Nonautonomous stochastic search for global minimum in continuous optimization
Various iterative stochastic optimization schemes can be represented as discrete-time Markov processes defined by the nonautonomous equation X t + 1 = T t ( X t , Y t ) , where Y t is an independent sequence and T t is a sequence of mappings. This paper presents a general framework for the study of...
Ausführliche Beschreibung
Autor*in: |
Tarłowski, Dawid [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014 |
---|
Schlagwörter: |
---|
Umfang: |
15 |
---|
Übergeordnetes Werk: |
Enthalten in: In silico drug repurposing in COVID-19: A network-based analysis - Sibilio, Pasquale ELSEVIER, 2021, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:412 ; year:2014 ; number:2 ; day:15 ; month:04 ; pages:631-645 ; extent:15 |
Links: |
---|
DOI / URN: |
10.1016/j.jmaa.2013.10.070 |
---|
Katalog-ID: |
ELV018070345 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV018070345 | ||
003 | DE-627 | ||
005 | 20230623141830.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180602s2014 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jmaa.2013.10.070 |2 doi | |
028 | 5 | 2 | |a GBVA2014022000027.pica |
035 | |a (DE-627)ELV018070345 | ||
035 | |a (ELSEVIER)S0022-247X(13)00986-4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 510 | |
082 | 0 | 4 | |a 510 |q DE-600 |
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.40 |2 bkl | ||
100 | 1 | |a Tarłowski, Dawid |e verfasserin |4 aut | |
245 | 1 | 0 | |a Nonautonomous stochastic search for global minimum in continuous optimization |
264 | 1 | |c 2014 | |
300 | |a 15 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Various iterative stochastic optimization schemes can be represented as discrete-time Markov processes defined by the nonautonomous equation X t + 1 = T t ( X t , Y t ) , where Y t is an independent sequence and T t is a sequence of mappings. This paper presents a general framework for the study of the stability and convergence of such optimization processes. Some applications are given: the mathematical convergence analysis of two optimization methods, the elitist evolution strategy ( μ + λ ) and the grenade explosion method, is presented. | ||
650 | 7 | |a Global optimization |2 Elsevier | |
650 | 7 | |a Grenade explosion method |2 Elsevier | |
650 | 7 | |a Evolution strategy |2 Elsevier | |
650 | 7 | |a Stochastic optimization |2 Elsevier | |
650 | 7 | |a Foias operator |2 Elsevier | |
650 | 7 | |a Lyapunov function |2 Elsevier | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Sibilio, Pasquale ELSEVIER |t In silico drug repurposing in COVID-19: A network-based analysis |d 2021 |g Amsterdam [u.a.] |w (DE-627)ELV006634001 |
773 | 1 | 8 | |g volume:412 |g year:2014 |g number:2 |g day:15 |g month:04 |g pages:631-645 |g extent:15 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jmaa.2013.10.070 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OPC-PHA | ||
936 | b | k | |a 44.40 |j Pharmazie |j Pharmazeutika |q VZ |
951 | |a AR | ||
952 | |d 412 |j 2014 |e 2 |b 15 |c 0415 |h 631-645 |g 15 | ||
953 | |2 045F |a 510 |
author_variant |
d t dt |
---|---|
matchkey_str |
tarowskidawid:2014----:oatnmusohsisacfrlbliiuicn |
hierarchy_sort_str |
2014 |
bklnumber |
44.40 |
publishDate |
2014 |
allfields |
10.1016/j.jmaa.2013.10.070 doi GBVA2014022000027.pica (DE-627)ELV018070345 (ELSEVIER)S0022-247X(13)00986-4 DE-627 ger DE-627 rakwb eng 510 510 DE-600 610 VZ 44.40 bkl Tarłowski, Dawid verfasserin aut Nonautonomous stochastic search for global minimum in continuous optimization 2014 15 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Various iterative stochastic optimization schemes can be represented as discrete-time Markov processes defined by the nonautonomous equation X t + 1 = T t ( X t , Y t ) , where Y t is an independent sequence and T t is a sequence of mappings. This paper presents a general framework for the study of the stability and convergence of such optimization processes. Some applications are given: the mathematical convergence analysis of two optimization methods, the elitist evolution strategy ( μ + λ ) and the grenade explosion method, is presented. Global optimization Elsevier Grenade explosion method Elsevier Evolution strategy Elsevier Stochastic optimization Elsevier Foias operator Elsevier Lyapunov function Elsevier Enthalten in Elsevier Sibilio, Pasquale ELSEVIER In silico drug repurposing in COVID-19: A network-based analysis 2021 Amsterdam [u.a.] (DE-627)ELV006634001 volume:412 year:2014 number:2 day:15 month:04 pages:631-645 extent:15 https://doi.org/10.1016/j.jmaa.2013.10.070 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 412 2014 2 15 0415 631-645 15 045F 510 |
