Functionalized three-dimensional graphene networks for high performance supercapacitors
Three-dimensional (3D) thermal reduced graphene network (TRGN) deposition on Ni foam without any conductive agents and polymer binders was successfully synthesized by dipping Ni foam into graphene oxide (GO) suspension and subsequent thermal reduction process. The direct and close contact between th...
Ausführliche Beschreibung
Autor*in: |
Wu, Xiaoliang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015transfer abstract |
---|
Umfang: |
5 |
---|
Übergeordnetes Werk: |
Enthalten in: Dynamic patterns of open review process - Zhao, Zhi-Dan ELSEVIER, 2021, an international journal sponsored by the American Carbon Society, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:92 ; year:2015 ; pages:26-30 ; extent:5 |
Links: |
---|
DOI / URN: |
10.1016/j.carbon.2015.02.066 |
---|
Katalog-ID: |
ELV018833853 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV018833853 | ||
003 | DE-627 | ||
005 | 20230625124727.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2015 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.carbon.2015.02.066 |2 doi | |
028 | 5 | 2 | |a GBVA2015020000002.pica |
035 | |a (DE-627)ELV018833853 | ||
035 | |a (ELSEVIER)S0008-6223(15)00165-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 540 | |
082 | 0 | 4 | |a 540 |q DE-600 |
082 | 0 | 4 | |a 500 |q VZ |
084 | |a 33.25 |2 bkl | ||
084 | |a 31.00 |2 bkl | ||
100 | 1 | |a Wu, Xiaoliang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Functionalized three-dimensional graphene networks for high performance supercapacitors |
264 | 1 | |c 2015transfer abstract | |
300 | |a 5 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Three-dimensional (3D) thermal reduced graphene network (TRGN) deposition on Ni foam without any conductive agents and polymer binders was successfully synthesized by dipping Ni foam into graphene oxide (GO) suspension and subsequent thermal reduction process. The direct and close contact between thermal reduced graphene and Ni foam is beneficial to the enhanced conductivity of the electrode, as well as the improvement of ion diffusion/transport into the electrode. Additionally, low-temperature reduction of GO possesses a large amount of stable oxygen-containing groups that can provide high pseudocapacitance. As a result, the TRGN electrode delivers a high specific capacitance of 442.8Fg−1 at 2mVs−1 in 6molL−1 KOH. Moreover, symmetric supercapacitor based on TRGN exhibits a maximum energy density of 30.4Whkg−1 based on the total mass of the two electrodes in 1molL−1 Na2SO4 electrolyte, as well as excellent cycling stability with 118% of its initial capacitance after 5000 cycles. | ||
520 | |a Three-dimensional (3D) thermal reduced graphene network (TRGN) deposition on Ni foam without any conductive agents and polymer binders was successfully synthesized by dipping Ni foam into graphene oxide (GO) suspension and subsequent thermal reduction process. The direct and close contact between thermal reduced graphene and Ni foam is beneficial to the enhanced conductivity of the electrode, as well as the improvement of ion diffusion/transport into the electrode. Additionally, low-temperature reduction of GO possesses a large amount of stable oxygen-containing groups that can provide high pseudocapacitance. As a result, the TRGN electrode delivers a high specific capacitance of 442.8Fg−1 at 2mVs−1 in 6molL−1 KOH. Moreover, symmetric supercapacitor based on TRGN exhibits a maximum energy density of 30.4Whkg−1 based on the total mass of the two electrodes in 1molL−1 Na2SO4 electrolyte, as well as excellent cycling stability with 118% of its initial capacitance after 5000 cycles. | ||
700 | 1 | |a Yang, Deren |4 oth | |
700 | 1 | |a Wang, Caikun |4 oth | |
700 | 1 | |a Jiang, Yuting |4 oth | |
700 | 1 | |a Wei, Tong |4 oth | |
700 | 1 | |a Fan, Zhuangjun |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Zhao, Zhi-Dan ELSEVIER |t Dynamic patterns of open review process |d 2021 |d an international journal sponsored by the American Carbon Society |g Amsterdam [u.a.] |w (DE-627)ELV006580718 |
773 | 1 | 8 | |g volume:92 |g year:2015 |g pages:26-30 |g extent:5 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.carbon.2015.02.066 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OPC-MAT | ||
