Preparation and dielectric properties of X9R core–shell BaTiO3 ceramics coated by BiAlO3–BaTiO3
The typical “core–shell” structure in BT ceramics can easily obtain double dielectric anomalies, which greatly improve the dielectric temperature stability for multilayer ceramic capacitors. In this paper, BaTiO3 particles were coated with 0.3BiAlO3–0.7BaTiO3 shell [xBT(0.3BA–0.7BT)] by a sol–gel me...
Ausführliche Beschreibung
Autor*in: |
Liu, Mengying [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
9 |
---|
Übergeordnetes Werk: |
Enthalten in: Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration - Rey, F. ELSEVIER, 2018, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:42 ; year:2016 ; number:1 ; pages:379-387 ; extent:9 |
Links: |
---|
DOI / URN: |
10.1016/j.ceramint.2015.08.120 |
---|
Katalog-ID: |
ELV019243413 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV019243413 | ||
003 | DE-627 | ||
005 | 20230625125548.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ceramint.2015.08.120 |2 doi | |
028 | 5 | 2 | |a GBVA2016008000004.pica |
035 | |a (DE-627)ELV019243413 | ||
035 | |a (ELSEVIER)S0272-8842(15)01645-4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 670 | |
082 | 0 | 4 | |a 670 |q DE-600 |
082 | 0 | 4 | |a 333.7 |a 610 |q VZ |
084 | |a 43.12 |2 bkl | ||
084 | |a 43.13 |2 bkl | ||
084 | |a 44.13 |2 bkl | ||
100 | 1 | |a Liu, Mengying |e verfasserin |4 aut | |
245 | 1 | 0 | |a Preparation and dielectric properties of X9R core–shell BaTiO3 ceramics coated by BiAlO3–BaTiO3 |
264 | 1 | |c 2016transfer abstract | |
300 | |a 9 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a The typical “core–shell” structure in BT ceramics can easily obtain double dielectric anomalies, which greatly improve the dielectric temperature stability for multilayer ceramic capacitors. In this paper, BaTiO3 particles were coated with 0.3BiAlO3–0.7BaTiO3 shell [xBT(0.3BA–0.7BT)] by a sol–gel method. Core–shell structure was proved to exist in ceramic grains by transmission electron microscopy (TEM) and energy-dispersive spectroscopy (EDS). High-temperature X9R dielectrics were obtained when x=0.3 and 0.2, with a high dielectric constant (~1200) and low dielectric loss (<2.0%). Furthermore, the impedance data was fitted by an effective 4RC equivalent circuit, which could be assigned to the core, the shell, the grain boundary, and the ceramic/internal electrode interface regions. The activation energy of the core was found to decrease with x decreasing, while opposite tendency exists in the shell and the grain boundary. | ||
520 | |a The typical “core–shell” structure in BT ceramics can easily obtain double dielectric anomalies, which greatly improve the dielectric temperature stability for multilayer ceramic capacitors. In this paper, BaTiO3 particles were coated with 0.3BiAlO3–0.7BaTiO3 shell [xBT(0.3BA–0.7BT)] by a sol–gel method. Core–shell structure was proved to exist in ceramic grains by transmission electron microscopy (TEM) and energy-dispersive spectroscopy (EDS). High-temperature X9R dielectrics were obtained when x=0.3 and 0.2, with a high dielectric constant (~1200) and low dielectric loss (<2.0%). Furthermore, the impedance data was fitted by an effective 4RC equivalent circuit, which could be assigned to the core, the shell, the grain boundary, and the ceramic/internal electrode interface regions. The activation energy of the core was found to decrease with x decreasing, while opposite tendency exists in the shell and the grain boundary. | ||
650 | 7 | |a Core–shell structure |2 Elsevier | |
650 | 7 | |a Dielectric properties |2 Elsevier | |
650 | 7 | |a Impedance spectroscopy |2 Elsevier | |
700 | 1 | |a Hao, Hua |4 oth | |
700 | 1 | |a Chen, Weijin |4 oth | |
700 | 1 | |a Zhou, Dongdong |4 oth | |
700 | 1 | |a Appiah, Millicent |4 oth | |
700 | 1 | |a Liu, Binzhi |4 oth | |
700 | 1 | |a Cao, Minghe |4 oth | |
700 | 1 | |a Yao, Zhonghua |4 oth | |
700 | 1 | |a Liu, Hanxing |4 oth | |
700 | 1 | |a Zhang, Zishan |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Rey, F. ELSEVIER |t Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration |d 2018 |g Amsterdam [u.a.] |w (DE-627)ELV000899798 |
773 | 1 | 8 | |g volume:42 |g year:2016 |g number:1 |g pages:379-387 |g extent:9 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.ceramint.2015.08.120 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OPC-GGO | ||
