Quadratic forms and congruences for ℓ-regular partitions modulo 3, 5 and 7
Let b ℓ ( n ) be the number of ℓ-regular partitions of n. We show that the generating functions of b ℓ ( n ) with ℓ = 3 , 5 , 6 , 7 and 10 are congruent to the products of two items of Ramanujan's theta functions ψ ( q ) , f ( − q ) and ( q ; q ) ∞ 3 modulo 3, 5 and 7. So we can express these g...
Ausführliche Beschreibung
Autor*in: |
Hou, Qing-Hu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Umfang: |
13 |
---|
Übergeordnetes Werk: |
Enthalten in: Kiiacylphnols A−H, eight undescribed polycyclic polyprenylated acylphloroglucinols with anticancer activities from - Duan, Yulin ELSEVIER, 2022, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:70 ; year:2015 ; pages:32-44 ; extent:13 |
Links: |
---|
DOI / URN: |
10.1016/j.aam.2015.06.005 |
---|
Katalog-ID: |
ELV018360599 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV018360599 | ||
003 | DE-627 | ||
005 | 20230623143056.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180602s2015 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.aam.2015.06.005 |2 doi | |
028 | 5 | 2 | |a GBVA2015007000028.pica |
035 | |a (DE-627)ELV018360599 | ||
035 | |a (ELSEVIER)S0196-8858(15)00070-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 510 | |
082 | 0 | 4 | |a 510 |q DE-600 |
082 | 0 | 4 | |a 580 |a 540 |q VZ |
084 | |a BIODIV |q DE-30 |2 fid | ||
084 | |a 42.00 |2 bkl | ||
100 | 1 | |a Hou, Qing-Hu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Quadratic forms and congruences for ℓ-regular partitions modulo 3, 5 and 7 |
264 | 1 | |c 2015 | |
300 | |a 13 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Let b ℓ ( n ) be the number of ℓ-regular partitions of n. We show that the generating functions of b ℓ ( n ) with ℓ = 3 , 5 , 6 , 7 and 10 are congruent to the products of two items of Ramanujan's theta functions ψ ( q ) , f ( − q ) and ( q ; q ) ∞ 3 modulo 3, 5 and 7. So we can express these generating functions as double summations in q. Based on the properties of binary quadratic forms, we obtain vanishing properties of the coefficients of these series. This leads to several infinite families of congruences for b ℓ ( n ) modulo 3, 5 and 7. | ||
650 | 7 | |a 11P83 |2 Elsevier | |
650 | 7 | |a 05A17 |2 Elsevier | |
700 | 1 | |a Sun, Lisa H. |4 oth | |
700 | 1 | |a Zhang, Li |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Duan, Yulin ELSEVIER |t Kiiacylphnols A−H, eight undescribed polycyclic polyprenylated acylphloroglucinols with anticancer activities from |d 2022 |g Amsterdam [u.a.] |w (DE-627)ELV007875029 |
773 | 1 | 8 | |g volume:70 |g year:2015 |g pages:32-44 |g extent:13 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.aam.2015.06.005 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 42.00 |j Biologie: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 70 |j 2015 |h 32-44 |g 13 | ||
953 | |2 045F |a 510 |
author_variant |
q h h qhh |
---|---|
matchkey_str |
houqinghusunlisahzhangli:2015----:udaifrsncnrecsorglratt |
hierarchy_sort_str |
2015 |
bklnumber |
42.00 |
publishDate |
2015 |
allfields |
10.1016/j.aam.2015.06.005 doi GBVA2015007000028.pica (DE-627)ELV018360599 (ELSEVIER)S0196-8858(15)00070-6 DE-627 ger DE-627 rakwb eng 510 510 DE-600 580 540 VZ BIODIV DE-30 fid 42.00 bkl Hou, Qing-Hu verfasserin aut Quadratic forms and congruences for ℓ-regular partitions modulo 3, 5 and 7 2015 13 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Let b ℓ ( n ) be the number of ℓ-regular partitions of n. We show that the generating functions of b ℓ ( n ) with ℓ = 3 , 5 , 6 , 7 and 10 are congruent to the products of two items of Ramanujan's theta functions ψ ( q ) , f ( − q ) and ( q ; q ) ∞ 3 modulo 3, 5 and 7. So we can express these generating functions as double summations in q. Based on the properties of binary quadratic forms, we obtain vanishing properties of the coefficients of these series. This leads to several infinite families of congruences for b ℓ ( n ) modulo 3, 5 and 7. 11P83 Elsevier 05A17 Elsevier Sun, Lisa H. oth Zhang, Li oth Enthalten in Elsevier Duan, Yulin ELSEVIER Kiiacylphnols A−H, eight undescribed polycyclic polyprenylated acylphloroglucinols with anticancer activities from 2022 Amsterdam [u.a.] (DE-627)ELV007875029 volume:70 year:2015 pages:32-44 extent:13 https://doi.org/10.1016/j.aam.2015.06.005 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 42.00 Biologie: Allgemeines VZ AR 70 2015 32-44 13 045F 510 |