936 | b | k | |a 33.25 |j Thermodynamik |j statistische Physik |q VZ |
936 | b | k | |a 31.00 |j Mathematik: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 92 |j 2015 |h 26-30 |g 5 | ||
953 | |2 045F |a 540 |
author_variant |
x w xw |
---|---|
matchkey_str |
wuxiaoliangyangderenwangcaikunjiangyutin:2015----:ucinlzdhedmninlrpeeewrsohgpr |
hierarchy_sort_str |
2015transfer abstract |
bklnumber |
33.25 31.00 |
publishDate |
2015 |
allfields |
10.1016/j.carbon.2015.02.066 doi GBVA2015020000002.pica (DE-627)ELV018833853 (ELSEVIER)S0008-6223(15)00165-7 DE-627 ger DE-627 rakwb eng 540 540 DE-600 500 VZ 33.25 bkl 31.00 bkl Wu, Xiaoliang verfasserin aut Functionalized three-dimensional graphene networks for high performance supercapacitors 2015transfer abstract 5 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Three-dimensional (3D) thermal reduced graphene network (TRGN) deposition on Ni foam without any conductive agents and polymer binders was successfully synthesized by dipping Ni foam into graphene oxide (GO) suspension and subsequent thermal reduction process. The direct and close contact between thermal reduced graphene and Ni foam is beneficial to the enhanced conductivity of the electrode, as well as the improvement of ion diffusion/transport into the electrode. Additionally, low-temperature reduction of GO possesses a large amount of stable oxygen-containing groups that can provide high pseudocapacitance. As a result, the TRGN electrode delivers a high specific capacitance of 442.8Fg−1 at 2mVs−1 in 6molL−1 KOH. Moreover, symmetric supercapacitor based on TRGN exhibits a maximum energy density of 30.4Whkg−1 based on the total mass of the two electrodes in 1molL−1 Na2SO4 electrolyte, as well as excellent cycling stability with 118% of its initial capacitance after 5000 cycles. Three-dimensional (3D) thermal reduced graphene network (TRGN) deposition on Ni foam without any conductive agents and polymer binders was successfully synthesized by dipping Ni foam into graphene oxide (GO) suspension and subsequent thermal reduction process. The direct and close contact between thermal reduced graphene and Ni foam is beneficial to the enhanced conductivity of the electrode, as well as the improvement of ion diffusion/transport into the electrode. Additionally, low-temperature reduction of GO possesses a large amount of stable oxygen-containing groups that can provide high pseudocapacitance. As a result, the TRGN electrode delivers a high specific capacitance of 442.8Fg−1 at 2mVs−1 in 6molL−1 KOH. Moreover, symmetric supercapacitor based on TRGN exhibits a maximum energy density of 30.4Whkg−1 based on the total mass of the two electrodes in 1molL−1 Na2SO4 electrolyte, as well as excellent cycling stability with 118% of its initial capacitance after 5000 cycles. Yang, Deren oth Wang, Caikun oth Jiang, Yuting oth Wei, Tong oth Fan, Zhuangjun oth Enthalten in Elsevier Science Zhao, Zhi-Dan ELSEVIER Dynamic patterns of open review process 2021 an international journal sponsored by the American Carbon Society Amsterdam [u.a.] (DE-627)ELV006580718 volume:92 year:2015 pages:26-30 extent:5 https://doi.org/10.1016/j.carbon.2015.02.066 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT 33.25 Thermodynamik statistische Physik VZ 31.00 Mathematik: Allgemeines VZ AR 92 2015 26-30 5 045F 540 |
spelling |
10.1016/j.carbon.2015.02.066 doi GBVA2015020000002.pica (DE-627)ELV018833853 (ELSEVIER)S0008-6223(15)00165-7 DE-627 ger DE-627 rakwb eng 540 540 DE-600 500 VZ 33.25 bkl 31.00 bkl Wu, Xiaoliang verfasserin aut Functionalized three-dimensional graphene networks for high performance supercapacitors 2015transfer abstract 5 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Three-dimensional (3D) thermal reduced graphene network (TRGN) deposition on Ni foam without any conductive agents and polymer binders was successfully synthesized by dipping Ni foam into graphene oxide (GO) suspension and subsequent thermal reduction process. The direct and close contact between thermal reduced graphene and Ni foam is beneficial to the enhanced conductivity of the electrode, as well as the improvement of ion diffusion/transport into the electrode. Additionally, low-temperature