Evaluation of covalently and ionically cross-linked PBI-excess blends for application in SO2 electrolysis
Proton exchange membranes (PEM) containing various combinations of PPOBr (pol(2,6-dimethylbromide-1,4-phenylene oxide, covalently cross-linked) or PWN (poly(tetrafluorostyrene-4-phosphonic acid), ionically cross-linked) were evaluated for their suitability in an SO2 electrolyser environment. Since H...
Ausführliche Beschreibung
Autor*in: |
Krüger, Andries J. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
9 |
---|
Übergeordnetes Werk: |
Enthalten in: External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs - Dedhia, Kavita ELSEVIER, 2018, official journal of the International Association for Hydrogen Energy, New York, NY [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:40 ; year:2015 ; number:29 ; day:3 ; month:08 ; pages:8788-8796 ; extent:9 |
Links: |
---|
DOI / URN: |
10.1016/j.ijhydene.2015.05.063 |
---|
Katalog-ID: |
ELV018554369 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV018554369 | ||
003 | DE-627 | ||
005 | 20230625124228.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180602s2015 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ijhydene.2015.05.063 |2 doi | |
028 | 5 | 2 | |a GBVA2015012000003.pica |
035 | |a (DE-627)ELV018554369 | ||
035 | |a (ELSEVIER)S0360-3199(15)01221-5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 660 |a 620 | |
082 | 0 | 4 | |a 660 |q DE-600 |
082 | 0 | 4 | |a 620 |q DE-600 |
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.94 |2 bkl | ||
100 | 1 | |a Krüger, Andries J. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Evaluation of covalently and ionically cross-linked PBI-excess blends for application in SO2 electrolysis |
264 | 1 | |c 2015transfer abstract | |
300 | |a 9 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Proton exchange membranes (PEM) containing various combinations of PPOBr (pol(2,6-dimethylbromide-1,4-phenylene oxide, covalently cross-linked) or PWN (poly(tetrafluorostyrene-4-phosphonic acid), ionically cross-linked) were evaluated for their suitability in an SO2 electrolyser environment. Since H2SO4 is produced during the oxidation of SO2 in the presence of water, the membranes used in the electrolyser must be both chemically and electrochemically stable. Acid stability tests showed that the blend membranes are stable in 80 wt % acidic media at 80 °C for 120 h. The electrochemical characterisation included polarisation curves, voltage stepping and long term operation. Using polarisation curves two blend combinations were selected for the voltage stepping. Both types of blend membranes showed high stability up to 110 cycles while the F6PBI/PPOBr blend membrane had comparable (to N115®) long term operating voltage, while the F6PBI/PWN blend membrane showed improved voltage, attaining 0.781 V compared to the 0.812 V obtained when using N115 at 0.1 A cm−2. | ||
520 | |a Proton exchange membranes (PEM) containing various combinations of PPOBr (pol(2,6-dimethylbromide-1,4-phenylene oxide, covalently cross-linked) or PWN (poly(tetrafluorostyrene-4-phosphonic acid), ionically cross-linked) were evaluated for their suitability in an SO2 electrolyser environment. Since H2SO4 is produced during the oxidation of SO2 in the presence of water, the membranes used in the electrolyser must be both chemically and electrochemically stable. Acid stability tests showed that the blend membranes are stable in 80 wt % acidic media at 80 °C for 120 h. The electrochemical characterisation included polarisation curves, voltage stepping and long term operation. Using polarisation curves two blend combinations were selected for the voltage stepping. Both types of blend membranes showed high stability up to 110 cycles while the F6PBI/PPOBr blend membrane had comparable (to N115®) long term operating voltage, while the F6PBI/PWN blend membrane showed improved voltage, attaining 0.781 V compared to the 0.812 V obtained when using N115 at 0.1 A cm−2. | ||
650 | 7 | |a Voltage stepping |2 Elsevier | |
650 | 7 | |a Long term operation |2 Elsevier | |
650 | 7 | |a Ionically cross-linked |2 Elsevier | |
650 | 7 | |a SO2 electrolysis |2 Elsevier | |
650 | 7 | |a F6PBI blend proton exchange membranes |2 Elsevier | |
650 | 7 | |a Covalently cross-linked |2 Elsevier | |
700 | 1 | |a Kerres, Jochen |4 oth | |
700 | 1 | |a Bessarabov, Dmitri |4 oth | |
700 | 1 | |a Krieg, Henning M. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Dedhia, Kavita ELSEVIER |t External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs |d 2018 |d official journal of the International Association for Hydrogen Energy |g New York, NY [u.a.] |w (DE-627)ELV000127019 |
773 | 1 | 8 | |g volume:40 |g year:2015 |g number:29 |g day:3 |g month:08 |g pages:8788-8796 |g extent:9 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.ijhydene.2015.05.063 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 44.94 |j Hals-Nasen-Ohrenheilkunde |q VZ |
