim, Tae-Hoon oth Enthalten in Elsevier Yue, Xin-Zheng ELSEVIER Steering charge kinetics in W 2019 the official journal of the North American Membrane Society New York, NY [u.a.] (DE-627)ELV002478420 volume:454 year:2014 day:15 month:03 pages:174-183 extent:10 https://doi.org/10.1016/j.memsci.2013.12.020 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.17 Katalyse VZ 58.50 Umwelttechnik: Allgemeines VZ 43.12 Umweltchemie VZ AR 454 2014 15 0315 174-183 10 045F 570 |
allfieldsSound |
10.1016/j.memsci.2013.12.020 doi GBVA2014012000015.pica (DE-627)ELV017538947 (ELSEVIER)S0376-7388(13)00973-3 DE-627 ger DE-627 rakwb eng 570 570 DE-600 540 VZ 35.17 bkl 58.50 bkl 43.12 bkl Krishnan, N. Nambi verfasserin aut Locally confined membrane modification of sulfonated membranes for fuel cell application 2014transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We report a method which protects sulfonated hydrocarbon based proton exchange membranes at the interface between active and non-active area and in the gas inlet/outlet areas, where stresses are maximal during fuel cell operation. The sensitive membrane regions are subjected to a locally confined heat treatment using a stainless steel frame, under which desulfonation and/or crosslinking reactions occur. While modifications in air limit the reaction temperature to 180°C, inert atmosphere allows to raise the temperature and thus to shorten the necessary reaction time from 24h to less than 30min. Membranes are prepared from a commercially available copolymer (SES0005, AquafoneTM), which has a high IEC (2.08meqg−1) and a water uptake of 64%. As expected, modified membranes show reduced IEC values, reduced water uptake, and increased dimensional stability. Catalyst coated membranes (CCMs) are assembled into single cells for fuel cell testing. A membrane modified on all edges shows a stable performance in H2/air fuel cell operation and an H2 crossover current density of 0.52mAcm−2, while a membrane modified only on two edges fails within 50h. Tensile and fuel cell tests show that the interface between modified and pristine area is not the preferred breaking point. We report a method which protects sulfonated hydrocarbon based proton exchange membranes at the interface between active and non-active area and in the gas inlet/outlet areas, where stresses are maximal during fuel cell operation. The sensitive membrane regions are subjected to a locally confined heat treatment using a stainless steel frame, under which desulfonation and/or crosslinking reactions occur. While modifications in air limit the reaction temperature to 180°C, inert atmosphere allows to raise the temperature and thus to shorten the necessary reaction time from 24h to less than 30min. Membranes are prepared from a commercially available copolymer (SES0005, AquafoneTM), which has a high IEC (2.08meqg−1) and a water uptake of 64%. As expected, modified membranes show reduced IEC values, reduced water uptake, and increased dimensional stability. Catalyst coated membranes (CCMs) are assembled into single cells for fuel cell testing. A membrane modified on all edges shows a stable performance in H2/air fuel cell operation and an H2 crossover current density of 0.52mAcm−2, while a membrane modified only on two edges fails within 50h. Tensile and fuel cell tests show that the interface between modified and pristine area is not the preferred breaking point. Degradation Elsevier Desulfonation Elsevier Crosslinking Elsevier Life time Elsevier Membrane modification Elsevier Polymer electrolyte fuel cell Elsevier Henkensmeier, Dirk oth Jang, Jong Hyun oth Hink, Steffen oth Kim, Hyoung-Juhn oth Nam, Suk-Woo oth Lim, Tae-Hoon oth Enthalten in Elsevier Yue, Xin-Zheng ELSEVIER Steering charge kinetics in W 2019 the official journal of the North American Membrane Society New York, NY [u.a.] (DE-627)ELV002478420 volume:454 year:2014 day:15 month:03 pages:174-183 extent:10 https://doi.org/10.1016/j.memsci.2013.12.020 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.17 Katalyse VZ 58.50 Umwelttechnik: Allgemeines VZ 43.12 Umweltchemie VZ AR 454 2014 15 0315 174-183 10 045F 570 |
language |
English |
source |
Enthalten in Steering charge kinetics in W New York, NY [u.a.] volume:454 year:2014 day:15 month:03 pages:174-183 extent:10 |
sourceStr |
Enthalten in Steering charge kinetics in W New York, NY [u.a.] volume:454 year:2014 day:15 month:03 pages:174-183 extent:10 |
format_phy_str_mv |
Article |
bklname |
Katalyse Umwelttechnik: Allgemeines Umweltchemie |
institution |
findex.gbv.de |
topic_facet |
Degradation Desulfonation Crosslinking Life time Membrane modification Polymer electrolyte fuel cell |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