reduction of GO possesses a large amount of stable oxygen-containing groups that can provide high pseudocapacitance. As a result, the TRGN electrode delivers a high specific capacitance of 442.8Fg−1 at 2mVs−1 in 6molL−1 KOH. Moreover, symmetric supercapacitor based on TRGN exhibits a maximum energy density of 30.4Whkg−1 based on the total mass of the two electrodes in 1molL−1 Na2SO4 electrolyte, as well as excellent cycling stability with 118% of its initial capacitance after 5000 cycles. Three-dimensional (3D) thermal reduced graphene network (TRGN) deposition on Ni foam without any conductive agents and polymer binders was successfully synthesized by dipping Ni foam into graphene oxide (GO) suspension and subsequent thermal reduction process. The direct and close contact between thermal reduced graphene and Ni foam is beneficial to the enhanced conductivity of the electrode, as well as the improvement of ion diffusion/transport into the electrode. Additionally, low-temperature reduction of GO possesses a large amount of stable oxygen-containing groups that can provide high pseudocapacitance. As a result, the TRGN electrode delivers a high specific capacitance of 442.8Fg−1 at 2mVs−1 in 6molL−1 KOH. Moreover, symmetric supercapacitor based on TRGN exhibits a maximum energy density of 30.4Whkg−1 based on the total mass of the two electrodes in 1molL−1 Na2SO4 electrolyte, as well as excellent cycling stability with 118% of its initial capacitance after 5000 cycles. Yang, Deren oth Wang, Caikun oth Jiang, Yuting oth Wei, Tong oth Fan, Zhuangjun oth Enthalten in Elsevier Science Zhao, Zhi-Dan ELSEVIER Dynamic patterns of open review process 2021 an international journal sponsored by the American Carbon Society Amsterdam [u.a.] (DE-627)ELV006580718 volume:92 year:2015 pages:26-30 extent:5 https://doi.org/10.1016/j.carbon.2015.02.066 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT 33.25 Thermodynamik statistische Physik VZ 31.00 Mathematik: Allgemeines VZ AR 92 2015 26-30 5 045F 540 |
allfields_unstemmed |
10.1016/j.carbon.2015.02.066 doi GBVA2015020000002.pica (DE-627)ELV018833853 (ELSEVIER)S0008-6223(15)00165-7 DE-627 ger DE-627 rakwb eng 540 540 DE-600 500 VZ 33.25 bkl 31.00 bkl Wu, Xiaoliang verfasserin aut Functionalized three-dimensional graphene networks for high performance supercapacitors 2015transfer abstract 5 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Three-dimensional (3D) thermal reduced graphene network (TRGN) deposition on Ni foam without any conductive agents and polymer binders was successfully synthesized by dipping Ni foam into graphene oxide (GO) suspension and subsequent thermal reduction process. The direct and close contact between thermal reduced graphene and Ni foam is beneficial to the enhanced conductivity of the electrode, as well as the improvement of ion diffusion/transport into the electrode. Additionally, low-temperature reduction of GO possesses a large amount of stable oxygen-containing groups that can provide high pseudocapacitance. As a result, the TRGN electrode delivers a high specific capacitance of 442.8Fg−1 at 2mVs−1 in 6molL−1 KOH. Moreover, symmetric supercapacitor based on TRGN exhibits a maximum energy density of 30.4Whkg−1 based on the total mass of the two electrodes in 1molL−1 Na2SO4 electrolyte, as well as excellent cycling stability with 118% of its initial capacitance after 5000 cycles. Three-dimensional (3D) thermal reduced graphene network (TRGN) deposition on Ni foam without any conductive agents and polymer binders was successfully synthesized by dipping Ni foam into graphene oxide (GO) suspension and subsequent thermal reduction process. The direct and close contact between thermal reduced graphene and Ni foam is beneficial to the enhanced conductivity of the electrode, as well as the improvement of ion diffusion/transport into the electrode. Additionally, low-temperature reduction of GO possesses a large amount of stable oxygen-containing groups that can provide high pseudocapacitance. As a result, the TRGN electrode delivers a high specific capacitance of 442.8Fg−1 at 2mVs−1 in 6molL−1 KOH. Moreover, symmetric supercapacitor based on TRGN exhibits a maximum energy density of 30.4Whkg−1 based on the total mass of the two