951 | |a AR | ||
952 | |d 40 |j 2015 |e 29 |b 3 |c 0803 |h 8788-8796 |g 9 | ||
953 | |2 045F |a 660 |
author_variant |
a j k aj ajk |
---|---|
matchkey_str |
krgerandriesjkerresjochenbessarabovdmitr:2015----:vlainfoaetyninclyrslnepixeslnsoap |
hierarchy_sort_str |
2015transfer abstract |
bklnumber |
44.94 |
publishDate |
2015 |
allfields |
10.1016/j.ijhydene.2015.05.063 doi GBVA2015012000003.pica (DE-627)ELV018554369 (ELSEVIER)S0360-3199(15)01221-5 DE-627 ger DE-627 rakwb eng 660 620 660 DE-600 620 DE-600 610 VZ 44.94 bkl Krüger, Andries J. verfasserin aut Evaluation of covalently and ionically cross-linked PBI-excess blends for application in SO2 electrolysis 2015transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Proton exchange membranes (PEM) containing various combinations of PPOBr (pol(2,6-dimethylbromide-1,4-phenylene oxide, covalently cross-linked) or PWN (poly(tetrafluorostyrene-4-phosphonic acid), ionically cross-linked) were evaluated for their suitability in an SO2 electrolyser environment. Since H2SO4 is produced during the oxidation of SO2 in the presence of water, the membranes used in the electrolyser must be both chemically and electrochemically stable. Acid stability tests showed that the blend membranes are stable in 80 wt % acidic media at 80 °C for 120 h. The electrochemical characterisation included polarisation curves, voltage stepping and long term operation. Using polarisation curves two blend combinations were selected for the voltage stepping. Both types of blend membranes showed high stability up to 110 cycles while the F6PBI/PPOBr blend membrane had comparable (to N115®) long term operating voltage, while the F6PBI/PWN blend membrane showed improved voltage, attaining 0.781 V compared to the 0.812 V obtained when using N115 at 0.1 A cm−2. Proton exchange membranes (PEM) containing various combinations of PPOBr (pol(2,6-dimethylbromide-1,4-phenylene oxide, covalently cross-linked) or PWN (poly(tetrafluorostyrene-4-phosphonic acid), ionically cross-linked) were evaluated for their suitability in an SO2 electrolyser environment. Since H2SO4 is produced during the oxidation of SO2 in the presence of water, the membranes used in the electrolyser must be both chemically and electrochemically stable. Acid stability tests showed that the blend membranes are stable in 80 wt % acidic media at 80 °C for 120 h. The electrochemical characterisation included polarisation curves, voltage stepping and long term operation. Using polarisation curves two blend combinations were selected for the voltage stepping. Both types of blend membranes showed high stability up to 110 cycles while the F6PBI/PPOBr blend membrane had comparable (to N115®) long term operating voltage, while the F6PBI/PWN blend membrane showed improved voltage, attaining 0.781 V compared to the 0.812 V obtained when using N115 at 0.1 A cm−2. Voltage stepping Elsevier Long term operation Elsevier Ionically cross-linked Elsevier SO2 electrolysis Elsevier F6PBI blend proton exchange membranes Elsevier Covalently cross-linked Elsevier Kerres, Jochen oth Bessarabov, Dmitri oth Krieg, Henning M. oth Enthalten in Elsevier Dedhia, Kavita ELSEVIER External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs 2018 official journal of the International Association for Hydrogen Energy New York, NY [u.a.] (DE-627)ELV000127019 volume:40 year:2015 number:29 day:3 month:08 pages:8788-8796 extent:9 https://doi.org/10.1016/j.ijhydene.2015.05.063 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 40 2015 29 3 0803 8788-8796 9 045F 660 |
spelling |
10.1016/j.ijhydene.2015.05.063 doi GBVA2015012000003.pica (DE-627)ELV018554369 (ELSEVIER)S0360-3199(15)01221-5 DE-627 ger DE-627 rakwb eng 660 620 660 DE-600 620 DE-600 610 VZ 44.94 bkl Krüger, Andries J. verfasserin aut Evaluation of covalently and ionically cross-linked PBI-excess blends for application in SO2 electrolysis 2015transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Proton exchange membranes (PEM) containing various combinations of PPOBr (pol(2,6-dimethylbromide-1,4-phenylene oxide, covalently cross-linked) or PWN (poly(tetrafluorostyrene-4-phosphonic acid), ionically cross-linked) were evaluated for their suitability in an SO2 electrolyser environment. Since H2SO4 is produced during the oxidation of SO2 in the presence of water, the membranes used in the electrolyser must be both chemically and electrochemically stable. Acid stability tests showed that the blend membranes are stable in 80 wt % acidic media at 80 °C for 120 h. The electrochemical characterisation included polarisation curves, voltage stepping and long term operation. Using polarisation curves two blend combinations were selected for the voltage stepping. Both types of blend membranes showed high stability up to 110 cycles while the F6PBI/PPOBr blend membrane had comparable (to