Steering charge kinetics in W |
authorswithroles_txt_mv |
Krishnan, N. Nambi @@aut@@ Henkensmeier, Dirk @@oth@@ Jang, Jong Hyun @@oth@@ Hink, Steffen @@oth@@ Kim, Hyoung-Juhn @@oth@@ Nam, Suk-Woo @@oth@@ Lim, Tae-Hoon @@oth@@ |
publishDateDaySort_date |
2014-01-15T00:00:00Z |
hierarchy_top_id |
ELV002478420 |
dewey-sort |
3570 |
id |
ELV017538947 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV017538947</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625122422.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.memsci.2013.12.020</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014012000015.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV017538947</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0376-7388(13)00973-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">570</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.17</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.50</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Krishnan, N. Nambi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Locally confined membrane modification of sulfonated membranes for fuel cell application</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We report a method which protects sulfonated hydrocarbon based proton exchange membranes at the interface between active and non-active area and in the gas inlet/outlet areas, where stresses are maximal during fuel cell operation. The sensitive membrane regions are subjected to a locally confined heat treatment using a stainless steel frame, under which desulfonation and/or crosslinking reactions occur. While modifications in air limit the reaction temperature to 180°C, inert atmosphere allows to raise the temperature and thus to shorten the necessary reaction time from 24h to less than 30min. Membranes are prepared from a commercially available copolymer (SES0005, AquafoneTM), which has a high IEC (2.08meqg−1) and a water uptake of 64%. As expected, modified membranes show reduced IEC values, reduced water uptake, and increased dimensional stability. Catalyst coated membranes (CCMs) are assembled into single cells for fuel cell testing. A membrane modified on all edges shows a stable performance in H2/air fuel cell operation and an H2 crossover current density of 0.52mAcm−2, while a membrane modified only on two edges fails within 50h. Tensile and fuel cell tests show that the interface between modified and pristine area is not the preferred breaking point.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We report a method which protects sulfonated hydrocarbon based proton exchange membranes at the interface between active and non-active area and in the gas inlet/outlet areas, where stresses are maximal during fuel cell operation. The sensitive membrane regions are subjected to a locally confined heat treatment using a stainless steel frame, under which desulfonation and/or crosslinking reactions occur. While modifications in air limit the reaction temperature to 180°C, inert atmosphere allows to raise the temperature and thus to shorten the necessary reaction time from 24h to less than 30min. Membranes are prepared from a commercially available copolymer (SES0005, AquafoneTM), which has a high IEC (2.08meqg−1) and a water uptake of 64%. As expected, modified membranes show reduced IEC values, reduced water uptake, and increased dimensional stability. Catalyst coated membranes (CCMs) are assembled into single cells for fuel cell testing. A membrane modified on all edges shows a stable performance in H2/air fuel cell operation and an H2 crossover current density of 0.52mAcm−2, while a membrane modified only on two edges fails within 50h. Tensile and fuel cell tests show that the interface between modified and pristine area is not the preferred breaking point.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Degradation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Desulfonation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Crosslinking</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Life time</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Membrane modification</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Polymer electrolyte fuel cell</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Henkensmeier, Dirk</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jang, Jong Hyun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hink, Steffen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Hyoung-Juhn</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nam, Suk-Woo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lim, Tae-Hoon</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Yue, Xin-Zheng