electrodes in 1molL−1 Na2SO4 electrolyte, as well as excellent cycling stability with 118% of its initial capacitance after 5000 cycles. Yang, Deren oth Wang, Caikun oth Jiang, Yuting oth Wei, Tong oth Fan, Zhuangjun oth Enthalten in Elsevier Science Zhao, Zhi-Dan ELSEVIER Dynamic patterns of open review process 2021 an international journal sponsored by the American Carbon Society Amsterdam [u.a.] (DE-627)ELV006580718 volume:92 year:2015 pages:26-30 extent:5 https://doi.org/10.1016/j.carbon.2015.02.066 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT 33.25 Thermodynamik statistische Physik VZ 31.00 Mathematik: Allgemeines VZ AR 92 2015 26-30 5 045F 540 |
allfieldsGer |
10.1016/j.carbon.2015.02.066 doi GBVA2015020000002.pica (DE-627)ELV018833853 (ELSEVIER)S0008-6223(15)00165-7 DE-627 ger DE-627 rakwb eng 540 540 DE-600 500 VZ 33.25 bkl 31.00 bkl Wu, Xiaoliang verfasserin aut Functionalized three-dimensional graphene networks for high performance supercapacitors 2015transfer abstract 5 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Three-dimensional (3D) thermal reduced graphene network (TRGN) deposition on Ni foam without any conductive agents and polymer binders was successfully synthesized by dipping Ni foam into graphene oxide (GO) suspension and subsequent thermal reduction process. The direct and close contact between thermal reduced graphene and Ni foam is beneficial to the enhanced conductivity of the electrode, as well as the improvement of ion diffusion/transport into the electrode. Additionally, low-temperature reduction of GO possesses a large amount of stable oxygen-containing groups that can provide high pseudocapacitance. As a result, the TRGN electrode delivers a high specific capacitance of 442.8Fg−1 at 2mVs−1 in 6molL−1 KOH. Moreover, symmetric supercapacitor based on TRGN exhibits a maximum energy density of 30.4Whkg−1 based on the total mass of the two electrodes in 1molL−1 Na2SO4 electrolyte, as well as excellent cycling stability with 118% of its initial capacitance after 5000 cycles. Three-dimensional (3D) thermal reduced graphene network (TRGN) deposition on Ni foam without any conductive agents and polymer binders was successfully synthesized by dipping Ni foam into graphene oxide (GO) suspension and subsequent thermal reduction process. The direct and close contact between thermal reduced graphene and Ni foam is beneficial to the enhanced conductivity of the electrode, as well as the improvement of ion diffusion/transport into the electrode. Additionally, low-temperature reduction of GO possesses a large amount of stable oxygen-containing groups that can provide high pseudocapacitance. As a result, the TRGN electrode delivers a high specific capacitance of 442.8Fg−1 at 2mVs−1 in 6molL−1 KOH. Moreover, symmetric supercapacitor based on TRGN exhibits a maximum energy density of 30.4Whkg−1 based on the total mass of the two electrodes in 1molL−1 Na2SO4 electrolyte, as well as excellent cycling stability with 118% of its initial capacitance after 5000 cycles. Yang, Deren oth Wang, Caikun oth Jiang, Yuting oth Wei, Tong oth Fan, Zhuangjun oth Enthalten in Elsevier Science Zhao, Zhi-Dan ELSEVIER Dynamic patterns of open review process 2021 an international journal sponsored by the American Carbon Society Amsterdam [u.a.] (DE-627)ELV006580718 volume:92 year:2015 pages:26-30 extent:5 https://doi.org/10.1016/j.carbon.2015.02.066 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT 33.25 Thermodynamik statistische Physik VZ 31.00 Mathematik: Allgemeines VZ AR 92 2015 26-30 5 045F 540 |
allfieldsSound |
10.1016/j.carbon.2015.02.066 doi GBVA2015020000002.pica (DE-627)ELV018833853 (ELSEVIER)S0008-6223(15)00165-7 DE-627 ger DE-627 rakwb eng 540 540 DE-600 500 VZ 33.25 bkl 31.00 bkl Wu, Xiaoliang verfasserin aut Functionalized three-dimensional graphene networks for high performance supercapacitors 2015transfer abstract 5 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Three-dimensional (3D) thermal reduced graphene network (TRGN) deposition on Ni foam without any conductive agents and polymer binders was successfully synthesized by dipping Ni foam into graphene oxide (GO) suspension and subsequent thermal reduction process. The direct and close contact between thermal reduced