spelling |
10.1016/j.jmaa.2013.10.070 doi GBVA2014022000027.pica (DE-627)ELV018070345 (ELSEVIER)S0022-247X(13)00986-4 DE-627 ger DE-627 rakwb eng 510 510 DE-600 610 VZ 44.40 bkl Tarłowski, Dawid verfasserin aut Nonautonomous stochastic search for global minimum in continuous optimization 2014 15 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Various iterative stochastic optimization schemes can be represented as discrete-time Markov processes defined by the nonautonomous equation X t + 1 = T t ( X t , Y t ) , where Y t is an independent sequence and T t is a sequence of mappings. This paper presents a general framework for the study of the stability and convergence of such optimization processes. Some applications are given: the mathematical convergence analysis of two optimization methods, the elitist evolution strategy ( μ + λ ) and the grenade explosion method, is presented. Global optimization Elsevier Grenade explosion method Elsevier Evolution strategy Elsevier Stochastic optimization Elsevier Foias operator Elsevier Lyapunov function Elsevier Enthalten in Elsevier Sibilio, Pasquale ELSEVIER In silico drug repurposing in COVID-19: A network-based analysis 2021 Amsterdam [u.a.] (DE-627)ELV006634001 volume:412 year:2014 number:2 day:15 month:04 pages:631-645 extent:15 https://doi.org/10.1016/j.jmaa.2013.10.070 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 412 2014 2 15 0415 631-645 15 045F 510 |
allfields_unstemmed |
10.1016/j.jmaa.2013.10.070 doi GBVA2014022000027.pica (DE-627)ELV018070345 (ELSEVIER)S0022-247X(13)00986-4 DE-627 ger DE-627 rakwb eng 510 510 DE-600 610 VZ 44.40 bkl Tarłowski, Dawid verfasserin aut Nonautonomous stochastic search for global minimum in continuous optimization 2014 15 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Various iterative stochastic optimization schemes can be represented as discrete-time Markov processes defined by the nonautonomous equation X t + 1 = T t ( X t , Y t ) , where Y t is an independent sequence and T t is a sequence of mappings. This paper presents a general framework for the study of the stability and convergence of such optimization processes. Some applications are given: the mathematical convergence analysis of two optimization methods, the elitist evolution strategy ( μ + λ ) and the grenade explosion method, is presented. Global optimization Elsevier Grenade explosion method Elsevier Evolution strategy Elsevier Stochastic optimization Elsevier Foias operator Elsevier Lyapunov function Elsevier Enthalten in Elsevier Sibilio, Pasquale ELSEVIER In silico drug repurposing in COVID-19: A network-based analysis 2021 Amsterdam [u.a.] (DE-627)ELV006634001 volume:412 year:2014 number:2 day:15 month:04 pages:631-645 extent:15 https://doi.org/10.1016/j.jmaa.2013.10.070 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 412 2014 2 15 0415 631-645 15 045F 510 |
allfieldsGer |
10.1016/j.jmaa.2013.10.070 doi GBVA2014022000027.pica (DE-627)ELV018070345 (ELSEVIER)S0022-247X(13)00986-4 DE-627 ger DE-627 rakwb eng 510 510 DE-600 610 VZ 44.40 bkl Tarłowski, Dawid verfasserin aut Nonautonomous stochastic search for global minimum in continuous optimization 2014 15 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Various iterative stochastic optimization schemes can be represented as discrete-time Markov processes defined by the nonautonomous equation X t + 1 = T t ( X t , Y t ) , where Y t is an independent sequence and T t is a sequence of mappings. This paper presents a general framework for the study of the stability and convergence of such optimization processes. Some applications are given: the mathematical convergence analysis of two optimization methods, the elitist evolution strategy ( μ + λ ) and the grenade explosion method, is presented. Global optimization Elsevier Grenade explosion method Elsevier Evolution strategy Elsevier Stochastic optimization Elsevier Foias operator Elsevier Lyapunov function Elsevier Enthalten in Elsevier Sibilio, Pasquale ELSEVIER In silico drug repurposing in COVID-19: A network-based analysis 2021 Amsterdam [u.a.] (DE-627)ELV006634001 volume:412 year:2014 number:2 day:15 month:04 pages:631-645 extent:15 https://doi.org/10.1016/j.jmaa.2013.10.070 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 412 2014 2 15 0415 631-645 15 045F 510 |
