Characterization of a glutamine synthetase gene DvGS2 from Dunaliella viridis and biochemical identification of DvGS2-transgenic Arabidopsis thaliana
The salt-tolerant green alga Dunaliella has remarkable capability to survive in some extreme environments such as nitrogen starvation, which makes Dunaliella be a proper model for mining novel genes on nitrogen uptake or assimilation. In this study, a glutamine synthetase (GS) gene DvGS2 with amino...
Ausführliche Beschreibung
Autor*in: |
Zhu, Chenguang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014transfer abstract |
---|
Umfang: |
9 |
---|
Übergeordnetes Werk: |
Enthalten in: 26957 A study of dermoscopic features in relation to vitiligo activity - Lee, Jae-Ho ELSEVIER, 2021, an international journal on genes, genomes and evolution, Amsterdam |
---|---|
Übergeordnetes Werk: |
volume:536 ; year:2014 ; number:2 ; day:25 ; month:02 ; pages:407-415 ; extent:9 |
Links: |
---|
DOI / URN: |
10.1016/j.gene.2013.11.009 |
---|
Katalog-ID: |
ELV017556023 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV017556023 | ||
003 | DE-627 | ||
005 | 20230625122440.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180602s2014 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.gene.2013.11.009 |2 doi | |
028 | 5 | 2 | |a GBVA2014012000021.pica |
035 | |a (DE-627)ELV017556023 | ||
035 | |a (ELSEVIER)S0378-1119(13)01534-5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 570 | |
082 | 0 | 4 | |a 570 |q DE-600 |
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.93 |2 bkl | ||
100 | 1 | |a Zhu, Chenguang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Characterization of a glutamine synthetase gene DvGS2 from Dunaliella viridis and biochemical identification of DvGS2-transgenic Arabidopsis thaliana |
264 | 1 | |c 2014transfer abstract | |
300 | |a 9 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a The salt-tolerant green alga Dunaliella has remarkable capability to survive in some extreme environments such as nitrogen starvation, which makes Dunaliella be a proper model for mining novel genes on nitrogen uptake or assimilation. In this study, a glutamine synthetase (GS) gene DvGS2 with amino acid identity of 72% to other homologous GS proteins, was isolated and characterized from Dunaliella viridis. Phylogenetic comparison with other GSs revealed that DvGS2 occupied an independent phylogenetic position. Expressional analysis in D. viridis cells under nitrogen starvation confirmed that DvGS2 increased its mRNA level in 12h. Subcellular localization study and functional analysis in a GS-deficient Escherichia coli mutant proved that DvGS2 was a chloroplastic and functional GS enzyme. In order to investigate the potential application of DvGS2 in higher plants, the transgenic studies of DvGS2 in Arabidopsis thaliana were carried out. Results showed that the transgenic lines expressed the DvGS2 gene and demonstrated obviously enhanced root length (29%), fresh weight (40%–48% at two concentrations of nitrate supplies), stem length (21%), leaf size (39%) and silique number (44%) in contrast with the wild-type Arabidopsis. Furthermore, the transgenic lines had higher total nitrogen content (35%–43%), total GS activity (39%–45%) and soluble protein concentration (23%–24%) than the wild type. These results indicated that the overexpression of DvGS2 in A. thaliana resulted in higher biomass and the improvement of the host's nitrogen use efficiency. | ||
520 | |a The salt-tolerant green alga Dunaliella has remarkable capability to survive in some extreme environments such as nitrogen starvation, which makes Dunaliella be a proper model for mining novel genes on nitrogen uptake or assimilation. In this study, a glutamine synthetase (GS) gene DvGS2 with amino acid identity of 72% to other homologous GS proteins, was isolated and characterized from Dunaliella viridis. Phylogenetic comparison with other GSs revealed that DvGS2 occupied an independent phylogenetic position. Expressional analysis in D. viridis cells under nitrogen starvation confirmed that DvGS2 increased its mRNA level in 12h. Subcellular localization study and functional analysis in a GS-deficient Escherichia coli mutant proved that DvGS2 was a chloroplastic and functional GS enzyme. In order to investigate the potential application of DvGS2 in higher plants, the transgenic studies of DvGS2 in Arabidopsis thaliana were carried out. Results showed that the transgenic lines expressed the DvGS2 gene and demonstrated obviously enhanced root length (29%), fresh weight (40%–48% at two concentrations of nitrate supplies), stem length (21%), leaf size (39%) and silique number (44%) in contrast with the wild-type Arabidopsis. Furthermore, the transgenic lines had higher total nitrogen content (35%–43%), total GS activity (39%–45%) and soluble protein concentration (23%–24%) than the wild type. These results indicated that the overexpression of DvGS2 in A. thaliana resulted in higher biomass and the improvement of the host's nitrogen use efficiency. | ||
700 | 1 | |a Fan, Qianlan |4 oth | |
700 | 1 | |a Wang, Wei |4 oth | |
700 | 1 | |a Shen, Chunlei |4 oth | |
700 | 1 | |a Meng, Xiangzong |4 oth | |
700 | 1 | |a Tang, Yuanping |4 oth | |
700 | 1 | |a Mei, Bing |4 oth | |
700 | 1 | |a Xu, Zhengkai |4 oth | |
700 | 1 | |a Song, Rentao |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Lee, Jae-Ho ELSEVIER |t 26957 A study of dermoscopic features in relation to vitiligo activity |d 2021 |d an international journal on genes, genomes and evolution |g Amsterdam |w (DE-627)ELV006417590 |
773 | 1 | 8 | |g volume:536 |g year:2014 |g number:2 |g day:25 |g month:02 |g pages:407-415 |g extent:9 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.gene.2013.11.009 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 44.93 |j Dermatologie |q VZ |
951 | |a AR | ||
952 | |d 536 |j 2014 |e 2 |b 25 |c 0225 |h 407-415 |g 9 | ||