graphene and Ni foam is beneficial to the enhanced conductivity of the electrode, as well as the improvement of ion diffusion/transport into the electrode. Additionally, low-temperature reduction of GO possesses a large amount of stable oxygen-containing groups that can provide high pseudocapacitance. As a result, the TRGN electrode delivers a high specific capacitance of 442.8Fg−1 at 2mVs−1 in 6molL−1 KOH. Moreover, symmetric supercapacitor based on TRGN exhibits a maximum energy density of 30.4Whkg−1 based on the total mass of the two electrodes in 1molL−1 Na2SO4 electrolyte, as well as excellent cycling stability with 118% of its initial capacitance after 5000 cycles. Three-dimensional (3D) thermal reduced graphene network (TRGN) deposition on Ni foam without any conductive agents and polymer binders was successfully synthesized by dipping Ni foam into graphene oxide (GO) suspension and subsequent thermal reduction process. The direct and close contact between thermal reduced graphene and Ni foam is beneficial to the enhanced conductivity of the electrode, as well as the improvement of ion diffusion/transport into the electrode. Additionally, low-temperature reduction of GO possesses a large amount of stable oxygen-containing groups that can provide high pseudocapacitance. As a result, the TRGN electrode delivers a high specific capacitance of 442.8Fg−1 at 2mVs−1 in 6molL−1 KOH. Moreover, symmetric supercapacitor based on TRGN exhibits a maximum energy density of 30.4Whkg−1 based on the total mass of the two electrodes in 1molL−1 Na2SO4 electrolyte, as well as excellent cycling stability with 118% of its initial capacitance after 5000 cycles. Yang, Deren oth Wang, Caikun oth Jiang, Yuting oth Wei, Tong oth Fan, Zhuangjun oth Enthalten in Elsevier Science Zhao, Zhi-Dan ELSEVIER Dynamic patterns of open review process 2021 an international journal sponsored by the American Carbon Society Amsterdam [u.a.] (DE-627)ELV006580718 volume:92 year:2015 pages:26-30 extent:5 https://doi.org/10.1016/j.carbon.2015.02.066 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT 33.25 Thermodynamik statistische Physik VZ 31.00 Mathematik: Allgemeines VZ AR 92 2015 26-30 5 045F 540 |
language |
English |
source |
Enthalten in Dynamic patterns of open review process Amsterdam [u.a.] volume:92 year:2015 pages:26-30 extent:5 |
sourceStr |
Enthalten in Dynamic patterns of open review process Amsterdam [u.a.] volume:92 year:2015 pages:26-30 extent:5 |
format_phy_str_mv |
Article |
bklname |
Thermodynamik statistische Physik Mathematik: Allgemeines |
institution |
findex.gbv.de |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
Dynamic patterns of open review process |
authorswithroles_txt_mv |
Wu, Xiaoliang @@aut@@ Yang, Deren @@oth@@ Wang, Caikun @@oth@@ Jiang, Yuting @@oth@@ Wei, Tong @@oth@@ Fan, Zhuangjun @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
ELV006580718 |
dewey-sort |
3540 |
id |
ELV018833853 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV018833853</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625124727.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.carbon.2015.02.066</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2015020000002.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV018833853</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0008-6223(15)00165-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">540</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.25</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wu, Xiaoliang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Functionalized three-dimensional graphene networks for high performance supercapacitors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">5</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Three-dimensional (3D) thermal reduced graphene network (TRGN) deposition on Ni foam without any conductive agents and polymer binders was successfully synthesized by dipping Ni foam into graphene oxide (GO) suspension and subsequent thermal reduction process. The direct and close contact between thermal reduced graphene and Ni foam is beneficial to the enhanced conductivity of the electrode, as well as the improvement of ion diffusion/transport into the electrode. Additionally, low-temperature reduction of GO possesses a large amount of stable oxygen-containing groups that can provide high pseudocapacitance. As a result, the TRGN electrode delivers a high specific capacitance of 442.8Fg−1 at 2mVs−1 in 6molL−1 KOH. Moreover, symmetric supercapacitor based on TRGN exhibits a maximum energy density of 30.4Whkg−1 based on the total mass of the two electrodes in 1molL−1 Na2SO4 electrolyte, as well as excellent cycling stability with 118% of its initial capacitance after 5000 cycles.