ELSEVIER</subfield><subfield code="t">Steering charge kinetics in W</subfield><subfield code="d">2019</subfield><subfield code="d">the official journal of the North American Membrane Society</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV002478420</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:454</subfield><subfield code="g">year:2014</subfield><subfield code="g">day:15</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:174-183</subfield><subfield code="g">extent:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.memsci.2013.12.020</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.17</subfield><subfield code="j">Katalyse</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.50</subfield><subfield code="j">Umwelttechnik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.12</subfield><subfield code="j">Umweltchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">454</subfield><subfield code="j">2014</subfield><subfield code="b">15</subfield><subfield code="c">0315</subfield><subfield code="h">174-183</subfield><subfield code="g">10</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">570</subfield></datafield></record></collection>
|
author |
Krishnan, N. Nambi |
spellingShingle |
Krishnan, N. Nambi ddc 570 ddc 540 bkl 35.17 bkl 58.50 bkl 43.12 Elsevier Degradation Elsevier Desulfonation Elsevier Crosslinking Elsevier Life time Elsevier Membrane modification Elsevier Polymer electrolyte fuel cell Locally confined membrane modification of sulfonated membranes for fuel cell application |
authorStr |
Krishnan, N. Nambi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV002478420 |
format |
electronic Article |
dewey-ones |
570 - Life sciences; biology 540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
570 570 DE-600 540 VZ 35.17 bkl 58.50 bkl 43.12 bkl Locally confined membrane modification of sulfonated membranes for fuel cell application Degradation Elsevier Desulfonation Elsevier Crosslinking Elsevier Life time Elsevier Membrane modification Elsevier Polymer electrolyte fuel cell Elsevier |
topic |
ddc 570 ddc 540 bkl 35.17 bkl 58.50 bkl 43.12 Elsevier Degradation Elsevier Desulfonation Elsevier Crosslinking Elsevier Life time Elsevier Membrane modification Elsevier Polymer electrolyte fuel cell |
topic_unstemmed |
ddc 570 ddc 540 bkl 35.17 bkl 58.50 bkl 43.12 Elsevier Degradation Elsevier Desulfonation Elsevier Crosslinking Elsevier Life time Elsevier Membrane modification Elsevier Polymer electrolyte fuel cell |
topic_browse |
ddc 570 ddc 540 bkl 35.17 bkl 58.50 bkl 43.12 Elsevier Degradation Elsevier Desulfonation Elsevier Crosslinking Elsevier Life time Elsevier Membrane modification Elsevier Polymer electrolyte fuel cell |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
d h dh j h j jh jhj s h sh h j k hjk s w n swn t h l thl |
hierarchy_parent_title |
Steering charge kinetics in W |
hierarchy_parent_id |
ELV002478420 |
dewey-tens |
570 - Life sciences; biology 540 - Chemistry |
hierarchy_top_title |
Steering charge kinetics in W |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV002478420 |
title |
Locally confined membrane modification of sulfonated membranes for fuel cell application |
ctrlnum |
(DE-627)ELV017538947 (ELSEVIER)S0376-7388(13)00973-3 |
title_full |
Locally confined membrane modification of sulfonated membranes for fuel cell application |
author_sort |
Krishnan, N. Nambi |
journal |
Steering charge kinetics in W |
journalStr |
Steering charge kinetics in W |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
zzz |
container_start_page |
174 |
author_browse |
Krishnan, N. Nambi |
container_volume |
454 |
physical |
10 |
class |
570 570 DE-600 540 VZ 35.17 bkl 58.50 bkl 43.12 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Krishnan, N. Nambi |
doi_str_mv |
10.1016/j.memsci.2013.12.020 |
dewey-full |
570 540 |
title_sort |
locally confined membrane modification of sulfonated membranes for fuel cell application |
title_auth |
Locally confined membrane modification of sulfonated membranes for fuel cell application |
abstract |