spelling |
10.1016/j.aam.2015.06.005 doi GBVA2015007000028.pica (DE-627)ELV018360599 (ELSEVIER)S0196-8858(15)00070-6 DE-627 ger DE-627 rakwb eng 510 510 DE-600 580 540 VZ BIODIV DE-30 fid 42.00 bkl Hou, Qing-Hu verfasserin aut Quadratic forms and congruences for ℓ-regular partitions modulo 3, 5 and 7 2015 13 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Let b ℓ ( n ) be the number of ℓ-regular partitions of n. We show that the generating functions of b ℓ ( n ) with ℓ = 3 , 5 , 6 , 7 and 10 are congruent to the products of two items of Ramanujan's theta functions ψ ( q ) , f ( − q ) and ( q ; q ) ∞ 3 modulo 3, 5 and 7. So we can express these generating functions as double summations in q. Based on the properties of binary quadratic forms, we obtain vanishing properties of the coefficients of these series. This leads to several infinite families of congruences for b ℓ ( n ) modulo 3, 5 and 7. 11P83 Elsevier 05A17 Elsevier Sun, Lisa H. oth Zhang, Li oth Enthalten in Elsevier Duan, Yulin ELSEVIER Kiiacylphnols A−H, eight undescribed polycyclic polyprenylated acylphloroglucinols with anticancer activities from 2022 Amsterdam [u.a.] (DE-627)ELV007875029 volume:70 year:2015 pages:32-44 extent:13 https://doi.org/10.1016/j.aam.2015.06.005 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 42.00 Biologie: Allgemeines VZ AR 70 2015 32-44 13 045F 510 |
allfields_unstemmed |
10.1016/j.aam.2015.06.005 doi GBVA2015007000028.pica (DE-627)ELV018360599 (ELSEVIER)S0196-8858(15)00070-6 DE-627 ger DE-627 rakwb eng 510 510 DE-600 580 540 VZ BIODIV DE-30 fid 42.00 bkl Hou, Qing-Hu verfasserin aut Quadratic forms and congruences for ℓ-regular partitions modulo 3, 5 and 7 2015 13 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Let b ℓ ( n ) be the number of ℓ-regular partitions of n. We show that the generating functions of b ℓ ( n ) with ℓ = 3 , 5 , 6 , 7 and 10 are congruent to the products of two items of Ramanujan's theta functions ψ ( q ) , f ( − q ) and ( q ; q ) ∞ 3 modulo 3, 5 and 7. So we can express these generating functions as double summations in q. Based on the properties of binary quadratic forms, we obtain vanishing properties of the coefficients of these series. This leads to several infinite families of congruences for b ℓ ( n ) modulo 3, 5 and 7. 11P83 Elsevier 05A17 Elsevier Sun, Lisa H. oth Zhang, Li oth Enthalten in Elsevier Duan, Yulin ELSEVIER Kiiacylphnols A−H, eight undescribed polycyclic polyprenylated acylphloroglucinols with anticancer activities from 2022 Amsterdam [u.a.] (DE-627)ELV007875029 volume:70 year:2015 pages:32-44 extent:13 https://doi.org/10.1016/j.aam.2015.06.005 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 42.00 Biologie: Allgemeines VZ AR 70 2015 32-44 13 045F 510 |
allfieldsGer |
10.1016/j.aam.2015.06.005 doi GBVA2015007000028.pica (DE-627)ELV018360599 (ELSEVIER)S0196-8858(15)00070-6 DE-627 ger DE-627 rakwb eng 510 510 DE-600 580 540 VZ BIODIV DE-30 fid 42.00 bkl Hou, Qing-Hu verfasserin aut Quadratic forms and congruences for ℓ-regular partitions modulo 3, 5 and 7 2015 13 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Let b ℓ ( n ) be the number of ℓ-regular partitions of n. We show that the generating functions of b ℓ ( n ) with ℓ = 3 , 5 , 6 , 7 and 10 are congruent to the products of two items of Ramanujan's theta functions ψ ( q ) , f ( − q ) and ( q ; q ) ∞ 3 modulo 3, 5 and 7. So we can express these generating functions as double summations in q. Based on the properties of binary quadratic forms, we obtain vanishing properties of the coefficients of these series. This leads to several infinite families of congruences for b ℓ ( n ) modulo 3, 5 and 7. 11P83 Elsevier 05A17 Elsevier Sun, Lisa H. oth Zhang, Li oth Enthalten in Elsevier Duan, Yulin ELSEVIER Kiiacylphnols A−H, eight undescribed polycyclic polyprenylated acylphloroglucinols with anticancer activities from 2022 Amsterdam [u.a.] (DE-627)ELV007875029 volume:70 year:2015 pages:32-44 extent:13 https://doi.org/10.1016/j.aam.2015.06.005 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 42.00 Biologie: Allgemeines VZ AR 70 2015 32-44 13 045F 510 |