953 | |2 045F |a 570 |
author_variant |
c z cz |
---|---|
matchkey_str |
zhuchenguangfanqianlanwangweishenchunlei:2014----:hrceiainfguaieyteaeeevsfodnlelvrdsnbohmcldniiainf |
hierarchy_sort_str |
2014transfer abstract |
bklnumber |
44.93 |
publishDate |
2014 |
allfields |
10.1016/j.gene.2013.11.009 doi GBVA2014012000021.pica (DE-627)ELV017556023 (ELSEVIER)S0378-1119(13)01534-5 DE-627 ger DE-627 rakwb eng 570 570 DE-600 610 VZ 44.93 bkl Zhu, Chenguang verfasserin aut Characterization of a glutamine synthetase gene DvGS2 from Dunaliella viridis and biochemical identification of DvGS2-transgenic Arabidopsis thaliana 2014transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The salt-tolerant green alga Dunaliella has remarkable capability to survive in some extreme environments such as nitrogen starvation, which makes Dunaliella be a proper model for mining novel genes on nitrogen uptake or assimilation. In this study, a glutamine synthetase (GS) gene DvGS2 with amino acid identity of 72% to other homologous GS proteins, was isolated and characterized from Dunaliella viridis. Phylogenetic comparison with other GSs revealed that DvGS2 occupied an independent phylogenetic position. Expressional analysis in D. viridis cells under nitrogen starvation confirmed that DvGS2 increased its mRNA level in 12h. Subcellular localization study and functional analysis in a GS-deficient Escherichia coli mutant proved that DvGS2 was a chloroplastic and functional GS enzyme. In order to investigate the potential application of DvGS2 in higher plants, the transgenic studies of DvGS2 in Arabidopsis thaliana were carried out. Results showed that the transgenic lines expressed the DvGS2 gene and demonstrated obviously enhanced root length (29%), fresh weight (40%–48% at two concentrations of nitrate supplies), stem length (21%), leaf size (39%) and silique number (44%) in contrast with the wild-type Arabidopsis. Furthermore, the transgenic lines had higher total nitrogen content (35%–43%), total GS activity (39%–45%) and soluble protein concentration (23%–24%) than the wild type. These results indicated that the overexpression of DvGS2 in A. thaliana resulted in higher biomass and the improvement of the host's nitrogen use efficiency. The salt-tolerant green alga Dunaliella has remarkable capability to survive in some extreme environments such as nitrogen starvation, which makes Dunaliella be a proper model for mining novel genes on nitrogen uptake or assimilation. In this study, a glutamine synthetase (GS) gene DvGS2 with amino acid identity of 72% to other homologous GS proteins, was isolated and characterized from Dunaliella viridis. Phylogenetic comparison with other GSs revealed that DvGS2 occupied an independent phylogenetic position. Expressional analysis in D. viridis cells under nitrogen starvation confirmed that DvGS2 increased its mRNA level in 12h. Subcellular localization study and functional analysis in a GS-deficient Escherichia coli mutant proved that DvGS2 was a chloroplastic and functional GS enzyme. In order to investigate the potential application of DvGS2 in higher plants, the transgenic studies of DvGS2 in Arabidopsis thaliana were carried out. Results showed that the transgenic lines expressed the DvGS2 gene and demonstrated obviously enhanced root length (29%), fresh weight (40%–48% at two concentrations of nitrate supplies), stem length (21%), leaf size (39%) and silique number (44%) in contrast with the wild-type Arabidopsis. Furthermore, the transgenic lines had higher total nitrogen content (35%–43%), total GS activity (39%–45%) and soluble protein concentration (23%–24%) than the wild type. These results indicated that the overexpression of DvGS2 in A. thaliana resulted in higher biomass and the improvement of the host's nitrogen use efficiency. Fan, Qianlan oth Wang, Wei oth Shen, Chunlei oth Meng, Xiangzong oth Tang, Yuanping oth Mei, Bing oth Xu, Zhengkai oth Song, Rentao oth Enthalten in Elsevier Lee, Jae-Ho ELSEVIER 26957 A study of dermoscopic features in relation to vitiligo activity 2021 an international journal on genes, genomes and evolution Amsterdam (DE-627)ELV006417590 volume:536 year:2014 number:2 day:25 month:02 pages:407-415 extent:9 https://doi.org/10.1016/j.gene.2013.11.009 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.93 Dermatologie VZ AR 536 2014 2 25 0225 407-415 9 045F 570 |
spelling |
10.1016/j.gene.2013.11.009 doi GBVA2014012000021.pica (DE-627)ELV017556023 (ELSEVIER)S0378-1119(13)01534-5 DE-627 ger DE-627 rakwb eng 570 570 DE-600 610 VZ 44.93 bkl Zhu, Chenguang verfasserin aut Characterization of a glutamine synthetase gene DvGS2 from Dunaliella viridis and biochemical identification of DvGS2-transgenic Arabidopsis thaliana 2014transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The salt-tolerant green alga Dunaliella has remarkable capability to survive in some extreme environments such as nitrogen starvation, which makes Dunaliella be a proper model for mining novel genes on nitrogen uptake or assimilation. In this study, a glutamine synthetase (GS) gene DvGS2 with amino acid identity of 72% to other homologous GS proteins, was isolated and characterized from Dunaliella viridis. Phylogenetic comparison with other GSs revealed that DvGS2 occupied an independent phylogenetic position. Expressional analysis in D. viridis cells under nitrogen starvation confirmed that DvGS2 increased its mRNA level in 12h. Subcellular localization study and functional analysis in a GS-deficient Escherichia coli mutant proved that DvGS2 was a chloroplastic and functional GS enzyme. In order to investigate the potential application of DvGS2 in higher plants, the transgenic studies of DvGS2 in Arabidopsis thaliana were carried out. Results showed that the transgenic lines expressed the DvGS2 gene and demonstrated obviously enhanced root length (29%), fresh weight (40%–48% at two concentrations of nitrate supplies), stem length (21%), leaf size (39%) and silique number (44%) in contrast with the wild-type Arabidopsis. Furthermore, the transgenic lines had higher total nitrogen content (35%–43%), total GS activity (39%–45%) and soluble protein concentration (23%–24%) than the wild type. These results indicated that the overexpression of DvGS2 in A. thaliana resulted in higher biomass and the improvement of the host's nitrogen use efficiency. The salt-tolerant green alga Dunaliella has remarkable capability to survive in some extreme environments such as nitrogen starvation, which makes Dunaliella be a proper model for mining novel genes on nitrogen uptake or assimilation. In this study, a glutamine synthetase (GS) gene DvGS2 with amino acid identity of 72% to other homologous GS proteins, was isolated and characterized from Dunaliella viridis. Phylogenetic comparison with other GSs revealed that DvGS2 occupied an independent phylogenetic position. Expressional analysis in D. viridis cells under nitrogen starvation confirmed that DvGS2 increased its mRNA level in 12h. Subcellular localization study and functional analysis in a GS-deficient Escherichia coli mutant proved that DvGS2 was a chloroplastic and functional GS enzyme. In order to investigate the potential application of DvGS2 in higher plants, the transgenic studies of DvGS2 in Arabidopsis thaliana were carried out. Results showed that the transgenic lines expressed the DvGS2 gene and demonstrated obviously enhanced root length (29%), fresh weight (40%–48% at two concentrations of nitrate supplies), stem length (21%), leaf size (39%) and silique number (44%) in contrast with the wild-type Arabidopsis. Furthermore, the transgenic lines had higher total nitrogen content (35%–43%), total GS activity (39%–45%) and soluble protein concentration (23%–24%) than the wild type. These results indicated that the overexpression of DvGS2 in A. thaliana resulted in higher biomass and the improvement of the host's nitrogen use efficiency. Fan, Qianlan oth Wang, Wei oth Shen, Chunlei oth Meng, Xiangzong oth Tang, Yuanping oth Mei, Bing oth Xu, Zhengkai oth Song, Rentao oth Enthalten in Elsevier Lee, Jae-Ho ELSEVIER 26957 A study of dermoscopic features in relation to vitiligo activity 2021 an international journal on genes, genomes and evolution Amsterdam (DE-627)ELV006417590 volume:536 year:2014 number:2 day:25 month:02 pages:407-415 extent:9 https://doi.org/10.1016/j.gene.2013.11.009 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.93 Dermatologie VZ AR 536 2014 2 25 0225 407-415 9 045F 570 |
allfields_unstemmed |
10.1016/j.gene.2013.11.009 doi GBVA2014012000021.pica (DE-627)ELV017556023 (ELSEVIER)S0378-1119(13)01534-5 DE-627 ger DE-627 rakwb eng 570 570 DE-600 610 VZ 44.93 bkl Zhu, Chenguang verfasserin aut Characterization of a glutamine synthetase gene DvGS2 from Dunaliella viridis and biochemical identification of DvGS2-transgenic Arabidopsis thaliana 2014transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The salt-tolerant green alga Dunaliella has remarkable capability to survive in some extreme environments such as nitrogen starvation, which makes Dunaliella be a proper model for mining novel genes on nitrogen uptake or assimilation. In this study, a glutamine synthetase (GS) gene DvGS2 with amino acid identity of 72% to other homologous GS proteins, was isolated and characterized from Dunaliella viridis. Phylogenetic comparison with other GSs revealed that DvGS2 occupied an independent phylogenetic position. Expressional analysis in D. viridis cells under nitrogen starvation confirmed that DvGS2 increased its mRNA level in 12h. Subcellular localization study and functional analysis in a GS-deficient Escherichia coli mutant proved that DvGS2 was a chloroplastic and functional GS enzyme. In order to investigate the potential application of DvGS2 in higher plants, the transgenic studies of DvGS2 in Arabidopsis thaliana were carried out. Results showed that the transgenic lines expressed the DvGS2 gene and demonstrated obviously enhanced root length (29%), fresh weight (40%–48% at two concentrations of nitrate supplies), stem length (21%), leaf size (39%) and silique number (44%) in contrast with the wild-type Arabidopsis. Furthermore, the transgenic lines had higher total nitrogen content (35%–43%), total GS activity (39%–45%) and soluble protein concentration (23%–24%) than the wild type. These results indicated that the overexpression of DvGS2 in A. thaliana resulted in higher biomass and the improvement of the host's nitrogen use efficiency. The salt-tolerant green alga Dunaliella has remarkable capability to survive in some extreme environments such as nitrogen starvation, which makes Dunaliella be a proper model for mining novel genes on nitrogen uptake or assimilation. In this study, a glutamine synthetase (GS) gene DvGS2 with amino acid identity of 72% to other homologous GS proteins, was isolated and characterized from Dunaliella viridis. Phylogenetic comparison with other GSs revealed that DvGS2 occupied an independent phylogenetic position. Expressional analysis in D. viridis cells under nitrogen starvation confirmed that DvGS2 increased its mRNA level in 12h. Subcellular localization study and functional analysis in a GS-deficient Escherichia coli mutant proved that DvGS2 was a chloroplastic and functional GS enzyme. In order to investigate the potential application of DvGS2 in higher plants, the transgenic studies of DvGS2 in Arabidopsis thaliana were carried out. Results showed that the transgenic lines expressed the DvGS2 gene and demonstrated obviously enhanced root length (29%), fresh weight (40%–48% at two concentrations of nitrate supplies), stem length (21%), leaf size (39%) and silique number (44%) in contrast with the wild-type Arabidopsis. Furthermore, the transgenic lines had higher total nitrogen content (35%–43%), total GS activity (39%–45%) and soluble protein concentration (23%–24%) than the wild type. These results indicated that the overexpression of DvGS2 in A. thaliana resulted in higher biomass and the improvement of the host's nitrogen use efficiency. Fan, Qianlan oth Wang, Wei oth Shen, Chunlei oth Meng, Xiangzong oth Tang, Yuanping oth Mei, Bing oth Xu, Zhengkai oth Song, Rentao oth Enthalten in Elsevier Lee, Jae-Ho ELSEVIER 26957 A study of dermoscopic features in relation to vitiligo activity 2021 an international journal on genes, genomes and evolution Amsterdam (DE-627)ELV006417590 volume:536 year:2014 number:2 day:25 month:02 pages:407-415 extent:9 https://doi.org/10.1016/j.gene.2013.11.009 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.93 Dermatologie VZ AR 536 2014 2 25 0225 407-415 9 045F 570 |