allfieldsSound |
10.1016/j.jmaa.2013.10.070 doi GBVA2014022000027.pica (DE-627)ELV018070345 (ELSEVIER)S0022-247X(13)00986-4 DE-627 ger DE-627 rakwb eng 510 510 DE-600 610 VZ 44.40 bkl Tarłowski, Dawid verfasserin aut Nonautonomous stochastic search for global minimum in continuous optimization 2014 15 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Various iterative stochastic optimization schemes can be represented as discrete-time Markov processes defined by the nonautonomous equation X t + 1 = T t ( X t , Y t ) , where Y t is an independent sequence and T t is a sequence of mappings. This paper presents a general framework for the study of the stability and convergence of such optimization processes. Some applications are given: the mathematical convergence analysis of two optimization methods, the elitist evolution strategy ( μ + λ ) and the grenade explosion method, is presented. Global optimization Elsevier Grenade explosion method Elsevier Evolution strategy Elsevier Stochastic optimization Elsevier Foias operator Elsevier Lyapunov function Elsevier Enthalten in Elsevier Sibilio, Pasquale ELSEVIER In silico drug repurposing in COVID-19: A network-based analysis 2021 Amsterdam [u.a.] (DE-627)ELV006634001 volume:412 year:2014 number:2 day:15 month:04 pages:631-645 extent:15 https://doi.org/10.1016/j.jmaa.2013.10.070 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 412 2014 2 15 0415 631-645 15 045F 510 |
language |
English |
source |
Enthalten in In silico drug repurposing in COVID-19: A network-based analysis Amsterdam [u.a.] volume:412 year:2014 number:2 day:15 month:04 pages:631-645 extent:15 |
sourceStr |
Enthalten in In silico drug repurposing in COVID-19: A network-based analysis Amsterdam [u.a.] volume:412 year:2014 number:2 day:15 month:04 pages:631-645 extent:15 |
format_phy_str_mv |
Article |
bklname |
Pharmazie Pharmazeutika |
institution |
findex.gbv.de |
topic_facet |
Global optimization Grenade explosion method Evolution strategy Stochastic optimization Foias operator Lyapunov function |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
In silico drug repurposing in COVID-19: A network-based analysis |
authorswithroles_txt_mv |
Tarłowski, Dawid @@aut@@ |
publishDateDaySort_date |
2014-01-15T00:00:00Z |
hierarchy_top_id |
ELV006634001 |
dewey-sort |
3510 |
id |
ELV018070345 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV018070345</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230623141830.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jmaa.2013.10.070</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014022000027.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV018070345</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0022-247X(13)00986-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.40</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tarłowski, Dawid</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonautonomous stochastic search for global minimum in continuous optimization</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">15</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Various iterative stochastic optimization schemes can be represented as discrete-time Markov processes defined by the nonautonomous equation X t + 1 = T t ( X t , Y t ) , where Y t is an independent sequence and T t is a sequence of mappings. This paper presents a general framework for the study of the stability and convergence of such optimization processes. Some applications are given: the mathematical convergence analysis of two optimization methods, the elitist evolution strategy ( μ + λ ) and the grenade explosion method, is presented.