Total heat recovery of gas boiler by absorption heat pump and direct-contact heat exchanger
This paper presents a new technology which combines the absorption heat pump and the direct-contact heat exchanger. Based on the analysis of natural gas features and thermal efficiency of the gas boilers, it analyzes existing and new techniques for heat recovery, focusing upon removing heat from the...
Ausführliche Beschreibung
Autor*in: |
Zhu, Kan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
6 |
---|
Übergeordnetes Werk: |
Enthalten in: Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics - Radünz, William Corrêa ELSEVIER, 2020, design, processes, equipment, economics, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:71 ; year:2014 ; number:1 ; day:5 ; month:10 ; pages:213-218 ; extent:6 |
Links: |
---|
DOI / URN: |
10.1016/j.applthermaleng.2014.06.047 |
---|
Katalog-ID: |
ELV017912423 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV017912423 | ||
003 | DE-627 | ||
005 | 20230625123026.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180602s2014 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.applthermaleng.2014.06.047 |2 doi | |
028 | 5 | 2 | |a GBVA2014019000008.pica |
035 | |a (DE-627)ELV017912423 | ||
035 | |a (ELSEVIER)S1359-4311(14)00527-4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 690 | |
082 | 0 | 4 | |a 690 |q DE-600 |
082 | 0 | 4 | |a 530 |a 620 |q VZ |
084 | |a 52.56 |2 bkl | ||
100 | 1 | |a Zhu, Kan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Total heat recovery of gas boiler by absorption heat pump and direct-contact heat exchanger |
264 | 1 | |c 2014transfer abstract | |
300 | |a 6 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a This paper presents a new technology which combines the absorption heat pump and the direct-contact heat exchanger. Based on the analysis of natural gas features and thermal efficiency of the gas boilers, it analyzes existing and new techniques for heat recovery, focusing upon removing heat from the flue gas to a point where it can be below the dew point as significant to realizing the total heat recovery for the gas boiler. Through field test and experimental analysis of an actual case in a district heating system operating at various system load, this paper strives to identify challenges related to high return water temperature, achieving a low-temperature cold source, and enhancing the heat transfer effect; while observing if the system performance is satisfactory, and whether the system can achieve very stable performance under different working conditions and realize the total design heat capacity improvement of 12%. Data will be examined for boiler load and its influences on the condensing rate with suggestions for further improvements. | ||
520 | |a This paper presents a new technology which combines the absorption heat pump and the direct-contact heat exchanger. Based on the analysis of natural gas features and thermal efficiency of the gas boilers, it analyzes existing and new techniques for heat recovery, focusing upon removing heat from the flue gas to a point where it can be below the dew point as significant to realizing the total heat recovery for the gas boiler. Through field test and experimental analysis of an actual case in a district heating system operating at various system load, this paper strives to identify challenges related to high return water temperature, achieving a low-temperature cold source, and enhancing the heat transfer effect; while observing if the system performance is satisfactory, and whether the system can achieve very stable performance under different working conditions and realize the total design heat capacity improvement of 12%. Data will be examined for boiler load and its influences on the condensing rate with suggestions for further improvements. | ||
650 | 7 | |a Absorption heat pump |2 Elsevier | |
650 | 7 | |a Gas boiler |2 Elsevier | |
650 | 7 | |a Condensing heat |2 Elsevier | |
650 | 7 | |a Direct-contact heat exchanger |2 Elsevier | |
650 | 7 | |a Heat recovery |2 Elsevier | |
700 | 1 | |a Xia, Jianjun |4 oth | |
700 | 1 | |a Xie, Xiaoyun |4 oth | |
700 | 1 | |a Jiang, Yi |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Radünz, William Corrêa ELSEVIER |t Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics |d 2020 |d design, processes, equipment, economics |g Amsterdam [u.a.] |w (DE-627)ELV003905551 |
773 | 1 | 8 | |g volume:71 |g year:2014 |g number:1 |g day:5 |g month:10 |g pages:213-218 |g extent:6 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.applthermaleng.2014.06.047 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 52.56 |j Regenerative Energieformen |j alternative Energieformen |q VZ |
951 | |a AR | ||
952 | |d 71 |j 2014 |e 1 |b 5 |c 1005 |h 213-218 |g 6 | ||
953 | |2 045F |a 690 |
author_variant |
k z kz |
---|---|
matchkey_str |
zhukanxiajianjunxiexiaoyunjiangyi:2014----:oaharcvrogsolrybopinetupndrc |
hierarchy_sort_str |
2014transfer abstract |
bklnumber |
52.56 |
publishDate |
2014 |
allfields |