N115®) long term operating voltage, while the F6PBI/PWN blend membrane showed improved voltage, attaining 0.781 V compared to the 0.812 V obtained when using N115 at 0.1 A cm−2. Proton exchange membranes (PEM) containing various combinations of PPOBr (pol(2,6-dimethylbromide-1,4-phenylene oxide, covalently cross-linked) or PWN (poly(tetrafluorostyrene-4-phosphonic acid), ionically cross-linked) were evaluated for their suitability in an SO2 electrolyser environment. Since H2SO4 is produced during the oxidation of SO2 in the presence of water, the membranes used in the electrolyser must be both chemically and electrochemically stable. Acid stability tests showed that the blend membranes are stable in 80 wt % acidic media at 80 °C for 120 h. The electrochemical characterisation included polarisation curves, voltage stepping and long term operation. Using polarisation curves two blend combinations were selected for the voltage stepping. Both types of blend membranes showed high stability up to 110 cycles while the F6PBI/PPOBr blend membrane had comparable (to N115®) long term operating voltage, while the F6PBI/PWN blend membrane showed improved voltage, attaining 0.781 V compared to the 0.812 V obtained when using N115 at 0.1 A cm−2. Voltage stepping Elsevier Long term operation Elsevier Ionically cross-linked Elsevier SO2 electrolysis Elsevier F6PBI blend proton exchange membranes Elsevier Covalently cross-linked Elsevier Kerres, Jochen oth Bessarabov, Dmitri oth Krieg, Henning M. oth Enthalten in Elsevier Dedhia, Kavita ELSEVIER External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs 2018 official journal of the International Association for Hydrogen Energy New York, NY [u.a.] (DE-627)ELV000127019 volume:40 year:2015 number:29 day:3 month:08 pages:8788-8796 extent:9 https://doi.org/10.1016/j.ijhydene.2015.05.063 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 40 2015 29 3 0803 8788-8796 9 045F 660 |
allfields_unstemmed |
10.1016/j.ijhydene.2015.05.063 doi GBVA2015012000003.pica (DE-627)ELV018554369 (ELSEVIER)S0360-3199(15)01221-5 DE-627 ger DE-627 rakwb eng 660 620 660 DE-600 620 DE-600 610 VZ 44.94 bkl Krüger, Andries J. verfasserin aut Evaluation of covalently and ionically cross-linked PBI-excess blends for application in SO2 electrolysis 2015transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Proton exchange membranes (PEM) containing various combinations of PPOBr (pol(2,6-dimethylbromide-1,4-phenylene oxide, covalently cross-linked) or PWN (poly(tetrafluorostyrene-4-phosphonic acid), ionically cross-linked) were evaluated for their suitability in an SO2 electrolyser environment. Since H2SO4 is produced during the oxidation of SO2 in the presence of water, the membranes used in the electrolyser must be both chemically and electrochemically stable. Acid stability tests showed that the blend membranes are stable in 80 wt % acidic media at 80 °C for 120 h. The electrochemical characterisation included polarisation curves, voltage stepping and long term operation. Using polarisation curves two blend combinations were selected for the voltage stepping. Both types of blend membranes showed high stability up to 110 cycles while the F6PBI/PPOBr blend membrane had comparable (to N115®) long term operating voltage, while the F6PBI/PWN blend membrane showed improved voltage, attaining 0.781 V compared to the 0.812 V obtained when using N115 at 0.1 A cm−2. Proton exchange membranes (PEM) containing various combinations of PPOBr (pol(2,6-dimethylbromide-1,4-phenylene oxide, covalently cross-linked) or PWN (poly(tetrafluorostyrene-4-phosphonic acid), ionically cross-linked) were evaluated for their suitability in an SO2 electrolyser environment. Since H2SO4 is produced during the oxidation of SO2 in the presence of water, the membranes used in the electrolyser must be both chemically and electrochemically stable. Acid stability tests showed that the blend membranes are stable in 80 wt % acidic media at 80 °C for 120 h. The electrochemical characterisation included polarisation curves, voltage stepping and long term operation. Using polarisation curves two blend combinations were selected for the voltage stepping. Both types of blend membranes showed high stability up to 110 cycles while the F6PBI/PPOBr blend membrane had comparable (to N115®) long term operating voltage, while the F6PBI/PWN blend membrane showed improved voltage, attaining 0.781 V compared to the 0.812 V obtained when using N115 at 0.1 A cm−2. Voltage stepping Elsevier Long term operation Elsevier Ionically cross-linked Elsevier SO2 electrolysis Elsevier F6PBI blend proton exchange membranes Elsevier Covalently cross-linked Elsevier Kerres, Jochen oth Bessarabov, Dmitri oth Krieg, Henning M. oth Enthalten in Elsevier Dedhia, Kavita ELSEVIER External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs 2018 official journal of the International Association for Hydrogen Energy New York, NY [u.a.] (DE-627)ELV000127019 volume:40 year:2015 number:29 day:3 month:08 pages:8788-8796 extent:9 https://doi.org/10.1016/j.ijhydene.2015.05.063 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 40 2015 29 3 0803 8788-8796 9 045F 660 |