936 | b | k | |a 43.12 |j Umweltchemie |q VZ |
936 | b | k | |a 43.13 |j Umwelttoxikologie |q VZ |
936 | b | k | |a 44.13 |j Medizinische Ökologie |q VZ |
951 | |a AR | ||
952 | |d 42 |j 2016 |e 1 |h 379-387 |g 9 | ||
953 | |2 045F |a 670 |
author_variant |
m l ml |
---|---|
matchkey_str |
liumengyinghaohuachenweijinzhoudongdonga:2016----:rprtoadilcrcrprisf9crselai3eai |
hierarchy_sort_str |
2016transfer abstract |
bklnumber |
43.12 43.13 44.13 |
publishDate |
2016 |
allfields |
10.1016/j.ceramint.2015.08.120 doi GBVA2016008000004.pica (DE-627)ELV019243413 (ELSEVIER)S0272-8842(15)01645-4 DE-627 ger DE-627 rakwb eng 670 670 DE-600 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Liu, Mengying verfasserin aut Preparation and dielectric properties of X9R core–shell BaTiO3 ceramics coated by BiAlO3–BaTiO3 2016transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The typical “core–shell” structure in BT ceramics can easily obtain double dielectric anomalies, which greatly improve the dielectric temperature stability for multilayer ceramic capacitors. In this paper, BaTiO3 particles were coated with 0.3BiAlO3–0.7BaTiO3 shell [xBT(0.3BA–0.7BT)] by a sol–gel method. Core–shell structure was proved to exist in ceramic grains by transmission electron microscopy (TEM) and energy-dispersive spectroscopy (EDS). High-temperature X9R dielectrics were obtained when x=0.3 and 0.2, with a high dielectric constant (~1200) and low dielectric loss (<2.0%). Furthermore, the impedance data was fitted by an effective 4RC equivalent circuit, which could be assigned to the core, the shell, the grain boundary, and the ceramic/internal electrode interface regions. The activation energy of the core was found to decrease with x decreasing, while opposite tendency exists in the shell and the grain boundary. The typical “core–shell” structure in BT ceramics can easily obtain double dielectric anomalies, which greatly improve the dielectric temperature stability for multilayer ceramic capacitors. In this paper, BaTiO3 particles were coated with 0.3BiAlO3–0.7BaTiO3 shell [xBT(0.3BA–0.7BT)] by a sol–gel method. Core–shell structure was proved to exist in ceramic grains by transmission electron microscopy (TEM) and energy-dispersive spectroscopy (EDS). High-temperature X9R dielectrics were obtained when x=0.3 and 0.2, with a high dielectric constant (~1200) and low dielectric loss (<2.0%). Furthermore, the impedance data was fitted by an effective 4RC equivalent circuit, which could be assigned to the core, the shell, the grain boundary, and the ceramic/internal electrode interface regions. The activation energy of the core was found to decrease with x decreasing, while opposite tendency exists in the shell and the grain boundary. Core–shell structure Elsevier Dielectric properties Elsevier Impedance spectroscopy Elsevier Hao, Hua oth Chen, Weijin oth Zhou, Dongdong oth Appiah, Millicent oth Liu, Binzhi oth Cao, Minghe oth Yao, Zhonghua oth Liu, Hanxing oth Zhang, Zishan oth Enthalten in Elsevier Science Rey, F. ELSEVIER Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration 2018 Amsterdam [u.a.] (DE-627)ELV000899798 volume:42 year:2016 number:1 pages:379-387 extent:9 https://doi.org/10.1016/j.ceramint.2015.08.120 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 42 2016 1 379-387 9 045F 670 |
spelling |
10.1016/j.ceramint.2015.08.120 doi GBVA2016008000004.pica (DE-627)ELV019243413 (ELSEVIER)S0272-8842(15)01645-4 DE-627 ger DE-627 rakwb eng 670 670 DE-600 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Liu, Mengying verfasserin aut Preparation and dielectric properties of X9R core–shell BaTiO3 ceramics coated by BiAlO3–BaTiO3 2016transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The typical “core–shell” structure in BT ceramics can easily obtain double dielectric anomalies, which greatly improve the dielectric temperature stability for multilayer ceramic capacitors. In this paper, BaTiO3 particles were coated with 0.3BiAlO3–0.7BaTiO3 shell [xBT(0.3BA–0.7BT)] by a sol–gel method. Core–shell structure was proved to exist in ceramic grains by transmission electron microscopy (TEM) and energy-dispersive spectroscopy (EDS). High-temperature X9R dielectrics were obtained when x=0.3 and 0.2, with a high dielectric constant (~1200) and low dielectric loss (<2.0%). Furthermore, the impedance data was fitted by an effective 4RC equivalent circuit, which could be assigned to the core, the