On Nash approximation of complex analytic sets in Runge domains
We prove that every complex analytic set X in a Runge domain Ω can be approximated by Nash sets on any relatively compact subdomain Ω 0 of Ω. Moreover, for every Nash subset Y of Ω with Y ⊂ X , the approximating sets can be chosen so that they contain Y ∩ Ω 0 . As a consequence, we derive a necessar...
Ausführliche Beschreibung
Autor*in: |
Adamus, Janusz [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Umfang: |
14 |
---|
Übergeordnetes Werk: |
Enthalten in: In silico drug repurposing in COVID-19: A network-based analysis - Sibilio, Pasquale ELSEVIER, 2021, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:423 ; year:2015 ; number:1 ; day:1 ; month:03 ; pages:229-242 ; extent:14 |
Links: |
---|
DOI / URN: |
10.1016/j.jmaa.2014.09.070 |
---|
Katalog-ID: |
ELV018945902 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV018945902 | ||
003 | DE-627 | ||
005 | 20230623145232.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2015 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jmaa.2014.09.070 |2 doi | |
028 | 5 | 2 | |a GBVA2015022000019.pica |
035 | |a (DE-627)ELV018945902 | ||
035 | |a (ELSEVIER)S0022-247X(14)00903-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 510 | |
082 | 0 | 4 | |a 510 |q DE-600 |
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.40 |2 bkl | ||
100 | 1 | |a Adamus, Janusz |e verfasserin |4 aut | |
245 | 1 | 0 | |a On Nash approximation of complex analytic sets in Runge domains |
264 | 1 | |c 2015 | |
300 | |a 14 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a We prove that every complex analytic set X in a Runge domain Ω can be approximated by Nash sets on any relatively compact subdomain Ω 0 of Ω. Moreover, for every Nash subset Y of Ω with Y ⊂ X , the approximating sets can be chosen so that they contain Y ∩ Ω 0 . As a consequence, we derive a necessary and sufficient condition for a complex analytic set X to admit a Nash approximation which coincides with X along its arbitrary given subset. | ||
650 | 7 | |a Approximation |2 Elsevier | |
650 | 7 | |a Nash set |2 Elsevier | |
650 | 7 | |a Analytic set |2 Elsevier | |
650 | 7 | |a Runge domain |2 Elsevier | |
700 | 1 | |a Bilski, Marcin |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Sibilio, Pasquale ELSEVIER |t In silico drug repurposing in COVID-19: A network-based analysis |d 2021 |g Amsterdam [u.a.] |w (DE-627)ELV006634001 |
773 | 1 | 8 | |g volume:423 |g year:2015 |g number:1 |g day:1 |g month:03 |g pages:229-242 |g extent:14 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jmaa.2014.09.070 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OPC-PHA | ||
936 | b | k | |a 44.40 |j Pharmazie |j Pharmazeutika |q VZ |
951 | |a AR | ||
952 | |d 423 |j 2015 |e 1 |b 1 |c 0301 |h 229-242 |g 14 | ||
953 | |2 045F |a 510 |
author_variant |
j a ja |
---|---|
matchkey_str |
adamusjanuszbilskimarcin:2015----:nahprxmtoocmlxnltce |
hierarchy_sort_str |
2015 |
bklnumber |
44.40 |
publishDate |
2015 |
allfields |
10.1016/j.jmaa.2014.09.070 doi GBVA2015022000019.pica (DE-627)ELV018945902 (ELSEVIER)S0022-247X(14)00903-2 DE-627 ger DE-627 rakwb eng 510 510 DE-600 610 VZ 44.40 bkl Adamus, Janusz verfasserin aut On Nash approximation of complex analytic sets in Runge domains 2015 14 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We prove that every complex analytic set X in a Runge domain Ω can be approximated by Nash sets on any relatively compact subdomain Ω 0 of Ω. Moreover, for every Nash subset Y of Ω with Y ⊂ X , the approximating sets can be chosen so that they contain Y ∩ Ω 0 . As a consequence, we derive a necessary and sufficient condition for a complex analytic set X to admit a Nash approximation which coincides with X along its arbitrary given subset. Approximation Elsevier Nash set Elsevier Analytic set Elsevier Runge domain Elsevier Bilski, Marcin oth Enthalten in Elsevier Sibilio, Pasquale ELSEVIER In silico drug repurposing in COVID-19: A network-based analysis 2021 Amsterdam [u.a.] (DE-627)ELV006634001 volume:423 year:2015 number:1 day:1 month:03 pages:229-242 extent:14 https://doi.org/10.1016/j.jmaa.2014.09.070 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 423 2015 1 1 0301 229-242 14 045F 510 |
spelling |