allfieldsGer |
10.1016/j.ijhydene.2015.05.063 doi GBVA2015012000003.pica (DE-627)ELV018554369 (ELSEVIER)S0360-3199(15)01221-5 DE-627 ger DE-627 rakwb eng 660 620 660 DE-600 620 DE-600 610 VZ 44.94 bkl Krüger, Andries J. verfasserin aut Evaluation of covalently and ionically cross-linked PBI-excess blends for application in SO2 electrolysis 2015transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Proton exchange membranes (PEM) containing various combinations of PPOBr (pol(2,6-dimethylbromide-1,4-phenylene oxide, covalently cross-linked) or PWN (poly(tetrafluorostyrene-4-phosphonic acid), ionically cross-linked) were evaluated for their suitability in an SO2 electrolyser environment. Since H2SO4 is produced during the oxidation of SO2 in the presence of water, the membranes used in the electrolyser must be both chemically and electrochemically stable. Acid stability tests showed that the blend membranes are stable in 80 wt % acidic media at 80 °C for 120 h. The electrochemical characterisation included polarisation curves, voltage stepping and long term operation. Using polarisation curves two blend combinations were selected for the voltage stepping. Both types of blend membranes showed high stability up to 110 cycles while the F6PBI/PPOBr blend membrane had comparable (to N115®) long term operating voltage, while the F6PBI/PWN blend membrane showed improved voltage, attaining 0.781 V compared to the 0.812 V obtained when using N115 at 0.1 A cm−2. Proton exchange membranes (PEM) containing various combinations of PPOBr (pol(2,6-dimethylbromide-1,4-phenylene oxide, covalently cross-linked) or PWN (poly(tetrafluorostyrene-4-phosphonic acid), ionically cross-linked) were evaluated for their suitability in an SO2 electrolyser environment. Since H2SO4 is produced during the oxidation of SO2 in the presence of water, the membranes used in the electrolyser must be both chemically and electrochemically stable. Acid stability tests showed that the blend membranes are stable in 80 wt % acidic media at 80 °C for 120 h. The electrochemical characterisation included polarisation curves, voltage stepping and long term operation. Using polarisation curves two blend combinations were selected for the voltage stepping. Both types of blend membranes showed high stability up to 110 cycles while the F6PBI/PPOBr blend membrane had comparable (to N115®) long term operating voltage, while the F6PBI/PWN blend membrane showed improved voltage, attaining 0.781 V compared to the 0.812 V obtained when using N115 at 0.1 A cm−2. Voltage stepping Elsevier Long term operation Elsevier Ionically cross-linked Elsevier SO2 electrolysis Elsevier F6PBI blend proton exchange membranes Elsevier Covalently cross-linked Elsevier Kerres, Jochen oth Bessarabov, Dmitri oth Krieg, Henning M. oth Enthalten in Elsevier Dedhia, Kavita ELSEVIER External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs 2018 official journal of the International Association for Hydrogen Energy New York, NY [u.a.] (DE-627)ELV000127019 volume:40 year:2015 number:29 day:3 month:08 pages:8788-8796 extent:9 https://doi.org/10.1016/j.ijhydene.2015.05.063 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 40 2015 29 3 0803 8788-8796 9 045F 660 |
allfieldsSound |
10.1016/j.ijhydene.2015.05.063 doi GBVA2015012000003.pica (DE-627)ELV018554369 (ELSEVIER)S0360-3199(15)01221-5 DE-627 ger DE-627 rakwb eng 660 620 660 DE-600 620 DE-600 610 VZ 44.94 bkl Krüger, Andries J. verfasserin aut Evaluation of covalently and ionically cross-linked PBI-excess blends for application in SO2 electrolysis 2015transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Proton exchange membranes (PEM) containing various combinations of PPOBr (pol(2,6-dimethylbromide-1,4-phenylene oxide, covalently cross-linked) or PWN (poly(tetrafluorostyrene-4-phosphonic acid), ionically cross-linked) were evaluated for their suitability in an SO2 electrolyser environment. Since H2SO4 is produced during the oxidation of SO2 in the presence of water, the membranes used in the electrolyser must be both chemically and electrochemically stable. Acid stability tests showed that the blend membranes are stable in 80 wt % acidic media at 80 °C for 120 h. The electrochemical characterisation included polarisation curves, voltage stepping and long term operation. Using polarisation curves two blend combinations were selected for the voltage stepping. Both types of blend membranes showed high stability up to 110 cycles while the F6PBI/PPOBr blend membrane had comparable (to N115®) long term operating voltage, while the F6PBI/PWN blend membrane showed improved voltage, attaining 0.781 V