shell, the grain boundary, and the ceramic/internal electrode interface regions. The activation energy of the core was found to decrease with x decreasing, while opposite tendency exists in the shell and the grain boundary. The typical “core–shell” structure in BT ceramics can easily obtain double dielectric anomalies, which greatly improve the dielectric temperature stability for multilayer ceramic capacitors. In this paper, BaTiO3 particles were coated with 0.3BiAlO3–0.7BaTiO3 shell [xBT(0.3BA–0.7BT)] by a sol–gel method. Core–shell structure was proved to exist in ceramic grains by transmission electron microscopy (TEM) and energy-dispersive spectroscopy (EDS). High-temperature X9R dielectrics were obtained when x=0.3 and 0.2, with a high dielectric constant (~1200) and low dielectric loss (<2.0%). Furthermore, the impedance data was fitted by an effective 4RC equivalent circuit, which could be assigned to the core, the shell, the grain boundary, and the ceramic/internal electrode interface regions. The activation energy of the core was found to decrease with x decreasing, while opposite tendency exists in the shell and the grain boundary. Core–shell structure Elsevier Dielectric properties Elsevier Impedance spectroscopy Elsevier Hao, Hua oth Chen, Weijin oth Zhou, Dongdong oth Appiah, Millicent oth Liu, Binzhi oth Cao, Minghe oth Yao, Zhonghua oth Liu, Hanxing oth Zhang, Zishan oth Enthalten in Elsevier Science Rey, F. ELSEVIER Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration 2018 Amsterdam [u.a.] (DE-627)ELV000899798 volume:42 year:2016 number:1 pages:379-387 extent:9 https://doi.org/10.1016/j.ceramint.2015.08.120 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 42 2016 1 379-387 9 045F 670 |
allfields_unstemmed |
10.1016/j.ceramint.2015.08.120 doi GBVA2016008000004.pica (DE-627)ELV019243413 (ELSEVIER)S0272-8842(15)01645-4 DE-627 ger DE-627 rakwb eng 670 670 DE-600 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Liu, Mengying verfasserin aut Preparation and dielectric properties of X9R core–shell BaTiO3 ceramics coated by BiAlO3–BaTiO3 2016transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The typical “core–shell” structure in BT ceramics can easily obtain double dielectric anomalies, which greatly improve the dielectric temperature stability for multilayer ceramic capacitors. In this paper, BaTiO3 particles were coated with 0.3BiAlO3–0.7BaTiO3 shell [xBT(0.3BA–0.7BT)] by a sol–gel method. Core–shell structure was proved to exist in ceramic grains by transmission electron microscopy (TEM) and energy-dispersive spectroscopy (EDS). High-temperature X9R dielectrics were obtained when x=0.3 and 0.2, with a high dielectric constant (~1200) and low dielectric loss (<2.0%). Furthermore, the impedance data was fitted by an effective 4RC equivalent circuit, which could be assigned to the core, the shell, the grain boundary, and the ceramic/internal electrode interface regions. The activation energy of the core was found to decrease with x decreasing, while opposite tendency exists in the shell and the grain boundary. The typical “core–shell” structure in BT ceramics can easily obtain double dielectric anomalies, which greatly improve the dielectric temperature stability for multilayer ceramic capacitors. In this paper, BaTiO3 particles were coated with 0.3BiAlO3–0.7BaTiO3 shell [xBT(0.3BA–0.7BT)] by a sol–gel method. Core–shell structure was proved to exist in ceramic grains by transmission electron microscopy (TEM) and energy-dispersive spectroscopy (EDS). High-temperature X9R dielectrics were obtained when x=0.3 and 0.2, with a high dielectric constant (~1200) and low dielectric loss (<2.0%). Furthermore, the impedance data was fitted by an effective 4RC equivalent circuit, which could be assigned to the core, the shell, the grain boundary, and the ceramic/internal electrode interface regions. The activation energy of the core was found to decrease with x decreasing, while opposite tendency exists in the shell and the grain boundary. Core–shell structure Elsevier Dielectric properties Elsevier Impedance spectroscopy Elsevier Hao, Hua oth Chen, Weijin oth Zhou, Dongdong oth Appiah, Millicent oth Liu, Binzhi oth Cao, Minghe oth Yao, Zhonghua oth Liu, Hanxing oth Zhang, Zishan oth Enthalten in Elsevier Science Rey, F. ELSEVIER Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration 2018 Amsterdam [u.a.] (DE-627)ELV000899798 volume:42 year:2016 number:1 pages:379-387 extent:9 https://doi.org/10.1016/j.ceramint.2015.08.120 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 42 2016 1 379-387 9 045F 670 |