allfieldsSound |
10.1016/j.aam.2015.06.005 doi GBVA2015007000028.pica (DE-627)ELV018360599 (ELSEVIER)S0196-8858(15)00070-6 DE-627 ger DE-627 rakwb eng 510 510 DE-600 580 540 VZ BIODIV DE-30 fid 42.00 bkl Hou, Qing-Hu verfasserin aut Quadratic forms and congruences for ℓ-regular partitions modulo 3, 5 and 7 2015 13 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Let b ℓ ( n ) be the number of ℓ-regular partitions of n. We show that the generating functions of b ℓ ( n ) with ℓ = 3 , 5 , 6 , 7 and 10 are congruent to the products of two items of Ramanujan's theta functions ψ ( q ) , f ( − q ) and ( q ; q ) ∞ 3 modulo 3, 5 and 7. So we can express these generating functions as double summations in q. Based on the properties of binary quadratic forms, we obtain vanishing properties of the coefficients of these series. This leads to several infinite families of congruences for b ℓ ( n ) modulo 3, 5 and 7. 11P83 Elsevier 05A17 Elsevier Sun, Lisa H. oth Zhang, Li oth Enthalten in Elsevier Duan, Yulin ELSEVIER Kiiacylphnols A−H, eight undescribed polycyclic polyprenylated acylphloroglucinols with anticancer activities from 2022 Amsterdam [u.a.] (DE-627)ELV007875029 volume:70 year:2015 pages:32-44 extent:13 https://doi.org/10.1016/j.aam.2015.06.005 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 42.00 Biologie: Allgemeines VZ AR 70 2015 32-44 13 045F 510 |
language |
English |
source |
Enthalten in Kiiacylphnols A−H, eight undescribed polycyclic polyprenylated acylphloroglucinols with anticancer activities from Amsterdam [u.a.] volume:70 year:2015 pages:32-44 extent:13 |
sourceStr |
Enthalten in Kiiacylphnols A−H, eight undescribed polycyclic polyprenylated acylphloroglucinols with anticancer activities from Amsterdam [u.a.] volume:70 year:2015 pages:32-44 extent:13 |
format_phy_str_mv |
Article |
bklname |
Biologie: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
11P83 05A17 |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Kiiacylphnols A−H, eight undescribed polycyclic polyprenylated acylphloroglucinols with anticancer activities from |
authorswithroles_txt_mv |
Hou, Qing-Hu @@aut@@ Sun, Lisa H. @@oth@@ Zhang, Li @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
ELV007875029 |
dewey-sort |
3510 |
id |
ELV018360599 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV018360599</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230623143056.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.aam.2015.06.005</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2015007000028.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV018360599</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0196-8858(15)00070-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">580</subfield><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hou, Qing-Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quadratic forms and congruences for ℓ-regular partitions modulo 3, 5 and 7</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">13</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Let b ℓ ( n ) be the number of ℓ-regular partitions of n. We show that the generating functions of b ℓ ( n ) with ℓ = 3 , 5 , 6 , 7 and 10 are congruent to the products of two items of Ramanujan's theta functions ψ ( q ) , f ( − q ) and ( q ; q ) ∞ 3 modulo 3, 5 and 7. So we can express these generating functions as double summations in q. Based on the properties of binary quadratic forms, we obtain vanishing properties of the coefficients of these series. This leads to several infinite families of congruences for b ℓ ( n ) modulo 3, 5 and 7.