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Three-dimensional (3D) thermal reduced graphene network (TRGN) deposition on Ni foam without any conductive agents and polymer binders was successfully synthesized by dipping Ni foam into graphene oxide (GO) suspension and subsequent thermal reduction process. The direct and close contact between thermal reduced graphene and Ni foam is beneficial to the enhanced conductivity of the electrode, as well as the improvement of ion diffusion/transport into the electrode. Additionally, low-temperature reduction of GO possesses a large amount of stable oxygen-containing groups that can provide high pseudocapacitance. As a result, the TRGN electrode delivers a high specific capacitance of 442.8Fg−1 at 2mVs−1 in 6molL−1 KOH. Moreover, symmetric supercapacitor based on TRGN exhibits a maximum energy density of 30.4Whkg−1 based on the total mass of the two electrodes in 1molL−1 Na2SO4 electrolyte, as well as excellent cycling stability with 118% of its initial capacitance after 5000 cycles.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Deren</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Caikun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Yuting</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wei, Tong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fan, Zhuangjun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Zhao, Zhi-Dan ELSEVIER</subfield><subfield code="t">Dynamic patterns of open review process</subfield><subfield code="d">2021</subfield><subfield code="d">an international journal sponsored by the American Carbon Society</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV006580718</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:92</subfield><subfield code="g">year:2015</subfield><subfield code="g">pages:26-30</subfield><subfield code="g">extent:5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.carbon.2015.02.066</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.25</subfield><subfield code="j">Thermodynamik</subfield><subfield code="j">statistische Physik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="j">Mathematik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">92</subfield><subfield code="j">2015</subfield><subfield code="h">26-30</subfield><subfield code="g">5</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">540</subfield></datafield></record></collection>
|
author |
Wu, Xiaoliang |
spellingShingle |
Wu, Xiaoliang ddc 540 ddc 500 bkl 33.25 bkl 31.00 Functionalized three-dimensional graphene networks for high performance supercapacitors |
authorStr |
Wu, Xiaoliang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV006580718 |
format |
electronic Article |
dewey-ones |
540 - Chemistry & allied sciences 500 - Natural sciences & mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
540 540 DE-600 500 VZ 33.25 bkl 31.00 bkl Functionalized three-dimensional graphene networks for high performance supercapacitors |
topic |
ddc 540 ddc 500 bkl 33.25 bkl 31.00 |
topic_unstemmed |
ddc 540 ddc 500 bkl 33.25 bkl 31.00 |
topic_browse |
ddc 540 ddc 500 bkl 33.25 bkl 31.00 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
d y dy c w cw y j yj t w tw z f zf |
hierarchy_parent_title |
Dynamic patterns of open review process |
hierarchy_parent_id |
ELV006580718 |
dewey-tens |
540 - Chemistry 500 - Science |
hierarchy_top_title |
Dynamic patterns of open review process |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV006580718 |
title |
Functionalized three-dimensional graphene networks for high performance supercapacitors |
ctrlnum |
(DE-627)ELV018833853 (ELSEVIER)S0008-6223(15)00165-7 |
title_full |
Functionalized three-dimensional graphene networks for high performance supercapacitors |