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Global optimization</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Grenade explosion method</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Evolution strategy</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Stochastic optimization</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Foias operator</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lyapunov function</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Sibilio, Pasquale ELSEVIER</subfield><subfield code="t">In silico drug repurposing in COVID-19: A network-based analysis</subfield><subfield code="d">2021</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV006634001</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:412</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:2</subfield><subfield code="g">day:15</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:631-645</subfield><subfield code="g">extent:15</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jmaa.2013.10.070</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.40</subfield><subfield code="j">Pharmazie</subfield><subfield code="j">Pharmazeutika</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">412</subfield><subfield code="j">2014</subfield><subfield code="e">2</subfield><subfield code="b">15</subfield><subfield code="c">0415</subfield><subfield code="h">631-645</subfield><subfield code="g">15</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">510</subfield></datafield></record></collection>
|
author |
Tarłowski, Dawid |
spellingShingle |
Tarłowski, Dawid ddc 510 ddc 610 bkl 44.40 Elsevier Global optimization Elsevier Grenade explosion method Elsevier Evolution strategy Elsevier Stochastic optimization Elsevier Foias operator Elsevier Lyapunov function Nonautonomous stochastic search for global minimum in continuous optimization |
authorStr |
Tarłowski, Dawid |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV006634001 |
format |
electronic Article |
dewey-ones |
510 - Mathematics 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
510 510 DE-600 610 VZ 44.40 bkl Nonautonomous stochastic search for global minimum in continuous optimization Global optimization Elsevier Grenade explosion method Elsevier Evolution strategy Elsevier Stochastic optimization Elsevier Foias operator Elsevier Lyapunov function Elsevier |
topic |
ddc 510 ddc 610 bkl 44.40 Elsevier Global optimization Elsevier Grenade explosion method Elsevier Evolution strategy Elsevier Stochastic optimization Elsevier Foias operator Elsevier Lyapunov function |
topic_unstemmed |
ddc 510 ddc 610 bkl 44.40 Elsevier Global optimization Elsevier Grenade explosion method Elsevier Evolution strategy Elsevier Stochastic optimization Elsevier Foias operator Elsevier Lyapunov function |
topic_browse |
ddc 510 ddc 610 bkl 44.40 Elsevier Global optimization Elsevier Grenade explosion method Elsevier Evolution strategy Elsevier Stochastic optimization Elsevier Foias operator Elsevier Lyapunov function |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
hierarchy_parent_title |
In silico drug repurposing in COVID-19: A network-based analysis |
hierarchy_parent_id |
ELV006634001 |
dewey-tens |
510 - Mathematics 610 - Medicine & health |
hierarchy_top_title |
In silico drug repurposing in COVID-19: A network-based analysis |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV006634001 |
title |
Nonautonomous stochastic search for global minimum in continuous optimization |
ctrlnum |
(DE-627)ELV018070345 (ELSEVIER)S0022-247X(13)00986-4 |
title_full |
Nonautonomous stochastic search for global minimum in continuous optimization |
author_sort |
Tarłowski, Dawid |
journal |
In silico drug repurposing in COVID-19: A network-based analysis |
journalStr |
In silico drug repurposing in COVID-19: A network-based analysis |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
zzz |
container_start_page |
631 |
author_browse |
Tarłowski, Dawid |
container_volume |
412 |
physical |
15 |
class |
510 510 DE-600 610 VZ 44.40 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Tarłowski, Dawid |
doi_str_mv |
10.1016/j.jmaa.2013.10.070 |
dewey-full |
510 610 |
title_sort |
nonautonomous stochastic search for global minimum in continuous optimization |
title_auth |
Nonautonomous stochastic search for global minimum in continuous optimization |
abstract |
Various iterative stochastic optimization schemes can be represented as discrete-time Markov processes defined by the nonautonomous equation X t + 1 = T t ( X t , Y t ) , where Y t is an independent sequence and T t is a sequence of mappings. This paper presents a general framework for the study of the stability and convergence of such optimization processes. Some applications are given: the mathematical convergence analysis of two optimization methods, the elitist evolution strategy ( μ + λ ) and the grenade explosion method, is presented. |
abstractGer |