allfieldsGer |
10.1016/j.ceramint.2015.08.120 doi GBVA2016008000004.pica (DE-627)ELV019243413 (ELSEVIER)S0272-8842(15)01645-4 DE-627 ger DE-627 rakwb eng 670 670 DE-600 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Liu, Mengying verfasserin aut Preparation and dielectric properties of X9R core–shell BaTiO3 ceramics coated by BiAlO3–BaTiO3 2016transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The typical “core–shell” structure in BT ceramics can easily obtain double dielectric anomalies, which greatly improve the dielectric temperature stability for multilayer ceramic capacitors. In this paper, BaTiO3 particles were coated with 0.3BiAlO3–0.7BaTiO3 shell [xBT(0.3BA–0.7BT)] by a sol–gel method. Core–shell structure was proved to exist in ceramic grains by transmission electron microscopy (TEM) and energy-dispersive spectroscopy (EDS). High-temperature X9R dielectrics were obtained when x=0.3 and 0.2, with a high dielectric constant (~1200) and low dielectric loss (<2.0%). Furthermore, the impedance data was fitted by an effective 4RC equivalent circuit, which could be assigned to the core, the shell, the grain boundary, and the ceramic/internal electrode interface regions. The activation energy of the core was found to decrease with x decreasing, while opposite tendency exists in the shell and the grain boundary. The typical “core–shell” structure in BT ceramics can easily obtain double dielectric anomalies, which greatly improve the dielectric temperature stability for multilayer ceramic capacitors. In this paper, BaTiO3 particles were coated with 0.3BiAlO3–0.7BaTiO3 shell [xBT(0.3BA–0.7BT)] by a sol–gel method. Core–shell structure was proved to exist in ceramic grains by transmission electron microscopy (TEM) and energy-dispersive spectroscopy (EDS). High-temperature X9R dielectrics were obtained when x=0.3 and 0.2, with a high dielectric constant (~1200) and low dielectric loss (<2.0%). Furthermore, the impedance data was fitted by an effective 4RC equivalent circuit, which could be assigned to the core, the shell, the grain boundary, and the ceramic/internal electrode interface regions. The activation energy of the core was found to decrease with x decreasing, while opposite tendency exists in the shell and the grain boundary. Core–shell structure Elsevier Dielectric properties Elsevier Impedance spectroscopy Elsevier Hao, Hua oth Chen, Weijin oth Zhou, Dongdong oth Appiah, Millicent oth Liu, Binzhi oth Cao, Minghe oth Yao, Zhonghua oth Liu, Hanxing oth Zhang, Zishan oth Enthalten in Elsevier Science Rey, F. ELSEVIER Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration 2018 Amsterdam [u.a.] (DE-627)ELV000899798 volume:42 year:2016 number:1 pages:379-387 extent:9 https://doi.org/10.1016/j.ceramint.2015.08.120 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 42 2016 1 379-387 9 045F 670 |
allfieldsSound |
10.1016/j.ceramint.2015.08.120 doi GBVA2016008000004.pica (DE-627)ELV019243413 (ELSEVIER)S0272-8842(15)01645-4 DE-627 ger DE-627 rakwb eng 670 670 DE-600 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Liu, Mengying verfasserin aut Preparation and dielectric properties of X9R core–shell BaTiO3 ceramics coated by BiAlO3–BaTiO3 2016transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The typical “core–shell” structure in BT ceramics can easily obtain double dielectric anomalies, which greatly improve the dielectric temperature stability for multilayer ceramic capacitors. In this paper, BaTiO3 particles were coated with 0.3BiAlO3–0.7BaTiO3 shell [xBT(0.3BA–0.7BT)] by a sol–gel method. Core–shell structure was proved to exist in ceramic grains by transmission electron microscopy (TEM) and energy-dispersive spectroscopy (EDS). High-temperature X9R dielectrics were obtained when x=0.3 and 0.2, with a high dielectric constant (~1200) and low dielectric loss (<2.0%). Furthermore, the impedance data was fitted by an effective 4RC equivalent circuit, which could be assigned to the core, the shell, the grain boundary, and the ceramic/internal electrode interface regions. The activation energy of the core was found to decrease with x decreasing, while opposite tendency exists in the shell and the grain boundary. The typical “core–shell” structure