10.1016/j.applthermaleng.2014.06.047 doi GBVA2014019000008.pica (DE-627)ELV017912423 (ELSEVIER)S1359-4311(14)00527-4 DE-627 ger DE-627 rakwb eng 690 690 DE-600 530 620 VZ 52.56 bkl Zhu, Kan verfasserin aut Total heat recovery of gas boiler by absorption heat pump and direct-contact heat exchanger 2014transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This paper presents a new technology which combines the absorption heat pump and the direct-contact heat exchanger. Based on the analysis of natural gas features and thermal efficiency of the gas boilers, it analyzes existing and new techniques for heat recovery, focusing upon removing heat from the flue gas to a point where it can be below the dew point as significant to realizing the total heat recovery for the gas boiler. Through field test and experimental analysis of an actual case in a district heating system operating at various system load, this paper strives to identify challenges related to high return water temperature, achieving a low-temperature cold source, and enhancing the heat transfer effect; while observing if the system performance is satisfactory, and whether the system can achieve very stable performance under different working conditions and realize the total design heat capacity improvement of 12%. Data will be examined for boiler load and its influences on the condensing rate with suggestions for further improvements. This paper presents a new technology which combines the absorption heat pump and the direct-contact heat exchanger. Based on the analysis of natural gas features and thermal efficiency of the gas boilers, it analyzes existing and new techniques for heat recovery, focusing upon removing heat from the flue gas to a point where it can be below the dew point as significant to realizing the total heat recovery for the gas boiler. Through field test and experimental analysis of an actual case in a district heating system operating at various system load, this paper strives to identify challenges related to high return water temperature, achieving a low-temperature cold source, and enhancing the heat transfer effect; while observing if the system performance is satisfactory, and whether the system can achieve very stable performance under different working conditions and realize the total design heat capacity improvement of 12%. Data will be examined for boiler load and its influences on the condensing rate with suggestions for further improvements. Absorption heat pump Elsevier Gas boiler Elsevier Condensing heat Elsevier Direct-contact heat exchanger Elsevier Heat recovery Elsevier Xia, Jianjun oth Xie, Xiaoyun oth Jiang, Yi oth Enthalten in Elsevier Science Radünz, William Corrêa ELSEVIER Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics 2020 design, processes, equipment, economics Amsterdam [u.a.] (DE-627)ELV003905551 volume:71 year:2014 number:1 day:5 month:10 pages:213-218 extent:6 https://doi.org/10.1016/j.applthermaleng.2014.06.047 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.56 Regenerative Energieformen alternative Energieformen VZ AR 71 2014 1 5 1005 213-218 6 045F 690 |
spelling |
10.1016/j.applthermaleng.2014.06.047 doi GBVA2014019000008.pica (DE-627)ELV017912423 (ELSEVIER)S1359-4311(14)00527-4 DE-627 ger DE-627 rakwb eng 690 690 DE-600 530 620 VZ 52.56 bkl Zhu, Kan verfasserin aut Total heat recovery of gas boiler by absorption heat pump and direct-contact heat exchanger 2014transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This paper presents a new technology which combines the absorption heat pump and the direct-contact heat exchanger. Based on the analysis of natural gas features and thermal efficiency of the gas boilers, it analyzes existing and new techniques for heat recovery, focusing upon removing heat from the flue gas to a point where it can be below the dew point as significant to realizing the total heat recovery for the gas boiler. Through field test and experimental analysis of an actual case in a district heating system operating at various system load, this paper strives to identify challenges related to high return water temperature, achieving a low-temperature cold source, and enhancing the heat transfer effect; while observing if the system performance is satisfactory, and whether the system can achieve very stable performance under different working conditions and realize the total design heat capacity improvement of 12%. Data will be examined for boiler load and its influences on the condensing rate with suggestions for further improvements. This paper presents a new technology which combines the absorption heat pump and the direct-contact heat exchanger. Based on the analysis of natural gas features and thermal efficiency of the gas boilers, it analyzes existing and new techniques for heat recovery, focusing upon removing heat from the flue gas to a point where it can be below the dew point as significant to realizing the total heat recovery for the gas boiler. Through field test and experimental analysis of an actual case in a district heating system operating at various system load, this paper strives to identify challenges related to high return water temperature, achieving a low-temperature cold source, and enhancing the heat transfer effect; while observing if the system performance is satisfactory, and whether the system can achieve very stable performance under different working conditions and realize the total design heat capacity improvement of 12%. Data will be examined for boiler load and its influences on the condensing rate with suggestions for further improvements. Absorption heat pump Elsevier Gas boiler Elsevier Condensing heat Elsevier Direct-contact heat exchanger Elsevier Heat recovery Elsevier Xia, Jianjun oth Xie, Xiaoyun oth Jiang, Yi oth Enthalten in Elsevier Science Radünz, William Corrêa ELSEVIER Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics 2020 design, processes, equipment, economics Amsterdam [u.a.] (DE-627)ELV003905551 volume:71 year:2014 number:1 day:5 month:10 pages:213-218 extent:6 https://doi.org/10.1016/j.applthermaleng.2014.06.047 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.56 Regenerative Energieformen alternative Energieformen VZ AR 71 2014 1 5 1005 213-218 6 045F 690 |