author_sort |
Wu, Xiaoliang |
journal |
Dynamic patterns of open review process |
journalStr |
Dynamic patterns of open review process |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
zzz |
container_start_page |
26 |
author_browse |
Wu, Xiaoliang |
container_volume |
92 |
physical |
5 |
class |
540 540 DE-600 500 VZ 33.25 bkl 31.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Wu, Xiaoliang |
doi_str_mv |
10.1016/j.carbon.2015.02.066 |
dewey-full |
540 500 |
title_sort |
functionalized three-dimensional graphene networks for high performance supercapacitors |
title_auth |
Functionalized three-dimensional graphene networks for high performance supercapacitors |
abstract |
Three-dimensional (3D) thermal reduced graphene network (TRGN) deposition on Ni foam without any conductive agents and polymer binders was successfully synthesized by dipping Ni foam into graphene oxide (GO) suspension and subsequent thermal reduction process. The direct and close contact between thermal reduced graphene and Ni foam is beneficial to the enhanced conductivity of the electrode, as well as the improvement of ion diffusion/transport into the electrode. Additionally, low-temperature reduction of GO possesses a large amount of stable oxygen-containing groups that can provide high pseudocapacitance. As a result, the TRGN electrode delivers a high specific capacitance of 442.8Fg−1 at 2mVs−1 in 6molL−1 KOH. Moreover, symmetric supercapacitor based on TRGN exhibits a maximum energy density of 30.4Whkg−1 based on the total mass of the two electrodes in 1molL−1 Na2SO4 electrolyte, as well as excellent cycling stability with 118% of its initial capacitance after 5000 cycles. |
abstractGer |
Three-dimensional (3D) thermal reduced graphene network (TRGN) deposition on Ni foam without any conductive agents and polymer binders was successfully synthesized by dipping Ni foam into graphene oxide (GO) suspension and subsequent thermal reduction process. The direct and close contact between thermal reduced graphene and Ni foam is beneficial to the enhanced conductivity of the electrode, as well as the improvement of ion diffusion/transport into the electrode. Additionally, low-temperature reduction of GO possesses a large amount of stable oxygen-containing groups that can provide high pseudocapacitance. As a result, the TRGN electrode delivers a high specific capacitance of 442.8Fg−1 at 2mVs−1 in 6molL−1 KOH. Moreover, symmetric supercapacitor based on TRGN exhibits a maximum energy density of 30.4Whkg−1 based on the total mass of the two electrodes in 1molL−1 Na2SO4 electrolyte, as well as excellent cycling stability with 118% of its initial capacitance after 5000 cycles. |
abstract_unstemmed |
Three-dimensional (3D) thermal reduced graphene network (TRGN) deposition on Ni foam without any conductive agents and polymer binders was successfully synthesized by dipping Ni foam into graphene oxide (GO) suspension and subsequent thermal reduction process. The direct and close contact between thermal reduced graphene and Ni foam is beneficial to the enhanced conductivity of the electrode, as well as the improvement of ion diffusion/transport into the electrode. Additionally, low-temperature reduction of GO possesses a large amount of stable oxygen-containing groups that can provide high pseudocapacitance. As a result, the TRGN electrode delivers a high specific capacitance of 442.8Fg−1 at 2mVs−1 in 6molL−1 KOH. Moreover, symmetric supercapacitor based on TRGN exhibits a maximum energy density of 30.4Whkg−1 based on the total mass of the two electrodes in 1molL−1 Na2SO4 electrolyte, as well as excellent cycling stability with 118% of its initial capacitance after 5000 cycles. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT |
title_short |
Functionalized three-dimensional graphene networks for high performance supercapacitors |
url |
https://doi.org/10.1016/j.carbon.2015.02.066 |
remote_bool |
true |
author2 |
Yang, Deren Wang, Caikun Jiang, Yuting Wei, Tong Fan, Zhuangjun |
author2Str |
Yang, Deren Wang, Caikun Jiang, Yuting Wei, Tong Fan, Zhuangjun |
ppnlink |
ELV006580718 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth |
doi_str |
10.1016/j.carbon.2015.02.066 |
up_date |
2024-07-06T19:50:15.519Z |
_version_ |