compared to the 0.812 V obtained when using N115 at 0.1 A cm−2. Proton exchange membranes (PEM) containing various combinations of PPOBr (pol(2,6-dimethylbromide-1,4-phenylene oxide, covalently cross-linked) or PWN (poly(tetrafluorostyrene-4-phosphonic acid), ionically cross-linked) were evaluated for their suitability in an SO2 electrolyser environment. Since H2SO4 is produced during the oxidation of SO2 in the presence of water, the membranes used in the electrolyser must be both chemically and electrochemically stable. Acid stability tests showed that the blend membranes are stable in 80 wt % acidic media at 80 °C for 120 h. The electrochemical characterisation included polarisation curves, voltage stepping and long term operation. Using polarisation curves two blend combinations were selected for the voltage stepping. Both types of blend membranes showed high stability up to 110 cycles while the F6PBI/PPOBr blend membrane had comparable (to N115®) long term operating voltage, while the F6PBI/PWN blend membrane showed improved voltage, attaining 0.781 V compared to the 0.812 V obtained when using N115 at 0.1 A cm−2. Voltage stepping Elsevier Long term operation Elsevier Ionically cross-linked Elsevier SO2 electrolysis Elsevier F6PBI blend proton exchange membranes Elsevier Covalently cross-linked Elsevier Kerres, Jochen oth Bessarabov, Dmitri oth Krieg, Henning M. oth Enthalten in Elsevier Dedhia, Kavita ELSEVIER External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs 2018 official journal of the International Association for Hydrogen Energy New York, NY [u.a.] (DE-627)ELV000127019 volume:40 year:2015 number:29 day:3 month:08 pages:8788-8796 extent:9 https://doi.org/10.1016/j.ijhydene.2015.05.063 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 40 2015 29 3 0803 8788-8796 9 045F 660 |
language |
English |
source |
Enthalten in External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs New York, NY [u.a.] volume:40 year:2015 number:29 day:3 month:08 pages:8788-8796 extent:9 |
sourceStr |
Enthalten in External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs New York, NY [u.a.] volume:40 year:2015 number:29 day:3 month:08 pages:8788-8796 extent:9 |
format_phy_str_mv |
Article |
bklname |
Hals-Nasen-Ohrenheilkunde |
institution |
findex.gbv.de |
topic_facet |
Voltage stepping Long term operation Ionically cross-linked SO2 electrolysis F6PBI blend proton exchange membranes Covalently cross-linked |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs |
authorswithroles_txt_mv |
Krüger, Andries J. @@aut@@ Kerres, Jochen @@oth@@ Bessarabov, Dmitri @@oth@@ Krieg, Henning M. @@oth@@ |
publishDateDaySort_date |
2015-01-03T00:00:00Z |
hierarchy_top_id |
ELV000127019 |
dewey-sort |
3660 |
id |
ELV018554369 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV018554369</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625124228.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijhydene.2015.05.063</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2015012000003.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV018554369</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-3199(15)01221-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">660</subfield><subfield code="a">620</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.94</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Krüger, Andries J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Evaluation of covalently and ionically cross-linked PBI-excess blends for application in SO2 electrolysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">9</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Proton exchange membranes (PEM) containing various combinations of PPOBr (pol(2,6-dimethylbromide-1,4-phenylene oxide, covalently cross-linked) or PWN (poly(tetrafluorostyrene-4-phosphonic acid), ionically cross-linked) were evaluated for their suitability in an SO2 electrolyser environment. Since H2SO4 is produced during the oxidation of SO2 in the presence of water, the membranes used in the electrolyser must be both chemically and electrochemically stable. Acid stability tests showed that the blend membranes are stable in 80 wt % acidic media at 80 °C for 120 h. The electrochemical characterisation included polarisation curves, voltage stepping and long term operation. Using polarisation curves two blend combinations were selected for the voltage stepping. Both types of blend membranes showed high stability up to 110 cycles while the F6PBI/PPOBr blend membrane had comparable (to N115®) long term operating voltage, while the F6PBI/PWN blend membrane showed improved voltage, attaining 0.781 V compared to the 0.812 V obtained when using N115 at 0.1 A cm−2.