Various iterative stochastic optimization schemes can be represented as discrete-time Markov processes defined by the nonautonomous equation X t + 1 = T t ( X t , Y t ) , where Y t is an independent sequence and T t is a sequence of mappings. This paper presents a general framework for the study of the stability and convergence of such optimization processes. Some applications are given: the mathematical convergence analysis of two optimization methods, the elitist evolution strategy ( μ + λ ) and the grenade explosion method, is presented. |
abstract_unstemmed |
Various iterative stochastic optimization schemes can be represented as discrete-time Markov processes defined by the nonautonomous equation X t + 1 = T t ( X t , Y t ) , where Y t is an independent sequence and T t is a sequence of mappings. This paper presents a general framework for the study of the stability and convergence of such optimization processes. Some applications are given: the mathematical convergence analysis of two optimization methods, the elitist evolution strategy ( μ + λ ) and the grenade explosion method, is presented. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-PHA |
container_issue |
2 |
title_short |
Nonautonomous stochastic search for global minimum in continuous optimization |
url |
https://doi.org/10.1016/j.jmaa.2013.10.070 |
remote_bool |
true |
ppnlink |
ELV006634001 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jmaa.2013.10.070 |
up_date |
2024-07-06T17:53:34.601Z |
_version_ |
1803853144631803904 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV018070345</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230623141830.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jmaa.2013.10.070</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2014022000027.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV018070345</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0022-247X(13)00986-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.40</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tarłowski, Dawid</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonautonomous stochastic search for global minimum in continuous optimization</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">15</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Various iterative stochastic optimization schemes can be represented as discrete-time Markov processes defined by the nonautonomous equation X t + 1 = T t ( X t , Y t ) , where Y t is an independent sequence and T t is a sequence of mappings. This paper presents a general framework for the study of the stability and convergence of such optimization processes. Some applications are given: the mathematical convergence analysis of two optimization methods, the elitist evolution strategy ( μ + λ ) and the grenade explosion method, is presented.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Global optimization</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Grenade explosion method</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Evolution strategy</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Stochastic optimization</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Foias operator</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lyapunov function</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Sibilio, Pasquale ELSEVIER</subfield><subfield code="t">In silico drug repurposing in COVID-19: A network-based analysis</subfield><subfield code="d">2021</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV006634001</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:412</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:2</subfield><subfield code="g">day:15</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:631-645</subfield><subfield code="g">extent:15</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jmaa.2013.10.070</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.40</subfield><subfield code="j">Pharmazie</subfield><subfield code="j">Pharmazeutika</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">412</subfield><subfield code="j">2014</subfield><subfield code="e">2</subfield><subfield code="b">15</subfield><subfield code="c">0415</subfield><subfield code="h">631-645</subfield><subfield code="g">15</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">510</subfield></datafield></record></collection>
|
score |
7.3993244 |