1803860485625348096 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV018833853</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625124727.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.carbon.2015.02.066</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2015020000002.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV018833853</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0008-6223(15)00165-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">540</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.25</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wu, Xiaoliang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Functionalized three-dimensional graphene networks for high performance supercapacitors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">5</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Three-dimensional (3D) thermal reduced graphene network (TRGN) deposition on Ni foam without any conductive agents and polymer binders was successfully synthesized by dipping Ni foam into graphene oxide (GO) suspension and subsequent thermal reduction process. The direct and close contact between thermal reduced graphene and Ni foam is beneficial to the enhanced conductivity of the electrode, as well as the improvement of ion diffusion/transport into the electrode. Additionally, low-temperature reduction of GO possesses a large amount of stable oxygen-containing groups that can provide high pseudocapacitance. As a result, the TRGN electrode delivers a high specific capacitance of 442.8Fg−1 at 2mVs−1 in 6molL−1 KOH. Moreover, symmetric supercapacitor based on TRGN exhibits a maximum energy density of 30.4Whkg−1 based on the total mass of the two electrodes in 1molL−1 Na2SO4 electrolyte, as well as excellent cycling stability with 118% of its initial capacitance after 5000 cycles.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Three-dimensional (3D) thermal reduced graphene network (TRGN) deposition on Ni foam without any conductive agents and polymer binders was successfully synthesized by dipping Ni foam into graphene oxide (GO) suspension and subsequent thermal reduction process. The direct and close contact between thermal reduced graphene and Ni foam is beneficial to the enhanced conductivity of the electrode, as well as the improvement of ion diffusion/transport into the electrode. Additionally, low-temperature reduction of GO possesses a large amount of stable oxygen-containing groups that can provide high pseudocapacitance. As a result, the TRGN electrode delivers a high specific capacitance of 442.8Fg−1 at 2mVs−1 in 6molL−1 KOH. Moreover, symmetric supercapacitor based on TRGN exhibits a maximum energy density of 30.4Whkg−1 based on the total mass of the two electrodes in 1molL−1 Na2SO4 electrolyte, as well as excellent cycling stability with 118% of its initial capacitance after 5000 cycles.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Deren</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Caikun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Yuting</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wei, Tong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fan, Zhuangjun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Zhao, Zhi-Dan ELSEVIER</subfield><subfield code="t">Dynamic patterns of open review process</subfield><subfield code="d">2021</subfield><subfield code="d">an international journal sponsored by the American Carbon Society</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV006580718</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:92</subfield><subfield code="g">year:2015</subfield><subfield code="g">pages:26-30</subfield><subfield code="g">extent:5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.carbon.2015.02.066</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.25</subfield><subfield code="j">Thermodynamik</subfield><subfield code="j">statistische Physik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="j">Mathematik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">92</subfield><subfield code="j">2015</subfield><subfield code="h">26-30</subfield><subfield code="g">5</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">540</subfield></datafield></record></collection>
|
score |
7.401512 |