allfieldsGer |
10.1016/j.gene.2013.11.009 doi GBVA2014012000021.pica (DE-627)ELV017556023 (ELSEVIER)S0378-1119(13)01534-5 DE-627 ger DE-627 rakwb eng 570 570 DE-600 610 VZ 44.93 bkl Zhu, Chenguang verfasserin aut Characterization of a glutamine synthetase gene DvGS2 from Dunaliella viridis and biochemical identification of DvGS2-transgenic Arabidopsis thaliana 2014transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The salt-tolerant green alga Dunaliella has remarkable capability to survive in some extreme environments such as nitrogen starvation, which makes Dunaliella be a proper model for mining novel genes on nitrogen uptake or assimilation. In this study, a glutamine synthetase (GS) gene DvGS2 with amino acid identity of 72% to other homologous GS proteins, was isolated and characterized from Dunaliella viridis. Phylogenetic comparison with other GSs revealed that DvGS2 occupied an independent phylogenetic position. Expressional analysis in D. viridis cells under nitrogen starvation confirmed that DvGS2 increased its mRNA level in 12h. Subcellular localization study and functional analysis in a GS-deficient Escherichia coli mutant proved that DvGS2 was a chloroplastic and functional GS enzyme. In order to investigate the potential application of DvGS2 in higher plants, the transgenic studies of DvGS2 in Arabidopsis thaliana were carried out. Results showed that the transgenic lines expressed the DvGS2 gene and demonstrated obviously enhanced root length (29%), fresh weight (40%–48% at two concentrations of nitrate supplies), stem length (21%), leaf size (39%) and silique number (44%) in contrast with the wild-type Arabidopsis. Furthermore, the transgenic lines had higher total nitrogen content (35%–43%), total GS activity (39%–45%) and soluble protein concentration (23%–24%) than the wild type. These results indicated that the overexpression of DvGS2 in A. thaliana resulted in higher biomass and the improvement of the host's nitrogen use efficiency. The salt-tolerant green alga Dunaliella has remarkable capability to survive in some extreme environments such as nitrogen starvation, which makes Dunaliella be a proper model for mining novel genes on nitrogen uptake or assimilation. In this study, a glutamine synthetase (GS) gene DvGS2 with amino acid identity of 72% to other homologous GS proteins, was isolated and characterized from Dunaliella viridis. Phylogenetic comparison with other GSs revealed that DvGS2 occupied an independent phylogenetic position. Expressional analysis in D. viridis cells under nitrogen starvation confirmed that DvGS2 increased its mRNA level in 12h. Subcellular localization study and functional analysis in a GS-deficient Escherichia coli mutant proved that DvGS2 was a chloroplastic and functional GS enzyme. In order to investigate the potential application of DvGS2 in higher plants, the transgenic studies of DvGS2 in Arabidopsis thaliana were carried out. Results showed that the transgenic lines expressed the DvGS2 gene and demonstrated obviously enhanced root length (29%), fresh weight (40%–48% at two concentrations of nitrate supplies), stem length (21%), leaf size (39%) and silique number (44%) in contrast with the wild-type Arabidopsis. Furthermore, the transgenic lines had higher total nitrogen content (35%–43%), total GS activity (39%–45%) and soluble protein concentration (23%–24%) than the wild type. These results indicated that the overexpression of DvGS2 in A. thaliana resulted in higher biomass and the improvement of the host's nitrogen use efficiency. Fan, Qianlan oth Wang, Wei oth Shen, Chunlei oth Meng, Xiangzong oth Tang, Yuanping oth Mei, Bing oth Xu, Zhengkai oth Song, Rentao oth Enthalten in Elsevier Lee, Jae-Ho ELSEVIER 26957 A study of dermoscopic features in relation to vitiligo activity 2021 an international journal on genes, genomes and evolution Amsterdam (DE-627)ELV006417590 volume:536 year:2014 number:2 day:25 month:02 pages:407-415 extent:9 https://doi.org/10.1016/j.gene.2013.11.009 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.93 Dermatologie VZ AR 536 2014 2 25 0225 407-415 9 045F 570 |
allfieldsSound |
10.1016/j.gene.2013.11.009 doi GBVA2014012000021.pica (DE-627)ELV017556023 (ELSEVIER)S0378-1119(13)01534-5 DE-627 ger DE-627 rakwb eng 570 570 DE-600 610 VZ 44.93 bkl Zhu, Chenguang verfasserin aut Characterization of a glutamine synthetase gene DvGS2 from Dunaliella viridis and biochemical identification of DvGS2-transgenic Arabidopsis thaliana 2014transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The salt-tolerant green alga Dunaliella has remarkable capability to survive in some extreme environments such as nitrogen starvation, which makes Dunaliella be a proper model for mining novel genes on nitrogen uptake or assimilation. In this study, a glutamine synthetase (GS) gene DvGS2 with amino acid identity of 72% to other homologous GS proteins, was isolated and characterized from Dunaliella viridis. Phylogenetic comparison with other GSs revealed that DvGS2 occupied an independent