in BT ceramics can easily obtain double dielectric anomalies, which greatly improve the dielectric temperature stability for multilayer ceramic capacitors. In this paper, BaTiO3 particles were coated with 0.3BiAlO3–0.7BaTiO3 shell [xBT(0.3BA–0.7BT)] by a sol–gel method. Core–shell structure was proved to exist in ceramic grains by transmission electron microscopy (TEM) and energy-dispersive spectroscopy (EDS). High-temperature X9R dielectrics were obtained when x=0.3 and 0.2, with a high dielectric constant (~1200) and low dielectric loss (<2.0%). Furthermore, the impedance data was fitted by an effective 4RC equivalent circuit, which could be assigned to the core, the shell, the grain boundary, and the ceramic/internal electrode interface regions. The activation energy of the core was found to decrease with x decreasing, while opposite tendency exists in the shell and the grain boundary. Core–shell structure Elsevier Dielectric properties Elsevier Impedance spectroscopy Elsevier Hao, Hua oth Chen, Weijin oth Zhou, Dongdong oth Appiah, Millicent oth Liu, Binzhi oth Cao, Minghe oth Yao, Zhonghua oth Liu, Hanxing oth Zhang, Zishan oth Enthalten in Elsevier Science Rey, F. ELSEVIER Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration 2018 Amsterdam [u.a.] (DE-627)ELV000899798 volume:42 year:2016 number:1 pages:379-387 extent:9 https://doi.org/10.1016/j.ceramint.2015.08.120 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 42 2016 1 379-387 9 045F 670 |
language |
English |
source |
Enthalten in Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration Amsterdam [u.a.] volume:42 year:2016 number:1 pages:379-387 extent:9 |
sourceStr |
Enthalten in Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration Amsterdam [u.a.] volume:42 year:2016 number:1 pages:379-387 extent:9 |
format_phy_str_mv |
Article |
bklname |
Umweltchemie Umwelttoxikologie Medizinische Ökologie |
institution |
findex.gbv.de |
topic_facet |
Core–shell structure Dielectric properties Impedance spectroscopy |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration |
authorswithroles_txt_mv |
Liu, Mengying @@aut@@ Hao, Hua @@oth@@ Chen, Weijin @@oth@@ Zhou, Dongdong @@oth@@ Appiah, Millicent @@oth@@ Liu, Binzhi @@oth@@ Cao, Minghe @@oth@@ Yao, Zhonghua @@oth@@ Liu, Hanxing @@oth@@ Zhang, Zishan @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
ELV000899798 |
dewey-sort |
3670 |
id |
ELV019243413 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV019243413</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625125548.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ceramint.2015.08.120</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2016008000004.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV019243413</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0272-8842(15)01645-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">670</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Mengying</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Preparation and dielectric properties of X9R core–shell BaTiO3 ceramics coated by BiAlO3–BaTiO3</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">9</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The typical “core–shell” structure in BT ceramics can easily obtain double dielectric anomalies, which greatly improve the dielectric temperature stability for multilayer ceramic capacitors. In this paper, BaTiO3 particles were coated with 0.3BiAlO3–0.7BaTiO3 shell [xBT(0.3BA–0.7BT)] by a sol–gel method. Core–shell structure was proved to exist in ceramic grains by transmission electron microscopy (TEM) and energy-dispersive spectroscopy (EDS). High-temperature X9R dielectrics were obtained when x=0.3 and 0.2, with a high dielectric constant (~1200) and low dielectric loss (<2.0%). Furthermore, the impedance data was fitted by an effective 4RC equivalent circuit, which could be assigned to the core, the shell, the grain boundary, and the ceramic/internal electrode interface regions. The activation energy of the core was found to decrease with x decreasing, while opposite tendency exists in the shell and the grain boundary.