allfields_unstemmed |
10.1016/j.applthermaleng.2014.06.047 doi GBVA2014019000008.pica (DE-627)ELV017912423 (ELSEVIER)S1359-4311(14)00527-4 DE-627 ger DE-627 rakwb eng 690 690 DE-600 530 620 VZ 52.56 bkl Zhu, Kan verfasserin aut Total heat recovery of gas boiler by absorption heat pump and direct-contact heat exchanger 2014transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This paper presents a new technology which combines the absorption heat pump and the direct-contact heat exchanger. Based on the analysis of natural gas features and thermal efficiency of the gas boilers, it analyzes existing and new techniques for heat recovery, focusing upon removing heat from the flue gas to a point where it can be below the dew point as significant to realizing the total heat recovery for the gas boiler. Through field test and experimental analysis of an actual case in a district heating system operating at various system load, this paper strives to identify challenges related to high return water temperature, achieving a low-temperature cold source, and enhancing the heat transfer effect; while observing if the system performance is satisfactory, and whether the system can achieve very stable performance under different working conditions and realize the total design heat capacity improvement of 12%. Data will be examined for boiler load and its influences on the condensing rate with suggestions for further improvements. This paper presents a new technology which combines the absorption heat pump and the direct-contact heat exchanger. Based on the analysis of natural gas features and thermal efficiency of the gas boilers, it analyzes existing and new techniques for heat recovery, focusing upon removing heat from the flue gas to a point where it can be below the dew point as significant to realizing the total heat recovery for the gas boiler. Through field test and experimental analysis of an actual case in a district heating system operating at various system load, this paper strives to identify challenges related to high return water temperature, achieving a low-temperature cold source, and enhancing the heat transfer effect; while observing if the system performance is satisfactory, and whether the system can achieve very stable performance under different working conditions and realize the total design heat capacity improvement of 12%. Data will be examined for boiler load and its influences on the condensing rate with suggestions for further improvements. Absorption heat pump Elsevier Gas boiler Elsevier Condensing heat Elsevier Direct-contact heat exchanger Elsevier Heat recovery Elsevier Xia, Jianjun oth Xie, Xiaoyun oth Jiang, Yi oth Enthalten in Elsevier Science Radünz, William Corrêa ELSEVIER Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics 2020 design, processes, equipment, economics Amsterdam [u.a.] (DE-627)ELV003905551 volume:71 year:2014 number:1 day:5 month:10 pages:213-218 extent:6 https://doi.org/10.1016/j.applthermaleng.2014.06.047 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.56 Regenerative Energieformen alternative Energieformen VZ AR 71 2014 1 5 1005 213-218 6 045F 690 |
allfieldsGer |
10.1016/j.applthermaleng.2014.06.047 doi GBVA2014019000008.pica (DE-627)ELV017912423 (ELSEVIER)S1359-4311(14)00527-4 DE-627 ger DE-627 rakwb eng 690 690 DE-600 530 620 VZ 52.56 bkl Zhu, Kan verfasserin aut Total heat recovery of gas boiler by absorption heat pump and direct-contact heat exchanger 2014transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This paper presents a new technology which combines the absorption heat pump and the direct-contact heat exchanger. Based on the analysis of natural gas features and thermal efficiency of the gas boilers, it analyzes existing and new techniques for heat recovery, focusing upon removing heat from the flue gas to a point where it can be below the dew point as significant to realizing the total heat recovery for the gas boiler. Through field test and experimental analysis of an actual case in a district heating system operating at various system load, this paper strives to identify challenges related to high return water temperature, achieving a low-temperature cold source, and enhancing the heat transfer effect; while observing if the system performance is satisfactory, and whether the system can achieve very stable performance under different working conditions and realize the total design heat capacity improvement of 12%. Data will be examined for boiler load and its influences on the condensing rate with suggestions