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Proton exchange membranes (PEM) containing various combinations of PPOBr (pol(2,6-dimethylbromide-1,4-phenylene oxide, covalently cross-linked) or PWN (poly(tetrafluorostyrene-4-phosphonic acid), ionically cross-linked) were evaluated for their suitability in an SO2 electrolyser environment. Since H2SO4 is produced during the oxidation of SO2 in the presence of water, the membranes used in the electrolyser must be both chemically and electrochemically stable. Acid stability tests showed that the blend membranes are stable in 80 wt % acidic media at 80 °C for 120 h. The electrochemical characterisation included polarisation curves, voltage stepping and long term operation. Using polarisation curves two blend combinations were selected for the voltage stepping. Both types of blend membranes showed high stability up to 110 cycles while the F6PBI/PPOBr blend membrane had comparable (to N115®) long term operating voltage, while the F6PBI/PWN blend membrane showed improved voltage, attaining 0.781 V compared to the 0.812 V obtained when using N115 at 0.1 A cm−2.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Voltage stepping</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Long term operation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ionically cross-linked</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SO2 electrolysis</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">F6PBI blend proton exchange membranes</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Covalently cross-linked</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kerres, Jochen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bessarabov, Dmitri</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Krieg, Henning M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Dedhia, Kavita ELSEVIER</subfield><subfield code="t">External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs</subfield><subfield code="d">2018</subfield><subfield code="d">official journal of the International Association for Hydrogen Energy</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV000127019</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:40</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:29</subfield><subfield code="g">day:3</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:8788-8796</subfield><subfield code="g">extent:9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ijhydene.2015.05.063</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.94</subfield><subfield code="j">Hals-Nasen-Ohrenheilkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">40</subfield><subfield code="j">2015</subfield><subfield code="e">29</subfield><subfield code="b">3</subfield><subfield code="c">0803</subfield><subfield code="h">8788-8796</subfield><subfield code="g">9</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">660</subfield></datafield></record></collection>
|
author |
Krüger, Andries J. |
spellingShingle |
Krüger, Andries J. ddc 660 ddc 620 ddc 610 bkl 44.94 Elsevier Voltage stepping Elsevier Long term operation Elsevier Ionically cross-linked Elsevier SO2 electrolysis Elsevier F6PBI blend proton exchange membranes Elsevier Covalently cross-linked Evaluation of covalently and ionically cross-linked PBI-excess blends for application in SO2 electrolysis |
authorStr |
Krüger, Andries J. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV000127019 |
format |
electronic Article |
dewey-ones |
660 - Chemical engineering 620 - Engineering & allied operations 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
660 620 660 DE-600 620 DE-600 610 VZ 44.94 bkl Evaluation of covalently and ionically cross-linked PBI-excess blends for application in SO2 electrolysis Voltage stepping Elsevier Long term operation Elsevier Ionically cross-linked Elsevier SO2 electrolysis Elsevier F6PBI blend proton exchange membranes Elsevier Covalently cross-linked Elsevier |
topic |
ddc 660 ddc 620 ddc 610 bkl 44.94 Elsevier Voltage stepping Elsevier Long term operation Elsevier Ionically cross-linked Elsevier SO2 electrolysis Elsevier F6PBI blend proton exchange membranes Elsevier Covalently cross-linked |
topic_unstemmed |
ddc 660 ddc 620 ddc 610 bkl 44.94 Elsevier Voltage stepping Elsevier Long term operation Elsevier Ionically cross-linked Elsevier SO2 electrolysis Elsevier F6PBI blend proton exchange membranes Elsevier Covalently cross-linked |
topic_browse |
ddc 660 ddc 620 ddc 610 bkl 44.94 Elsevier Voltage stepping Elsevier Long term operation Elsevier Ionically cross-linked Elsevier SO2 electrolysis Elsevier F6PBI blend proton exchange membranes Elsevier Covalently cross-linked |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
j k jk d b db h m k hm hmk |
hierarchy_parent_title |
External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs |
hierarchy_parent_id |
ELV000127019 |
dewey-tens |
660 - Chemical engineering 620 - Engineering 610 - Medicine & health |
hierarchy_top_title |
External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV000127019 |
title |