phylogenetic position. Expressional analysis in D. viridis cells under nitrogen starvation confirmed that DvGS2 increased its mRNA level in 12h. Subcellular localization study and functional analysis in a GS-deficient Escherichia coli mutant proved that DvGS2 was a chloroplastic and functional GS enzyme. In order to investigate the potential application of DvGS2 in higher plants, the transgenic studies of DvGS2 in Arabidopsis thaliana were carried out. Results showed that the transgenic lines expressed the DvGS2 gene and demonstrated obviously enhanced root length (29%), fresh weight (40%–48% at two concentrations of nitrate supplies), stem length (21%), leaf size (39%) and silique number (44%) in contrast with the wild-type Arabidopsis. Furthermore, the transgenic lines had higher total nitrogen content (35%–43%), total GS activity (39%–45%) and soluble protein concentration (23%–24%) than the wild type. These results indicated that the overexpression of DvGS2 in A. thaliana resulted in higher biomass and the improvement of the host's nitrogen use efficiency. The salt-tolerant green alga Dunaliella has remarkable capability to survive in some extreme environments such as nitrogen starvation, which makes Dunaliella be a proper model for mining novel genes on nitrogen uptake or assimilation. In this study, a glutamine synthetase (GS) gene DvGS2 with amino acid identity of 72% to other homologous GS proteins, was isolated and characterized from Dunaliella viridis. Phylogenetic comparison with other GSs revealed that DvGS2 occupied an independent phylogenetic position. Expressional analysis in D. viridis cells under nitrogen starvation confirmed that DvGS2 increased its mRNA level in 12h. Subcellular localization study and functional analysis in a GS-deficient Escherichia coli mutant proved that DvGS2 was a chloroplastic and functional GS enzyme. In order to investigate the potential application of DvGS2 in higher plants, the transgenic studies of DvGS2 in Arabidopsis thaliana were carried out. Results showed that the transgenic lines expressed the DvGS2 gene and demonstrated obviously enhanced root length (29%), fresh weight (40%–48% at two concentrations of nitrate supplies), stem length (21%), leaf size (39%) and silique number (44%) in contrast with the wild-type Arabidopsis. Furthermore, the transgenic lines had higher total nitrogen content (35%–43%), total GS activity (39%–45%) and soluble protein concentration (23%–24%) than the wild type. These results indicated that the overexpression of DvGS2 in A. thaliana resulted in higher biomass and the improvement of the host's nitrogen use efficiency. Fan, Qianlan oth Wang, Wei oth Shen, Chunlei oth Meng, Xiangzong oth Tang, Yuanping oth Mei, Bing oth Xu, Zhengkai oth Song, Rentao oth Enthalten in Elsevier Lee, Jae-Ho ELSEVIER 26957 A study of dermoscopic features in relation to vitiligo activity 2021 an international journal on genes, genomes and evolution Amsterdam (DE-627)ELV006417590 volume:536 year:2014 number:2 day:25 month:02 pages:407-415 extent:9 https://doi.org/10.1016/j.gene.2013.11.009 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.93 Dermatologie VZ AR 536 2014 2 25 0225 407-415 9 045F 570 |
language |
English |
source |
Enthalten in 26957 A study of dermoscopic features in relation to vitiligo activity Amsterdam volume:536 year:2014 number:2 day:25 month:02 pages:407-415 extent:9 |
sourceStr |
Enthalten in 26957 A study of dermoscopic features in relation to vitiligo activity Amsterdam volume:536 year:2014 number:2 day:25 month:02 pages:407-415 extent:9 |
format_phy_str_mv |
Article |
bklname |
Dermatologie |
institution |
findex.gbv.de |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
26957 A study of dermoscopic features in relation to vitiligo activity |
authorswithroles_txt_mv |
Zhu, Chenguang @@aut@@ Fan, Qianlan @@oth@@ Wang, Wei @@oth@@ Shen, Chunlei @@oth@@ Meng, Xiangzong @@oth@@ Tang, Yuanping @@oth@@ Mei, Bing @@oth@@ Xu, Zhengkai @@oth@@ Song, Rentao @@oth@@ |
publishDateDaySort_date |
2014-01-25T00:00:00Z |
hierarchy_top_id |
ELV006417590 |
dewey-sort |
3570 |
id |
ELV017556023 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV017556023</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625122440.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.gene.2013.11.009</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014012000021.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV017556023</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0378-1119(13)01534-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">570</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.93</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhu, Chenguang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Characterization of a glutamine synthetase gene DvGS2 from Dunaliella viridis and biochemical identification of DvGS2-transgenic Arabidopsis thaliana</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">9</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The salt-tolerant green alga Dunaliella has remarkable capability to survive in some extreme environments such as nitrogen starvation, which makes Dunaliella be a proper model for mining novel genes on nitrogen uptake or assimilation. In this study, a glutamine synthetase (GS) gene DvGS2 with amino acid identity of 72% to other homologous GS proteins, was isolated and characterized from Dunaliella viridis. Phylogenetic comparison with other GSs revealed that DvGS2 occupied an independent phylogenetic position. Expressional analysis in D. viridis cells under nitrogen starvation confirmed that DvGS2 increased its mRNA level in 12h. Subcellular localization study and functional analysis in a GS-deficient Escherichia coli mutant proved that DvGS2 was a chloroplastic and functional GS enzyme. In order to investigate the potential application of DvGS2 in higher plants, the transgenic studies of DvGS2 in Arabidopsis thaliana were carried out. Results showed that the transgenic lines expressed the DvGS2 gene and demonstrated obviously enhanced root length (29%), fresh weight (40%–48% at two concentrations of nitrate supplies), stem length (21%), leaf size (39%) and silique number (44%) in contrast with the wild-type Arabidopsis. Furthermore, the transgenic lines had higher total nitrogen content (35%–43%), total GS activity (39%–45%) and soluble protein concentration (23%–24%) than the wild type. These results indicated that the overexpression of DvGS2 in A. thaliana resulted in higher biomass and the improvement of the host's nitrogen use efficiency.