for further improvements. This paper presents a new technology which combines the absorption heat pump and the direct-contact heat exchanger. Based on the analysis of natural gas features and thermal efficiency of the gas boilers, it analyzes existing and new techniques for heat recovery, focusing upon removing heat from the flue gas to a point where it can be below the dew point as significant to realizing the total heat recovery for the gas boiler. Through field test and experimental analysis of an actual case in a district heating system operating at various system load, this paper strives to identify challenges related to high return water temperature, achieving a low-temperature cold source, and enhancing the heat transfer effect; while observing if the system performance is satisfactory, and whether the system can achieve very stable performance under different working conditions and realize the total design heat capacity improvement of 12%. Data will be examined for boiler load and its influences on the condensing rate with suggestions for further improvements. Absorption heat pump Elsevier Gas boiler Elsevier Condensing heat Elsevier Direct-contact heat exchanger Elsevier Heat recovery Elsevier Xia, Jianjun oth Xie, Xiaoyun oth Jiang, Yi oth Enthalten in Elsevier Science Radünz, William Corrêa ELSEVIER Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics 2020 design, processes, equipment, economics Amsterdam [u.a.] (DE-627)ELV003905551 volume:71 year:2014 number:1 day:5 month:10 pages:213-218 extent:6 https://doi.org/10.1016/j.applthermaleng.2014.06.047 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.56 Regenerative Energieformen alternative Energieformen VZ AR 71 2014 1 5 1005 213-218 6 045F 690 |
allfieldsSound |
10.1016/j.applthermaleng.2014.06.047 doi GBVA2014019000008.pica (DE-627)ELV017912423 (ELSEVIER)S1359-4311(14)00527-4 DE-627 ger DE-627 rakwb eng 690 690 DE-600 530 620 VZ 52.56 bkl Zhu, Kan verfasserin aut Total heat recovery of gas boiler by absorption heat pump and direct-contact heat exchanger 2014transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This paper presents a new technology which combines the absorption heat pump and the direct-contact heat exchanger. Based on the analysis of natural gas features and thermal efficiency of the gas boilers, it analyzes existing and new techniques for heat recovery, focusing upon removing heat from the flue gas to a point where it can be below the dew point as significant to realizing the total heat recovery for the gas boiler. Through field test and experimental analysis of an actual case in a district heating system operating at various system load, this paper strives to identify challenges related to high return water temperature, achieving a low-temperature cold source, and enhancing the heat transfer effect; while observing if the system performance is satisfactory, and whether the system can achieve very stable performance under different working conditions and realize the total design heat capacity improvement of 12%. Data will be examined for boiler load and its influences on the condensing rate with suggestions for further improvements. This paper presents a new technology which combines the absorption heat pump and the direct-contact heat exchanger. Based on the analysis of natural gas features and thermal efficiency of the gas boilers, it analyzes existing and new techniques for heat recovery, focusing upon removing heat from the flue gas to a point where it can be below the dew point as significant to realizing the total heat recovery for the gas boiler. Through field test and experimental analysis of an actual case in a district heating system operating at various system load, this paper strives to identify challenges related to high return water temperature, achieving a low-temperature cold source, and enhancing the heat transfer effect; while observing if the system performance is satisfactory, and whether the system can achieve very stable performance under different working conditions and realize the total design heat capacity improvement of 12%. Data will be examined for boiler load and its influences on the condensing rate with suggestions for further improvements. Absorption heat pump Elsevier Gas boiler Elsevier Condensing heat Elsevier Direct-contact heat exchanger Elsevier Heat recovery Elsevier Xia, Jianjun oth Xie, Xiaoyun oth Jiang, Yi oth Enthalten in Elsevier Science Radünz, William Corrêa ELSEVIER Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics 2020 design, processes, equipment, economics Amsterdam [u.a.] (DE-627)ELV003905551 volume:71 year:2014 number:1 day:5 month:10 pages:213-218 extent:6 https://doi.org/10.1016/j.applthermaleng.2014.06.047 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.56 Regenerative Energieformen alternative Energieformen VZ AR 71 2014 1 5 1005 213-218 6 045F 690 |
language |
English |
source |
Enthalten in Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics Amsterdam [u.a.] volume:71 year:2014 number:1 day:5 month:10 pages:213-218 extent:6 |
sourceStr |
Enthalten in Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics Amsterdam [u.a.] volume:71 year:2014 number:1 day:5 month:10 pages:213-218 extent:6 |
format_phy_str_mv |
Article |
bklname |