We report a method which protects sulfonated hydrocarbon based proton exchange membranes at the interface between active and non-active area and in the gas inlet/outlet areas, where stresses are maximal during fuel cell operation. The sensitive membrane regions are subjected to a locally confined heat treatment using a stainless steel frame, under which desulfonation and/or crosslinking reactions occur. While modifications in air limit the reaction temperature to 180°C, inert atmosphere allows to raise the temperature and thus to shorten the necessary reaction time from 24h to less than 30min. Membranes are prepared from a commercially available copolymer (SES0005, AquafoneTM), which has a high IEC (2.08meqg−1) and a water uptake of 64%. As expected, modified membranes show reduced IEC values, reduced water uptake, and increased dimensional stability. Catalyst coated membranes (CCMs) are assembled into single cells for fuel cell testing. A membrane modified on all edges shows a stable performance in H2/air fuel cell operation and an H2 crossover current density of 0.52mAcm−2, while a membrane modified only on two edges fails within 50h. Tensile and fuel cell tests show that the interface between modified and pristine area is not the preferred breaking point. |
abstractGer |
We report a method which protects sulfonated hydrocarbon based proton exchange membranes at the interface between active and non-active area and in the gas inlet/outlet areas, where stresses are maximal during fuel cell operation. The sensitive membrane regions are subjected to a locally confined heat treatment using a stainless steel frame, under which desulfonation and/or crosslinking reactions occur. While modifications in air limit the reaction temperature to 180°C, inert atmosphere allows to raise the temperature and thus to shorten the necessary reaction time from 24h to less than 30min. Membranes are prepared from a commercially available copolymer (SES0005, AquafoneTM), which has a high IEC (2.08meqg−1) and a water uptake of 64%. As expected, modified membranes show reduced IEC values, reduced water uptake, and increased dimensional stability. Catalyst coated membranes (CCMs) are assembled into single cells for fuel cell testing. A membrane modified on all edges shows a stable performance in H2/air fuel cell operation and an H2 crossover current density of 0.52mAcm−2, while a membrane modified only on two edges fails within 50h. Tensile and fuel cell tests show that the interface between modified and pristine area is not the preferred breaking point. |
abstract_unstemmed |
We report a method which protects sulfonated hydrocarbon based proton exchange membranes at the interface between active and non-active area and in the gas inlet/outlet areas, where stresses are maximal during fuel cell operation. The sensitive membrane regions are subjected to a locally confined heat treatment using a stainless steel frame, under which desulfonation and/or crosslinking reactions occur. While modifications in air limit the reaction temperature to 180°C, inert atmosphere allows to raise the temperature and thus to shorten the necessary reaction time from 24h to less than 30min. Membranes are prepared from a commercially available copolymer (SES0005, AquafoneTM), which has a high IEC (2.08meqg−1) and a water uptake of 64%. As expected, modified membranes show reduced IEC values, reduced water uptake, and increased dimensional stability. Catalyst coated membranes (CCMs) are assembled into single cells for fuel cell testing. A membrane modified on all edges shows a stable performance in H2/air fuel cell operation and an H2 crossover current density of 0.52mAcm−2, while a membrane modified only on two edges fails within 50h. Tensile and fuel cell tests show that the interface between modified and pristine area is not the preferred breaking point. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
title_short |
Locally confined membrane modification of sulfonated membranes for fuel cell application |
url |
https://doi.org/10.1016/j.memsci.2013.12.020 |
remote_bool |
true |
author2 |
Henkensmeier, Dirk Jang, Jong Hyun Hink, Steffen Kim, Hyoung-Juhn Nam, Suk-Woo Lim, Tae-Hoon |
author2Str |
Henkensmeier, Dirk Jang, Jong Hyun Hink, Steffen Kim, Hyoung-Juhn Nam, Suk-Woo Lim, Tae-Hoon |
ppnlink |
ELV002478420 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth |
doi_str |
10.1016/j.memsci.2013.12.020 |
up_date |
2024-07-06T16:34:31.632Z |
_version_ |
1803848171270438912 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV017538947</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625122422.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.memsci.2013.12.020</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014012000015.