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">11P83</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">05A17</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Lisa H.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Li</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Duan, Yulin ELSEVIER</subfield><subfield code="t">Kiiacylphnols A−H, eight undescribed polycyclic polyprenylated acylphloroglucinols with anticancer activities from</subfield><subfield code="d">2022</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV007875029</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:70</subfield><subfield code="g">year:2015</subfield><subfield code="g">pages:32-44</subfield><subfield code="g">extent:13</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.aam.2015.06.005</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.00</subfield><subfield code="j">Biologie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">70</subfield><subfield code="j">2015</subfield><subfield code="h">32-44</subfield><subfield code="g">13</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">510</subfield></datafield></record></collection>
|
author |
Hou, Qing-Hu |
spellingShingle |
Hou, Qing-Hu ddc 510 ddc 580 fid BIODIV bkl 42.00 Elsevier 11P83 Elsevier 05A17 Quadratic forms and congruences for ℓ-regular partitions modulo 3, 5 and 7 |
authorStr |
Hou, Qing-Hu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV007875029 |
format |
electronic Article |
dewey-ones |
510 - Mathematics 580 - Plants (Botany) 540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
510 510 DE-600 580 540 VZ BIODIV DE-30 fid 42.00 bkl Quadratic forms and congruences for ℓ-regular partitions modulo 3, 5 and 7 11P83 Elsevier 05A17 Elsevier |
topic |
ddc 510 ddc 580 fid BIODIV bkl 42.00 Elsevier 11P83 Elsevier 05A17 |
topic_unstemmed |
ddc 510 ddc 580 fid BIODIV bkl 42.00 Elsevier 11P83 Elsevier 05A17 |
topic_browse |
ddc 510 ddc 580 fid BIODIV bkl 42.00 Elsevier 11P83 Elsevier 05A17 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
l h s lh lhs l z lz |
hierarchy_parent_title |
Kiiacylphnols A−H, eight undescribed polycyclic polyprenylated acylphloroglucinols with anticancer activities from |
hierarchy_parent_id |
ELV007875029 |
dewey-tens |
510 - Mathematics 580 - Plants (Botany) 540 - Chemistry |
hierarchy_top_title |
Kiiacylphnols A−H, eight undescribed polycyclic polyprenylated acylphloroglucinols with anticancer activities from |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV007875029 |
title |
Quadratic forms and congruences for ℓ-regular partitions modulo 3, 5 and 7 |
ctrlnum |
(DE-627)ELV018360599 (ELSEVIER)S0196-8858(15)00070-6 |
title_full |
Quadratic forms and congruences for ℓ-regular partitions modulo 3, 5 and 7 |
author_sort |
Hou, Qing-Hu |
journal |
Kiiacylphnols A−H, eight undescribed polycyclic polyprenylated acylphloroglucinols with anticancer activities from |
journalStr |
Kiiacylphnols A−H, eight undescribed polycyclic polyprenylated acylphloroglucinols with anticancer activities from |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
zzz |
container_start_page |
32 |
author_browse |
Hou, Qing-Hu |
container_volume |
70 |
physical |
13 |
class |
510 510 DE-600 580 540 VZ BIODIV DE-30 fid 42.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Hou, Qing-Hu |
doi_str_mv |
10.1016/j.aam.2015.06.005 |
dewey-full |
510 580 540 |
title_sort |
quadratic forms and congruences for ℓ-regular partitions modulo 3, 5 and 7 |
title_auth |
Quadratic forms and congruences for ℓ-regular partitions modulo 3, 5 and 7 |
abstract |
Let b ℓ ( n ) be the number of ℓ-regular partitions of n. We show that the generating functions of b ℓ ( n ) with ℓ = 3 , 5 , 6 , 7 and 10 are congruent to the products of two items of Ramanujan's theta functions ψ ( q ) , f ( − q ) and ( q ; q ) ∞ 3 modulo 3, 5 and 7. So we can express these generating functions as double summations in q. Based on the properties of binary quadratic forms, we obtain vanishing properties of the coefficients of these series. This leads to several infinite families of congruences for b ℓ ( n ) modulo 3, 5 and 7. |
abstractGer |