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The salt-tolerant green alga Dunaliella has remarkable capability to survive in some extreme environments such as nitrogen starvation, which makes Dunaliella be a proper model for mining novel genes on nitrogen uptake or assimilation. In this study, a glutamine synthetase (GS) gene DvGS2 with amino acid identity of 72% to other homologous GS proteins, was isolated and characterized from Dunaliella viridis. Phylogenetic comparison with other GSs revealed that DvGS2 occupied an independent phylogenetic position. Expressional analysis in D. viridis cells under nitrogen starvation confirmed that DvGS2 increased its mRNA level in 12h. Subcellular localization study and functional analysis in a GS-deficient Escherichia coli mutant proved that DvGS2 was a chloroplastic and functional GS enzyme. In order to investigate the potential application of DvGS2 in higher plants, the transgenic studies of DvGS2 in Arabidopsis thaliana were carried out. Results showed that the transgenic lines expressed the DvGS2 gene and demonstrated obviously enhanced root length (29%), fresh weight (40%–48% at two concentrations of nitrate supplies), stem length (21%), leaf size (39%) and silique number (44%) in contrast with the wild-type Arabidopsis. Furthermore, the transgenic lines had higher total nitrogen content (35%–43%), total GS activity (39%–45%) and soluble protein concentration (23%–24%) than the wild type. These results indicated that the overexpression of DvGS2 in A. thaliana resulted in higher biomass and the improvement of the host's nitrogen use efficiency.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fan, Qianlan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Wei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shen, Chunlei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meng, Xiangzong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, Yuanping</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mei, Bing</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Zhengkai</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Song, Rentao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Lee, Jae-Ho ELSEVIER</subfield><subfield code="t">26957 A study of dermoscopic features in relation to vitiligo activity</subfield><subfield code="d">2021</subfield><subfield code="d">an international journal on genes, genomes and evolution</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV006417590</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:536</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:2</subfield><subfield code="g">day:25</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:407-415</subfield><subfield code="g">extent:9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.gene.2013.11.009</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.93</subfield><subfield code="j">Dermatologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">536</subfield><subfield code="j">2014</subfield><subfield code="e">2</subfield><subfield code="b">25</subfield><subfield code="c">0225</subfield><subfield code="h">407-415</subfield><subfield code="g">9</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">570</subfield></datafield></record></collection>
|
author |
Zhu, Chenguang |
spellingShingle |
Zhu, Chenguang ddc 570 ddc 610 bkl 44.93 Characterization of a glutamine synthetase gene DvGS2 from Dunaliella viridis and biochemical identification of DvGS2-transgenic Arabidopsis thaliana |
authorStr |
Zhu, Chenguang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV006417590 |
format |
electronic Article |
dewey-ones |
570 - Life sciences; biology 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
570 570 DE-600 610 VZ 44.93 bkl Characterization of a glutamine synthetase gene DvGS2 from Dunaliella viridis and biochemical identification of DvGS2-transgenic Arabidopsis thaliana |
topic |
ddc 570 ddc 610 bkl 44.93 |
topic_unstemmed |
ddc 570 ddc 610 bkl 44.93 |
topic_browse |
ddc 570 ddc 610 bkl 44.93 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
q f qf w w ww c s cs x m xm y t yt b m bm z x zx r s rs |
hierarchy_parent_title |
26957 A study of dermoscopic features in relation to vitiligo activity |
hierarchy_parent_id |
ELV006417590 |
dewey-tens |
570 - Life sciences; biology 610 - Medicine & health |
hierarchy_top_title |
26957 A study of dermoscopic features in relation to vitiligo activity |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV006417590 |
title |
Characterization of a glutamine synthetase gene DvGS2 from Dunaliella viridis and biochemical identification of DvGS2-transgenic Arabidopsis thaliana |
ctrlnum |
(DE-627)ELV017556023 (ELSEVIER)S0378-1119(13)01534-5 |
title_full |
Characterization of a glutamine synthetase gene DvGS2 from Dunaliella viridis and biochemical identification of DvGS2-transgenic Arabidopsis thaliana |
author_sort |
Zhu, Chenguang |
journal |
26957 A study of dermoscopic features in relation to vitiligo activity |
journalStr |
26957 A study of dermoscopic features in relation to vitiligo activity |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
zzz |
container_start_page |
407 |
author_browse |