10.1016/j.jmaa.2014.09.070 doi GBVA2015022000019.pica (DE-627)ELV018945902 (ELSEVIER)S0022-247X(14)00903-2 DE-627 ger DE-627 rakwb eng 510 510 DE-600 610 VZ 44.40 bkl Adamus, Janusz verfasserin aut On Nash approximation of complex analytic sets in Runge domains 2015 14 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We prove that every complex analytic set X in a Runge domain Ω can be approximated by Nash sets on any relatively compact subdomain Ω 0 of Ω. Moreover, for every Nash subset Y of Ω with Y ⊂ X , the approximating sets can be chosen so that they contain Y ∩ Ω 0 . As a consequence, we derive a necessary and sufficient condition for a complex analytic set X to admit a Nash approximation which coincides with X along its arbitrary given subset. Approximation Elsevier Nash set Elsevier Analytic set Elsevier Runge domain Elsevier Bilski, Marcin oth Enthalten in Elsevier Sibilio, Pasquale ELSEVIER In silico drug repurposing in COVID-19: A network-based analysis 2021 Amsterdam [u.a.] (DE-627)ELV006634001 volume:423 year:2015 number:1 day:1 month:03 pages:229-242 extent:14 https://doi.org/10.1016/j.jmaa.2014.09.070 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 423 2015 1 1 0301 229-242 14 045F 510 |
allfields_unstemmed |
10.1016/j.jmaa.2014.09.070 doi GBVA2015022000019.pica (DE-627)ELV018945902 (ELSEVIER)S0022-247X(14)00903-2 DE-627 ger DE-627 rakwb eng 510 510 DE-600 610 VZ 44.40 bkl Adamus, Janusz verfasserin aut On Nash approximation of complex analytic sets in Runge domains 2015 14 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We prove that every complex analytic set X in a Runge domain Ω can be approximated by Nash sets on any relatively compact subdomain Ω 0 of Ω. Moreover, for every Nash subset Y of Ω with Y ⊂ X , the approximating sets can be chosen so that they contain Y ∩ Ω 0 . As a consequence, we derive a necessary and sufficient condition for a complex analytic set X to admit a Nash approximation which coincides with X along its arbitrary given subset. Approximation Elsevier Nash set Elsevier Analytic set Elsevier Runge domain Elsevier Bilski, Marcin oth Enthalten in Elsevier Sibilio, Pasquale ELSEVIER In silico drug repurposing in COVID-19: A network-based analysis 2021 Amsterdam [u.a.] (DE-627)ELV006634001 volume:423 year:2015 number:1 day:1 month:03 pages:229-242 extent:14 https://doi.org/10.1016/j.jmaa.2014.09.070 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 423 2015 1 1 0301 229-242 14 045F 510 |
allfieldsGer |
10.1016/j.jmaa.2014.09.070 doi GBVA2015022000019.pica (DE-627)ELV018945902 (ELSEVIER)S0022-247X(14)00903-2 DE-627 ger DE-627 rakwb eng 510 510 DE-600 610 VZ 44.40 bkl Adamus, Janusz verfasserin aut On Nash approximation of complex analytic sets in Runge domains 2015 14 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We prove that every complex analytic set X in a Runge domain Ω can be approximated by Nash sets on any relatively compact subdomain Ω 0 of Ω. Moreover, for every Nash subset Y of Ω with Y ⊂ X , the approximating sets can be chosen so that they contain Y ∩ Ω 0 . As a consequence, we derive a necessary and sufficient condition for a complex analytic set X to admit a Nash approximation which coincides with X along its arbitrary given subset. Approximation Elsevier Nash set Elsevier Analytic set Elsevier Runge domain Elsevier Bilski, Marcin oth Enthalten in Elsevier Sibilio, Pasquale ELSEVIER In silico drug repurposing in COVID-19: A network-based analysis 2021 Amsterdam [u.a.] (DE-627)ELV006634001 volume:423 year:2015 number:1 day:1 month:03 pages:229-242 extent:14 https://doi.org/10.1016/j.jmaa.2014.09.070 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 423 2015 1 1 0301 229-242 14 045F 510 |
allfieldsSound |
10.1016/j.jmaa.2014.09.070 doi GBVA2015022000019.pica (DE-627)ELV018945902 (ELSEVIER)S0022-247X(14)00903-2 DE-627 ger DE-627 rakwb eng 510 510 DE-600 610 VZ 44.40 bkl Adamus, Janusz verfasserin aut On Nash approximation of complex analytic sets in Runge domains 2015 14 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We prove that every complex analytic set X in a Runge domain Ω can be approximated by Nash sets on any relatively compact subdomain Ω 0 of Ω. Moreover, for every Nash subset Y of Ω with Y ⊂ X , the approximating sets can be chosen so that they contain Y ∩ Ω 0 . As a consequence, we derive a necessary and sufficient condition for a complex analytic set X to admit a Nash approximation which coincides with X along its arbitrary given subset. Approximation Elsevier Nash set Elsevier Analytic set Elsevier Runge domain Elsevier Bilski, Marcin oth Enthalten in Elsevier Sibilio, Pasquale ELSEVIER In silico drug repurposing in COVID-19: A network-based analysis 2021 Amsterdam [u.a.] (DE-627)ELV006634001 volume:423 year:2015 number:1 day:1 month:03 pages:229-242 extent:14 https://doi.org/10.1016/j.jmaa.2014.09.070 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 423 2015 1 1 0301 229-242 14 045F 510 |
language |
English |
source |
Enthalten in In silico drug repurposing in COVID-19: A network-based analysis Amsterdam [u.a.] volume:423 year:2015 number:1 day:1 month:03 pages:229-242 extent:14 |
sourceStr |
Enthalten in In silico drug repurposing in COVID-19: A network-based analysis Amsterdam [u.a.] volume:423 year:2015 number:1 day:1 month:03 pages:229-242 extent:14 |
format_phy_str_mv |
Article |
bklname |
Pharmazie Pharmazeutika |