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The typical “core–shell” structure in BT ceramics can easily obtain double dielectric anomalies, which greatly improve the dielectric temperature stability for multilayer ceramic capacitors. In this paper, BaTiO3 particles were coated with 0.3BiAlO3–0.7BaTiO3 shell [xBT(0.3BA–0.7BT)] by a sol–gel method. Core–shell structure was proved to exist in ceramic grains by transmission electron microscopy (TEM) and energy-dispersive spectroscopy (EDS). High-temperature X9R dielectrics were obtained when x=0.3 and 0.2, with a high dielectric constant (~1200) and low dielectric loss (<2.0%). Furthermore, the impedance data was fitted by an effective 4RC equivalent circuit, which could be assigned to the core, the shell, the grain boundary, and the ceramic/internal electrode interface regions. The activation energy of the core was found to decrease with x decreasing, while opposite tendency exists in the shell and the grain boundary.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Core–shell structure</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Dielectric properties</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Impedance spectroscopy</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hao, Hua</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Weijin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Dongdong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Appiah, Millicent</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Binzhi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cao, Minghe</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yao, Zhonghua</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Hanxing</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Zishan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Rey, F. ELSEVIER</subfield><subfield code="t">Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration</subfield><subfield code="d">2018</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV000899798</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:42</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:379-387</subfield><subfield code="g">extent:9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ceramint.2015.08.120</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.12</subfield><subfield code="j">Umweltchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.13</subfield><subfield code="j">Umwelttoxikologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.13</subfield><subfield code="j">Medizinische Ökologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">42</subfield><subfield code="j">2016</subfield><subfield code="e">1</subfield><subfield code="h">379-387</subfield><subfield code="g">9</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">670</subfield></datafield></record></collection>
|
author |
Liu, Mengying |
spellingShingle |
Liu, Mengying ddc 670 ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Elsevier Core–shell structure Elsevier Dielectric properties Elsevier Impedance spectroscopy Preparation and dielectric properties of X9R core–shell BaTiO3 ceramics coated by BiAlO3–BaTiO3 |
authorStr |
Liu, Mengying |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV000899798 |
format |
electronic Article |
dewey-ones |
670 - Manufacturing 333 - Economics of land & energy 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
670 670 DE-600 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Preparation and dielectric properties of X9R core–shell BaTiO3 ceramics coated by BiAlO3–BaTiO3 Core–shell structure Elsevier Dielectric properties Elsevier Impedance spectroscopy Elsevier |
topic |
ddc 670 ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Elsevier Core–shell structure Elsevier Dielectric properties Elsevier Impedance spectroscopy |
topic_unstemmed |
ddc 670 ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Elsevier Core–shell structure Elsevier Dielectric properties Elsevier Impedance spectroscopy |
topic_browse |
ddc 670 ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Elsevier Core–shell structure Elsevier Dielectric properties Elsevier Impedance spectroscopy |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
h h hh w c wc d z dz m a ma b l bl m c mc z y zy h l hl z z zz |
hierarchy_parent_title |
Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration |
hierarchy_parent_id |
ELV000899798 |
dewey-tens |
670 - Manufacturing 330 - Economics 610 - Medicine & health |
hierarchy_top_title |
Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV000899798 |
title |
Preparation and dielectric properties of X9R core–shell BaTiO3 ceramics coated by BiAlO3–BaTiO3 |
ctrlnum |