Zhu, Chenguang |
container_volume |
536 |
physical |
9 |
class |
570 570 DE-600 610 VZ 44.93 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zhu, Chenguang |
doi_str_mv |
10.1016/j.gene.2013.11.009 |
dewey-full |
570 610 |
title_sort |
characterization of a glutamine synthetase gene dvgs2 from dunaliella viridis and biochemical identification of dvgs2-transgenic arabidopsis thaliana |
title_auth |
Characterization of a glutamine synthetase gene DvGS2 from Dunaliella viridis and biochemical identification of DvGS2-transgenic Arabidopsis thaliana |
abstract |
The salt-tolerant green alga Dunaliella has remarkable capability to survive in some extreme environments such as nitrogen starvation, which makes Dunaliella be a proper model for mining novel genes on nitrogen uptake or assimilation. In this study, a glutamine synthetase (GS) gene DvGS2 with amino acid identity of 72% to other homologous GS proteins, was isolated and characterized from Dunaliella viridis. Phylogenetic comparison with other GSs revealed that DvGS2 occupied an independent phylogenetic position. Expressional analysis in D. viridis cells under nitrogen starvation confirmed that DvGS2 increased its mRNA level in 12h. Subcellular localization study and functional analysis in a GS-deficient Escherichia coli mutant proved that DvGS2 was a chloroplastic and functional GS enzyme. In order to investigate the potential application of DvGS2 in higher plants, the transgenic studies of DvGS2 in Arabidopsis thaliana were carried out. Results showed that the transgenic lines expressed the DvGS2 gene and demonstrated obviously enhanced root length (29%), fresh weight (40%–48% at two concentrations of nitrate supplies), stem length (21%), leaf size (39%) and silique number (44%) in contrast with the wild-type Arabidopsis. Furthermore, the transgenic lines had higher total nitrogen content (35%–43%), total GS activity (39%–45%) and soluble protein concentration (23%–24%) than the wild type. These results indicated that the overexpression of DvGS2 in A. thaliana resulted in higher biomass and the improvement of the host's nitrogen use efficiency. |
abstractGer |
The salt-tolerant green alga Dunaliella has remarkable capability to survive in some extreme environments such as nitrogen starvation, which makes Dunaliella be a proper model for mining novel genes on nitrogen uptake or assimilation. In this study, a glutamine synthetase (GS) gene DvGS2 with amino acid identity of 72% to other homologous GS proteins, was isolated and characterized from Dunaliella viridis. Phylogenetic comparison with other GSs revealed that DvGS2 occupied an independent phylogenetic position. Expressional analysis in D. viridis cells under nitrogen starvation confirmed that DvGS2 increased its mRNA level in 12h. Subcellular localization study and functional analysis in a GS-deficient Escherichia coli mutant proved that DvGS2 was a chloroplastic and functional GS enzyme. In order to investigate the potential application of DvGS2 in higher plants, the transgenic studies of DvGS2 in Arabidopsis thaliana were carried out. Results showed that the transgenic lines expressed the DvGS2 gene and demonstrated obviously enhanced root length (29%), fresh weight (40%–48% at two concentrations of nitrate supplies), stem length (21%), leaf size (39%) and silique number (44%) in contrast with the wild-type Arabidopsis. Furthermore, the transgenic lines had higher total nitrogen content (35%–43%), total GS activity (39%–45%) and soluble protein concentration (23%–24%) than the wild type. These results indicated that the overexpression of DvGS2 in A. thaliana resulted in higher biomass and the improvement of the host's nitrogen use efficiency. |
abstract_unstemmed |
The salt-tolerant green alga Dunaliella has remarkable capability to survive in some extreme environments such as nitrogen starvation, which makes Dunaliella be a proper model for mining novel genes on nitrogen uptake or assimilation. In this study, a glutamine synthetase (GS) gene DvGS2 with amino acid identity of 72% to other homologous GS proteins, was isolated and characterized from Dunaliella viridis. Phylogenetic comparison with other GSs revealed that DvGS2 occupied an independent phylogenetic position. Expressional analysis in D. viridis cells under nitrogen starvation confirmed that DvGS2 increased its mRNA level in 12h. Subcellular localization study and functional analysis in a GS-deficient Escherichia coli mutant proved that DvGS2 was a chloroplastic and functional GS enzyme. In order to investigate the potential application of DvGS2 in higher plants, the transgenic studies of DvGS2 in Arabidopsis thaliana were carried out. Results showed that the transgenic lines expressed the DvGS2 gene and demonstrated obviously enhanced root length (29%), fresh weight (40%–48% at two concentrations of nitrate supplies), stem length (21%), leaf size (39%) and silique number (44%) in contrast with the wild-type Arabidopsis. Furthermore, the transgenic lines had higher total nitrogen content (35%–43%), total GS activity (39%–45%) and soluble protein concentration (23%–24%) than the wild type. These results indicated that the overexpression of DvGS2 in A. thaliana resulted in higher biomass and the improvement of the host's nitrogen use efficiency. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
container_issue |
2 |
title_short |
Characterization of a glutamine synthetase gene DvGS2 from Dunaliella viridis and biochemical identification of DvGS2-transgenic Arabidopsis thaliana |
url |
https://doi.org/10.1016/j.gene.2013.11.009 |
remote_bool |
true |
author2 |
Fan, Qianlan Wang, Wei Shen, Chunlei Meng, Xiangzong Tang, Yuanping Mei, Bing Xu, Zhengkai Song, Rentao |
author2Str |
Fan, Qianlan Wang, Wei Shen, Chunlei Meng, Xiangzong Tang, Yuanping Mei, Bing Xu, Zhengkai Song, Rentao |
ppnlink |
ELV006417590 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth oth |