institution |
findex.gbv.de |
topic_facet |
Approximation Nash set Analytic set Runge domain |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
In silico drug repurposing in COVID-19: A network-based analysis |
authorswithroles_txt_mv |
Adamus, Janusz @@aut@@ Bilski, Marcin @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
ELV006634001 |
dewey-sort |
3510 |
id |
ELV018945902 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV018945902</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230623145232.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jmaa.2014.09.070</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2015022000019.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV018945902</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0022-247X(14)00903-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.40</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Adamus, Janusz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On Nash approximation of complex analytic sets in Runge domains</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">14</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We prove that every complex analytic set X in a Runge domain Ω can be approximated by Nash sets on any relatively compact subdomain Ω 0 of Ω. Moreover, for every Nash subset Y of Ω with Y ⊂ X , the approximating sets can be chosen so that they contain Y ∩ Ω 0 . As a consequence, we derive a necessary and sufficient condition for a complex analytic set X to admit a Nash approximation which coincides with X along its arbitrary given subset.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Approximation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nash set</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Analytic set</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Runge domain</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bilski, Marcin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Sibilio, Pasquale ELSEVIER</subfield><subfield code="t">In silico drug repurposing in COVID-19: A network-based analysis</subfield><subfield code="d">2021</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV006634001</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:423</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">day:1</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:229-242</subfield><subfield code="g">extent:14</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jmaa.2014.09.070</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.40</subfield><subfield code="j">Pharmazie</subfield><subfield code="j">Pharmazeutika</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">423</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="b">1</subfield><subfield code="c">0301</subfield><subfield code="h">229-242</subfield><subfield code="g">14</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">510</subfield></datafield></record></collection>
|
author |
Adamus, Janusz |
spellingShingle |
Adamus, Janusz ddc 510 ddc 610 bkl 44.40 Elsevier Approximation Elsevier Nash set Elsevier Analytic set Elsevier Runge domain On Nash approximation of complex analytic sets in Runge domains |
authorStr |
Adamus, Janusz |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV006634001 |
format |
electronic Article |
dewey-ones |
510 - Mathematics 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
510 510 DE-600 610 VZ 44.40 bkl On Nash approximation of complex analytic sets in Runge domains Approximation Elsevier Nash set Elsevier Analytic set Elsevier Runge domain Elsevier |
topic |
ddc 510 ddc 610 bkl 44.40 Elsevier Approximation Elsevier Nash set Elsevier Analytic set Elsevier Runge domain |
topic_unstemmed |
ddc 510 ddc 610 bkl 44.40 Elsevier Approximation Elsevier Nash set Elsevier Analytic set Elsevier Runge domain |
topic_browse |
ddc 510 ddc 610 bkl 44.40 Elsevier Approximation Elsevier Nash set Elsevier Analytic set Elsevier Runge domain |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
m b mb |
hierarchy_parent_title |
In silico drug repurposing in COVID-19: A network-based analysis |
hierarchy_parent_id |
ELV006634001 |
dewey-tens |
510 - Mathematics 610 - Medicine & health |
hierarchy_top_title |
In silico drug repurposing in COVID-19: A network-based analysis |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV006634001 |
title |
On Nash approximation of complex analytic sets in Runge domains |
ctrlnum |
(DE-627)ELV018945902 (ELSEVIER)S0022-247X(14)00903-2 |
title_full |
On Nash approximation of complex analytic sets in Runge domains |
author_sort |
Adamus, Janusz |
journal |
In silico drug repurposing in COVID-19: A network-based analysis |
journalStr |
In silico drug repurposing in COVID-19: A network-based analysis |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
zzz |