Evaluation of covalently and ionically cross-linked PBI-excess blends for application in SO2 electrolysis |
ctrlnum |
(DE-627)ELV018554369 (ELSEVIER)S0360-3199(15)01221-5 |
title_full |
Evaluation of covalently and ionically cross-linked PBI-excess blends for application in SO2 electrolysis |
author_sort |
Krüger, Andries J. |
journal |
External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs |
journalStr |
External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
zzz |
container_start_page |
8788 |
author_browse |
Krüger, Andries J. |
container_volume |
40 |
physical |
9 |
class |
660 620 660 DE-600 620 DE-600 610 VZ 44.94 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Krüger, Andries J. |
doi_str_mv |
10.1016/j.ijhydene.2015.05.063 |
dewey-full |
660 620 610 |
title_sort |
evaluation of covalently and ionically cross-linked pbi-excess blends for application in so2 electrolysis |
title_auth |
Evaluation of covalently and ionically cross-linked PBI-excess blends for application in SO2 electrolysis |
abstract |
Proton exchange membranes (PEM) containing various combinations of PPOBr (pol(2,6-dimethylbromide-1,4-phenylene oxide, covalently cross-linked) or PWN (poly(tetrafluorostyrene-4-phosphonic acid), ionically cross-linked) were evaluated for their suitability in an SO2 electrolyser environment. Since H2SO4 is produced during the oxidation of SO2 in the presence of water, the membranes used in the electrolyser must be both chemically and electrochemically stable. Acid stability tests showed that the blend membranes are stable in 80 wt % acidic media at 80 °C for 120 h. The electrochemical characterisation included polarisation curves, voltage stepping and long term operation. Using polarisation curves two blend combinations were selected for the voltage stepping. Both types of blend membranes showed high stability up to 110 cycles while the F6PBI/PPOBr blend membrane had comparable (to N115®) long term operating voltage, while the F6PBI/PWN blend membrane showed improved voltage, attaining 0.781 V compared to the 0.812 V obtained when using N115 at 0.1 A cm−2. |
abstractGer |
Proton exchange membranes (PEM) containing various combinations of PPOBr (pol(2,6-dimethylbromide-1,4-phenylene oxide, covalently cross-linked) or PWN (poly(tetrafluorostyrene-4-phosphonic acid), ionically cross-linked) were evaluated for their suitability in an SO2 electrolyser environment. Since H2SO4 is produced during the oxidation of SO2 in the presence of water, the membranes used in the electrolyser must be both chemically and electrochemically stable. Acid stability tests showed that the blend membranes are stable in 80 wt % acidic media at 80 °C for 120 h. The electrochemical characterisation included polarisation curves, voltage stepping and long term operation. Using polarisation curves two blend combinations were selected for the voltage stepping. Both types of blend membranes showed high stability up to 110 cycles while the F6PBI/PPOBr blend membrane had comparable (to N115®) long term operating voltage, while the F6PBI/PWN blend membrane showed improved voltage, attaining 0.781 V compared to the 0.812 V obtained when using N115 at 0.1 A cm−2. |
abstract_unstemmed |
Proton exchange membranes (PEM) containing various combinations of PPOBr (pol(2,6-dimethylbromide-1,4-phenylene oxide, covalently cross-linked) or PWN (poly(tetrafluorostyrene-4-phosphonic acid), ionically cross-linked) were evaluated for their suitability in an SO2 electrolyser environment. Since H2SO4 is produced during the oxidation of SO2 in the presence of water, the membranes used in the electrolyser must be both chemically and electrochemically stable. Acid stability tests showed that the blend membranes are stable in 80 wt % acidic media at 80 °C for 120 h. The electrochemical characterisation included polarisation curves, voltage stepping and long term operation. Using polarisation curves two blend combinations were selected for the voltage stepping. Both types of blend membranes showed high stability up to 110 cycles while the F6PBI/PPOBr blend membrane had comparable (to N115®) long term operating voltage, while the F6PBI/PWN blend membrane showed improved voltage, attaining 0.781 V compared to the 0.812 V obtained when using N115 at 0.1 A cm−2. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
container_issue |
29 |
title_short |
Evaluation of covalently and ionically cross-linked PBI-excess blends for application in SO2 electrolysis |
url |
https://doi.org/10.1016/j.ijhydene.2015.05.063 |
remote_bool |
true |
author2 |
Kerres, Jochen Bessarabov, Dmitri Krieg, Henning M. |
author2Str |
Kerres, Jochen Bessarabov, Dmitri Krieg, Henning M. |
ppnlink |
ELV000127019 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1016/j.ijhydene.2015.05.063 |
up_date |
2024-07-06T19:06:48.145Z |
_version_ |