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV017538947</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0376-7388(13)00973-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">570</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.17</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.50</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Krishnan, N. Nambi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Locally confined membrane modification of sulfonated membranes for fuel cell application</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We report a method which protects sulfonated hydrocarbon based proton exchange membranes at the interface between active and non-active area and in the gas inlet/outlet areas, where stresses are maximal during fuel cell operation. The sensitive membrane regions are subjected to a locally confined heat treatment using a stainless steel frame, under which desulfonation and/or crosslinking reactions occur. While modifications in air limit the reaction temperature to 180°C, inert atmosphere allows to raise the temperature and thus to shorten the necessary reaction time from 24h to less than 30min. Membranes are prepared from a commercially available copolymer (SES0005, AquafoneTM), which has a high IEC (2.08meqg−1) and a water uptake of 64%. As expected, modified membranes show reduced IEC values, reduced water uptake, and increased dimensional stability. Catalyst coated membranes (CCMs) are assembled into single cells for fuel cell testing. A membrane modified on all edges shows a stable performance in H2/air fuel cell operation and an H2 crossover current density of 0.52mAcm−2, while a membrane modified only on two edges fails within 50h. Tensile and fuel cell tests show that the interface between modified and pristine area is not the preferred breaking point.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We report a method which protects sulfonated hydrocarbon based proton exchange membranes at the interface between active and non-active area and in the gas inlet/outlet areas, where stresses are maximal during fuel cell operation. The sensitive membrane regions are subjected to a locally confined heat treatment using a stainless steel frame, under which desulfonation and/or crosslinking reactions occur. While modifications in air limit the reaction temperature to 180°C, inert atmosphere allows to raise the temperature and thus to shorten the necessary reaction time from 24h to less than 30min. Membranes are prepared from a commercially available copolymer (SES0005, AquafoneTM), which has a high IEC (2.08meqg−1) and a water uptake of 64%. As expected, modified membranes show reduced IEC values, reduced water uptake, and increased dimensional stability. Catalyst coated membranes (CCMs) are assembled into single cells for fuel cell testing. A membrane modified on all edges shows a stable performance in H2/air fuel cell operation and an H2 crossover current density of 0.52mAcm−2, while a membrane modified only on two edges fails within 50h. Tensile and fuel cell tests show that the interface between modified and pristine area is not the preferred breaking point.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Degradation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Desulfonation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Crosslinking</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Life time</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Membrane modification</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Polymer electrolyte fuel cell</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Henkensmeier, Dirk</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jang, Jong Hyun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hink, Steffen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Hyoung-Juhn</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nam, Suk-Woo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lim, Tae-Hoon</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Yue, Xin-Zheng ELSEVIER</subfield><subfield code="t">Steering charge kinetics in W</subfield><subfield code="d">2019</subfield><subfield code="d">the official journal of the North American Membrane Society</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV002478420</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:454</subfield><subfield code="g">year:2014</subfield><subfield code="g">day:15</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:174-183</subfield><subfield code="g">extent:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.memsci.2013.12.020</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.17</subfield><subfield code="j">Katalyse</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.50</subfield><subfield code="j">Umwelttechnik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.12</subfield><subfield code="j">Umweltchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">454</subfield><subfield code="j">2014</subfield><subfield code="b">15</subfield><subfield code="c">0315</subfield><subfield code="h">174-183</subfield><subfield code="g">10</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">570</subfield></datafield></record></collection>
|
score |
7.4005327 |