doi_str |
10.1016/j.gene.2013.11.009 |
up_date |
2024-07-06T16:37:17.509Z |
_version_ |
1803848345204031488 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV017556023</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625122440.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.gene.2013.11.009</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014012000021.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV017556023</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0378-1119(13)01534-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">570</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.93</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhu, Chenguang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Characterization of a glutamine synthetase gene DvGS2 from Dunaliella viridis and biochemical identification of DvGS2-transgenic Arabidopsis thaliana</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">9</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The salt-tolerant green alga Dunaliella has remarkable capability to survive in some extreme environments such as nitrogen starvation, which makes Dunaliella be a proper model for mining novel genes on nitrogen uptake or assimilation. In this study, a glutamine synthetase (GS) gene DvGS2 with amino acid identity of 72% to other homologous GS proteins, was isolated and characterized from Dunaliella viridis. Phylogenetic comparison with other GSs revealed that DvGS2 occupied an independent phylogenetic position. Expressional analysis in D. viridis cells under nitrogen starvation confirmed that DvGS2 increased its mRNA level in 12h. Subcellular localization study and functional analysis in a GS-deficient Escherichia coli mutant proved that DvGS2 was a chloroplastic and functional GS enzyme. In order to investigate the potential application of DvGS2 in higher plants, the transgenic studies of DvGS2 in Arabidopsis thaliana were carried out. Results showed that the transgenic lines expressed the DvGS2 gene and demonstrated obviously enhanced root length (29%), fresh weight (40%–48% at two concentrations of nitrate supplies), stem length (21%), leaf size (39%) and silique number (44%) in contrast with the wild-type Arabidopsis. Furthermore, the transgenic lines had higher total nitrogen content (35%–43%), total GS activity (39%–45%) and soluble protein concentration (23%–24%) than the wild type. These results indicated that the overexpression of DvGS2 in A. thaliana resulted in higher biomass and the improvement of the host's nitrogen use efficiency.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The salt-tolerant green alga Dunaliella has remarkable capability to survive in some extreme environments such as nitrogen starvation, which makes Dunaliella be a proper model for mining novel genes on nitrogen uptake or assimilation. In this study, a glutamine synthetase (GS) gene DvGS2 with amino acid identity of 72% to other homologous GS proteins, was isolated and characterized from Dunaliella viridis. Phylogenetic comparison with other GSs revealed that DvGS2 occupied an independent phylogenetic position. Expressional analysis in D. viridis cells under nitrogen starvation confirmed that DvGS2 increased its mRNA level in 12h. Subcellular localization study and functional analysis in a GS-deficient Escherichia coli mutant proved that DvGS2 was a chloroplastic and functional GS enzyme. In order to investigate the potential application of DvGS2 in higher plants, the transgenic studies of DvGS2 in Arabidopsis thaliana were carried out. Results showed that the transgenic lines expressed the DvGS2 gene and demonstrated obviously enhanced root length (29%), fresh weight (40%–48% at two concentrations of nitrate supplies), stem length (21%), leaf size (39%) and silique number (44%) in contrast with the wild-type Arabidopsis. Furthermore, the transgenic lines had higher total nitrogen content (35%–43%), total GS activity (39%–45%) and soluble protein concentration (23%–24%) than the wild type. These results indicated that the overexpression of DvGS2 in A. thaliana resulted in higher biomass and the improvement of the host's nitrogen use efficiency.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fan, Qianlan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Wei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shen, Chunlei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meng, Xiangzong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, Yuanping</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mei, Bing</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Zhengkai</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Song, Rentao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Lee, Jae-Ho ELSEVIER</subfield><subfield code="t">26957 A study of dermoscopic features in relation to vitiligo activity</subfield><subfield code="d">2021</subfield><subfield code="d">an international journal on genes, genomes and evolution</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV006417590</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:536</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:2</subfield><subfield code="g">day:25</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:407-415</subfield><subfield code="g">extent:9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.gene.2013.11.009</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.93</subfield><subfield code="j">Dermatologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">536</subfield><subfield code="j">2014</subfield><subfield code="e">2</subfield><subfield code="b">25</subfield><subfield code="c">0225</subfield><subfield code="h">407-415</subfield><subfield code="g">9</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">570</subfield></datafield></record></collection>
|
score |
7.401636 |