Regenerative Energieformen alternative Energieformen |
institution |
findex.gbv.de |
topic_facet |
Absorption heat pump Gas boiler Condensing heat Direct-contact heat exchanger Heat recovery |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics |
authorswithroles_txt_mv |
Zhu, Kan @@aut@@ Xia, Jianjun @@oth@@ Xie, Xiaoyun @@oth@@ Jiang, Yi @@oth@@ |
publishDateDaySort_date |
2014-01-05T00:00:00Z |
hierarchy_top_id |
ELV003905551 |
dewey-sort |
3690 |
id |
ELV017912423 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV017912423</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625123026.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.applthermaleng.2014.06.047</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014019000008.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV017912423</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1359-4311(14)00527-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">690</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhu, Kan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Total heat recovery of gas boiler by absorption heat pump and direct-contact heat exchanger</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">6</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper presents a new technology which combines the absorption heat pump and the direct-contact heat exchanger. Based on the analysis of natural gas features and thermal efficiency of the gas boilers, it analyzes existing and new techniques for heat recovery, focusing upon removing heat from the flue gas to a point where it can be below the dew point as significant to realizing the total heat recovery for the gas boiler. Through field test and experimental analysis of an actual case in a district heating system operating at various system load, this paper strives to identify challenges related to high return water temperature, achieving a low-temperature cold source, and enhancing the heat transfer effect; while observing if the system performance is satisfactory, and whether the system can achieve very stable performance under different working conditions and realize the total design heat capacity improvement of 12%. Data will be examined for boiler load and its influences on the condensing rate with suggestions for further improvements.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper presents a new technology which combines the absorption heat pump and the direct-contact heat exchanger. Based on the analysis of natural gas features and thermal efficiency of the gas boilers, it analyzes existing and new techniques for heat recovery, focusing upon removing heat from the flue gas to a point where it can be below the dew point as significant to realizing the total heat recovery for the gas boiler. Through field test and experimental analysis of an actual case in a district heating system operating at various system load, this paper strives to identify challenges related to high return water temperature, achieving a low-temperature cold source, and enhancing the heat transfer effect; while observing if the system performance is satisfactory, and whether the system can achieve very stable performance under different working conditions and realize the total design heat capacity improvement of 12%. Data will be examined for boiler load and its influences on the condensing rate with suggestions for further improvements.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Absorption heat pump</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Gas boiler</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Condensing heat</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Direct-contact heat exchanger</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Heat recovery</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xia, Jianjun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xie, Xiaoyun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Yi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Radünz, William Corrêa ELSEVIER</subfield><subfield code="t">Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics</subfield><subfield code="d">2020</subfield><subfield code="d">design, processes, equipment, economics</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV003905551</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:71</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:1</subfield><subfield code="g">day:5</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:213-218</subfield><subfield code="g">extent:6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.applthermaleng.2014.06.047</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">71</subfield><subfield code="j">2014</subfield><subfield code="e">1</subfield><subfield code="b">5</subfield><subfield code="c">1005</subfield><subfield code="h">213-218</subfield><subfield code="g">6</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">690</subfield></datafield></record></collection>
|
author |
Zhu, Kan |
spellingShingle |
Zhu, Kan ddc 690 ddc 530 bkl 52.56 Elsevier Absorption heat pump Elsevier Gas boiler Elsevier Condensing heat Elsevier Direct-contact heat exchanger Elsevier Heat recovery Total heat recovery of gas boiler by absorption heat pump and direct-contact heat exchanger |
authorStr |