Let b ℓ ( n ) be the number of ℓ-regular partitions of n. We show that the generating functions of b ℓ ( n ) with ℓ = 3 , 5 , 6 , 7 and 10 are congruent to the products of two items of Ramanujan's theta functions ψ ( q ) , f ( − q ) and ( q ; q ) ∞ 3 modulo 3, 5 and 7. So we can express these generating functions as double summations in q. Based on the properties of binary quadratic forms, we obtain vanishing properties of the coefficients of these series. This leads to several infinite families of congruences for b ℓ ( n ) modulo 3, 5 and 7. |
abstract_unstemmed |
Let b ℓ ( n ) be the number of ℓ-regular partitions of n. We show that the generating functions of b ℓ ( n ) with ℓ = 3 , 5 , 6 , 7 and 10 are congruent to the products of two items of Ramanujan's theta functions ψ ( q ) , f ( − q ) and ( q ; q ) ∞ 3 modulo 3, 5 and 7. So we can express these generating functions as double summations in q. Based on the properties of binary quadratic forms, we obtain vanishing properties of the coefficients of these series. This leads to several infinite families of congruences for b ℓ ( n ) modulo 3, 5 and 7. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA |
title_short |
Quadratic forms and congruences for ℓ-regular partitions modulo 3, 5 and 7 |
url |
https://doi.org/10.1016/j.aam.2015.06.005 |
remote_bool |
true |
author2 |
Sun, Lisa H. Zhang, Li |
author2Str |
Sun, Lisa H. Zhang, Li |
ppnlink |
ELV007875029 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1016/j.aam.2015.06.005 |
up_date |
2024-07-06T18:37:49.088Z |
_version_ |
1803855928061067264 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV018360599</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230623143056.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.aam.2015.06.005</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2015007000028.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV018360599</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0196-8858(15)00070-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">580</subfield><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hou, Qing-Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quadratic forms and congruences for ℓ-regular partitions modulo 3, 5 and 7</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">13</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Let b ℓ ( n ) be the number of ℓ-regular partitions of n. We show that the generating functions of b ℓ ( n ) with ℓ = 3 , 5 , 6 , 7 and 10 are congruent to the products of two items of Ramanujan's theta functions ψ ( q ) , f ( − q ) and ( q ; q ) ∞ 3 modulo 3, 5 and 7. So we can express these generating functions as double summations in q. Based on the properties of binary quadratic forms, we obtain vanishing properties of the coefficients of these series. This leads to several infinite families of congruences for b ℓ ( n ) modulo 3, 5 and 7.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">11P83</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">05A17</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Lisa H.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Li</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Duan, Yulin ELSEVIER</subfield><subfield code="t">Kiiacylphnols A−H, eight undescribed polycyclic polyprenylated acylphloroglucinols with anticancer activities from</subfield><subfield code="d">2022</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV007875029</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:70</subfield><subfield code="g">year:2015</subfield><subfield code="g">pages:32-44</subfield><subfield code="g">extent:13</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.aam.2015.06.005</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.00</subfield><subfield code="j">Biologie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">70</subfield><subfield code="j">2015</subfield><subfield code="h">32-44</subfield><subfield code="g">13</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">510</subfield></datafield></record></collection>
|
score |
7.402815 |