1803857751595548672 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV018554369</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625124228.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180602s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijhydene.2015.05.063</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2015012000003.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV018554369</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-3199(15)01221-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">660</subfield><subfield code="a">620</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.94</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Krüger, Andries J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Evaluation of covalently and ionically cross-linked PBI-excess blends for application in SO2 electrolysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">9</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Proton exchange membranes (PEM) containing various combinations of PPOBr (pol(2,6-dimethylbromide-1,4-phenylene oxide, covalently cross-linked) or PWN (poly(tetrafluorostyrene-4-phosphonic acid), ionically cross-linked) were evaluated for their suitability in an SO2 electrolyser environment. Since H2SO4 is produced during the oxidation of SO2 in the presence of water, the membranes used in the electrolyser must be both chemically and electrochemically stable. Acid stability tests showed that the blend membranes are stable in 80 wt % acidic media at 80 °C for 120 h. The electrochemical characterisation included polarisation curves, voltage stepping and long term operation. Using polarisation curves two blend combinations were selected for the voltage stepping. Both types of blend membranes showed high stability up to 110 cycles while the F6PBI/PPOBr blend membrane had comparable (to N115®) long term operating voltage, while the F6PBI/PWN blend membrane showed improved voltage, attaining 0.781 V compared to the 0.812 V obtained when using N115 at 0.1 A cm−2.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Proton exchange membranes (PEM) containing various combinations of PPOBr (pol(2,6-dimethylbromide-1,4-phenylene oxide, covalently cross-linked) or PWN (poly(tetrafluorostyrene-4-phosphonic acid), ionically cross-linked) were evaluated for their suitability in an SO2 electrolyser environment. Since H2SO4 is produced during the oxidation of SO2 in the presence of water, the membranes used in the electrolyser must be both chemically and electrochemically stable. Acid stability tests showed that the blend membranes are stable in 80 wt % acidic media at 80 °C for 120 h. The electrochemical characterisation included polarisation curves, voltage stepping and long term operation. Using polarisation curves two blend combinations were selected for the voltage stepping. Both types of blend membranes showed high stability up to 110 cycles while the F6PBI/PPOBr blend membrane had comparable (to N115®) long term operating voltage, while the F6PBI/PWN blend membrane showed improved voltage, attaining 0.781 V compared to the 0.812 V obtained when using N115 at 0.1 A cm−2.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Voltage stepping</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Long term operation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ionically cross-linked</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SO2 electrolysis</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">F6PBI blend proton exchange membranes</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Covalently cross-linked</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kerres, Jochen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bessarabov, Dmitri</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Krieg, Henning M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Dedhia, Kavita ELSEVIER</subfield><subfield code="t">External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs</subfield><subfield code="d">2018</subfield><subfield code="d">official journal of the International Association for Hydrogen Energy</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV000127019</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:40</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:29</subfield><subfield code="g">day:3</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:8788-8796</subfield><subfield code="g">extent:9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ijhydene.2015.05.063</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.94</subfield><subfield code="j">Hals-Nasen-Ohrenheilkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">40</subfield><subfield code="j">2015</subfield><subfield code="e">29</subfield><subfield code="b">3</subfield><subfield code="c">0803</subfield><subfield code="h">8788-8796</subfield><subfield code="g">9</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">660</subfield></datafield></record></collection>
|
score |
7.401 |