Zhu, Kan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV003905551 |
format |
electronic Article |
dewey-ones |
690 - Buildings 530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
690 690 DE-600 530 620 VZ 52.56 bkl Total heat recovery of gas boiler by absorption heat pump and direct-contact heat exchanger Absorption heat pump Elsevier Gas boiler Elsevier Condensing heat Elsevier Direct-contact heat exchanger Elsevier Heat recovery Elsevier |
topic |
ddc 690 ddc 530 bkl 52.56 Elsevier Absorption heat pump Elsevier Gas boiler Elsevier Condensing heat Elsevier Direct-contact heat exchanger Elsevier Heat recovery |
topic_unstemmed |
ddc 690 ddc 530 bkl 52.56 Elsevier Absorption heat pump Elsevier Gas boiler Elsevier Condensing heat Elsevier Direct-contact heat exchanger Elsevier Heat recovery |
topic_browse |
ddc 690 ddc 530 bkl 52.56 Elsevier Absorption heat pump Elsevier Gas boiler Elsevier Condensing heat Elsevier Direct-contact heat exchanger Elsevier Heat recovery |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
j x jx x x xx y j yj |
hierarchy_parent_title |
Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics |
hierarchy_parent_id |
ELV003905551 |
dewey-tens |
690 - Building & construction 530 - Physics 620 - Engineering |
hierarchy_top_title |
Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV003905551 |
title |
Total heat recovery of gas boiler by absorption heat pump and direct-contact heat exchanger |
ctrlnum |
(DE-627)ELV017912423 (ELSEVIER)S1359-4311(14)00527-4 |
title_full |
Total heat recovery of gas boiler by absorption heat pump and direct-contact heat exchanger |
author_sort |
Zhu, Kan |
journal |
Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics |
journalStr |
Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
zzz |
container_start_page |
213 |
author_browse |
Zhu, Kan |
container_volume |
71 |
physical |
6 |
class |
690 690 DE-600 530 620 VZ 52.56 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zhu, Kan |
doi_str_mv |
10.1016/j.applthermaleng.2014.06.047 |
dewey-full |
690 530 620 |
title_sort |
total heat recovery of gas boiler by absorption heat pump and direct-contact heat exchanger |
title_auth |
Total heat recovery of gas boiler by absorption heat pump and direct-contact heat exchanger |
abstract |
This paper presents a new technology which combines the absorption heat pump and the direct-contact heat exchanger. Based on the analysis of natural gas features and thermal efficiency of the gas boilers, it analyzes existing and new techniques for heat recovery, focusing upon removing heat from the flue gas to a point where it can be below the dew point as significant to realizing the total heat recovery for the gas boiler. Through field test and experimental analysis of an actual case in a district heating system operating at various system load, this paper strives to identify challenges related to high return water temperature, achieving a low-temperature cold source, and enhancing the heat transfer effect; while observing if the system performance is satisfactory, and whether the system can achieve very stable performance under different working conditions and realize the total design heat capacity improvement of 12%. Data will be examined for boiler load and its influences on the condensing rate with suggestions for further improvements. |
abstractGer |
This paper presents a new technology which combines the absorption heat pump and the direct-contact heat exchanger. Based on the analysis of natural gas features and thermal efficiency of the gas boilers, it analyzes existing and new techniques for heat recovery, focusing upon removing heat from the flue gas to a point where it can be below the dew point as significant to realizing the total heat recovery for the gas boiler. Through field test and experimental analysis of an actual case in a district heating system operating at various system load, this paper strives to identify challenges related to high return water temperature, achieving a low-temperature cold source, and enhancing the heat transfer effect; while observing if the system performance is satisfactory, and whether the system can achieve very stable performance under different working conditions and realize the total design heat capacity improvement of 12%. Data will be examined for boiler load and its influences on the condensing rate with suggestions for further improvements. |
abstract_unstemmed |
This paper presents a new technology which combines the absorption heat pump and the direct-contact heat exchanger. Based on the analysis of natural gas features and thermal efficiency of the gas boilers, it analyzes existing and new techniques for heat recovery, focusing upon removing heat from the flue gas to a point where it can be below the dew point as significant to realizing the total heat recovery for the gas boiler. Through field test and experimental analysis of an actual case in a district heating system operating at various system load, this paper strives to identify challenges related to high return water temperature, achieving a low-temperature cold source, and enhancing the heat transfer effect; while observing if the system performance is satisfactory, and whether the system can achieve very stable performance under different working conditions and realize the total design heat capacity improvement of 12%. Data will be examined for boiler load and its influences on the condensing rate with suggestions for further improvements. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