container_start_page |
229 |
author_browse |
Adamus, Janusz |
container_volume |
423 |
physical |
14 |
class |
510 510 DE-600 610 VZ 44.40 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Adamus, Janusz |
doi_str_mv |
10.1016/j.jmaa.2014.09.070 |
dewey-full |
510 610 |
title_sort |
on nash approximation of complex analytic sets in runge domains |
title_auth |
On Nash approximation of complex analytic sets in Runge domains |
abstract |
We prove that every complex analytic set X in a Runge domain Ω can be approximated by Nash sets on any relatively compact subdomain Ω 0 of Ω. Moreover, for every Nash subset Y of Ω with Y ⊂ X , the approximating sets can be chosen so that they contain Y ∩ Ω 0 . As a consequence, we derive a necessary and sufficient condition for a complex analytic set X to admit a Nash approximation which coincides with X along its arbitrary given subset. |
abstractGer |
We prove that every complex analytic set X in a Runge domain Ω can be approximated by Nash sets on any relatively compact subdomain Ω 0 of Ω. Moreover, for every Nash subset Y of Ω with Y ⊂ X , the approximating sets can be chosen so that they contain Y ∩ Ω 0 . As a consequence, we derive a necessary and sufficient condition for a complex analytic set X to admit a Nash approximation which coincides with X along its arbitrary given subset. |
abstract_unstemmed |
We prove that every complex analytic set X in a Runge domain Ω can be approximated by Nash sets on any relatively compact subdomain Ω 0 of Ω. Moreover, for every Nash subset Y of Ω with Y ⊂ X , the approximating sets can be chosen so that they contain Y ∩ Ω 0 . As a consequence, we derive a necessary and sufficient condition for a complex analytic set X to admit a Nash approximation which coincides with X along its arbitrary given subset. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-PHA |
container_issue |
1 |
title_short |
On Nash approximation of complex analytic sets in Runge domains |
url |
https://doi.org/10.1016/j.jmaa.2014.09.070 |
remote_bool |
true |
author2 |
Bilski, Marcin |
author2Str |
Bilski, Marcin |
ppnlink |
ELV006634001 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1016/j.jmaa.2014.09.070 |
up_date |
2024-07-06T20:08:30.950Z |
_version_ |
1803861634266955776 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV018945902</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230623145232.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jmaa.2014.09.070</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2015022000019.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV018945902</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0022-247X(14)00903-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.40</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Adamus, Janusz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On Nash approximation of complex analytic sets in Runge domains</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">14</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We prove that every complex analytic set X in a Runge domain Ω can be approximated by Nash sets on any relatively compact subdomain Ω 0 of Ω. Moreover, for every Nash subset Y of Ω with Y ⊂ X , the approximating sets can be chosen so that they contain Y ∩ Ω 0 . As a consequence, we derive a necessary and sufficient condition for a complex analytic set X to admit a Nash approximation which coincides with X along its arbitrary given subset.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Approximation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nash set</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Analytic set</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Runge domain</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bilski, Marcin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Sibilio, Pasquale ELSEVIER</subfield><subfield code="t">In silico drug repurposing in COVID-19: A network-based analysis</subfield><subfield code="d">2021</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV006634001</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:423</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">day:1</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:229-242</subfield><subfield code="g">extent:14</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jmaa.2014.09.070</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.40</subfield><subfield code="j">Pharmazie</subfield><subfield code="j">Pharmazeutika</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">423</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="b">1</subfield><subfield code="c">0301</subfield><subfield code="h">229-242</subfield><subfield code="g">14</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">510</subfield></datafield></record></collection>
|
score |
7.399987 |