container_issue |
1 |
title_short |
Total heat recovery of gas boiler by absorption heat pump and direct-contact heat exchanger |
url |
https://doi.org/10.1016/j.applthermaleng.2014.06.047 |
remote_bool |
true |
author2 |
Xia, Jianjun Xie, Xiaoyun Jiang, Yi |
author2Str |
Xia, Jianjun Xie, Xiaoyun Jiang, Yi |
ppnlink |
ELV003905551 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1016/j.applthermaleng.2014.06.047 |
up_date |
2024-07-06T17:30:01.523Z |
_version_ |
1803851662911078400 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV017912423</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625123026.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.applthermaleng.2014.06.047</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014019000008.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV017912423</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1359-4311(14)00527-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">690</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhu, Kan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Total heat recovery of gas boiler by absorption heat pump and direct-contact heat exchanger</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">6</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper presents a new technology which combines the absorption heat pump and the direct-contact heat exchanger. Based on the analysis of natural gas features and thermal efficiency of the gas boilers, it analyzes existing and new techniques for heat recovery, focusing upon removing heat from the flue gas to a point where it can be below the dew point as significant to realizing the total heat recovery for the gas boiler. Through field test and experimental analysis of an actual case in a district heating system operating at various system load, this paper strives to identify challenges related to high return water temperature, achieving a low-temperature cold source, and enhancing the heat transfer effect; while observing if the system performance is satisfactory, and whether the system can achieve very stable performance under different working conditions and realize the total design heat capacity improvement of 12%. Data will be examined for boiler load and its influences on the condensing rate with suggestions for further improvements.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper presents a new technology which combines the absorption heat pump and the direct-contact heat exchanger. Based on the analysis of natural gas features and thermal efficiency of the gas boilers, it analyzes existing and new techniques for heat recovery, focusing upon removing heat from the flue gas to a point where it can be below the dew point as significant to realizing the total heat recovery for the gas boiler. Through field test and experimental analysis of an actual case in a district heating system operating at various system load, this paper strives to identify challenges related to high return water temperature, achieving a low-temperature cold source, and enhancing the heat transfer effect; while observing if the system performance is satisfactory, and whether the system can achieve very stable performance under different working conditions and realize the total design heat capacity improvement of 12%. Data will be examined for boiler load and its influences on the condensing rate with suggestions for further improvements.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Absorption heat pump</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Gas boiler</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Condensing heat</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Direct-contact heat exchanger</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Heat recovery</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xia, Jianjun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xie, Xiaoyun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Yi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Radünz, William Corrêa ELSEVIER</subfield><subfield code="t">Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics</subfield><subfield code="d">2020</subfield><subfield code="d">design, processes, equipment, economics</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV003905551</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:71</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:1</subfield><subfield code="g">day:5</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:213-218</subfield><subfield code="g">extent:6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.applthermaleng.2014.06.047</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">71</subfield><subfield code="j">2014</subfield><subfield code="e">1</subfield><subfield code="b">5</subfield><subfield code="c">1005</subfield><subfield code="h">213-218</subfield><subfield code="g">6</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">690</subfield></datafield></record></collection>
|
score |
7.4000263 |