(DE-627)ELV019243413 (ELSEVIER)S0272-8842(15)01645-4 |
title_full |
Preparation and dielectric properties of X9R core–shell BaTiO3 ceramics coated by BiAlO3–BaTiO3 |
author_sort |
Liu, Mengying |
journal |
Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration |
journalStr |
Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 300 - Social sciences |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
zzz |
container_start_page |
379 |
author_browse |
Liu, Mengying |
container_volume |
42 |
physical |
9 |
class |
670 670 DE-600 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Liu, Mengying |
doi_str_mv |
10.1016/j.ceramint.2015.08.120 |
dewey-full |
670 333.7 610 |
title_sort |
preparation and dielectric properties of x9r core–shell batio3 ceramics coated by bialo3–batio3 |
title_auth |
Preparation and dielectric properties of X9R core–shell BaTiO3 ceramics coated by BiAlO3–BaTiO3 |
abstract |
The typical “core–shell” structure in BT ceramics can easily obtain double dielectric anomalies, which greatly improve the dielectric temperature stability for multilayer ceramic capacitors. In this paper, BaTiO3 particles were coated with 0.3BiAlO3–0.7BaTiO3 shell [xBT(0.3BA–0.7BT)] by a sol–gel method. Core–shell structure was proved to exist in ceramic grains by transmission electron microscopy (TEM) and energy-dispersive spectroscopy (EDS). High-temperature X9R dielectrics were obtained when x=0.3 and 0.2, with a high dielectric constant (~1200) and low dielectric loss (<2.0%). Furthermore, the impedance data was fitted by an effective 4RC equivalent circuit, which could be assigned to the core, the shell, the grain boundary, and the ceramic/internal electrode interface regions. The activation energy of the core was found to decrease with x decreasing, while opposite tendency exists in the shell and the grain boundary. |
abstractGer |
The typical “core–shell” structure in BT ceramics can easily obtain double dielectric anomalies, which greatly improve the dielectric temperature stability for multilayer ceramic capacitors. In this paper, BaTiO3 particles were coated with 0.3BiAlO3–0.7BaTiO3 shell [xBT(0.3BA–0.7BT)] by a sol–gel method. Core–shell structure was proved to exist in ceramic grains by transmission electron microscopy (TEM) and energy-dispersive spectroscopy (EDS). High-temperature X9R dielectrics were obtained when x=0.3 and 0.2, with a high dielectric constant (~1200) and low dielectric loss (<2.0%). Furthermore, the impedance data was fitted by an effective 4RC equivalent circuit, which could be assigned to the core, the shell, the grain boundary, and the ceramic/internal electrode interface regions. The activation energy of the core was found to decrease with x decreasing, while opposite tendency exists in the shell and the grain boundary. |
abstract_unstemmed |
The typical “core–shell” structure in BT ceramics can easily obtain double dielectric anomalies, which greatly improve the dielectric temperature stability for multilayer ceramic capacitors. In this paper, BaTiO3 particles were coated with 0.3BiAlO3–0.7BaTiO3 shell [xBT(0.3BA–0.7BT)] by a sol–gel method. Core–shell structure was proved to exist in ceramic grains by transmission electron microscopy (TEM) and energy-dispersive spectroscopy (EDS). High-temperature X9R dielectrics were obtained when x=0.3 and 0.2, with a high dielectric constant (~1200) and low dielectric loss (<2.0%). Furthermore, the impedance data was fitted by an effective 4RC equivalent circuit, which could be assigned to the core, the shell, the grain boundary, and the ceramic/internal electrode interface regions. The activation energy of the core was found to decrease with x decreasing, while opposite tendency exists in the shell and the grain boundary. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO |
container_issue |
1 |
title_short |
Preparation and dielectric properties of X9R core–shell BaTiO3 ceramics coated by BiAlO3–BaTiO3 |
url |
https://doi.org/10.1016/j.ceramint.2015.08.120 |
remote_bool |
true |
author2 |
Hao, Hua Chen, Weijin Zhou, Dongdong Appiah, Millicent Liu, Binzhi Cao, Minghe Yao, Zhonghua Liu, Hanxing Zhang, Zishan |
author2Str |
Hao, Hua Chen, Weijin Zhou, Dongdong Appiah, Millicent Liu, Binzhi Cao, Minghe Yao, Zhonghua Liu, Hanxing Zhang, Zishan |
ppnlink |
ELV000899798 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth oth oth |
doi_str |
10.1016/j.ceramint.2015.08.120 |
up_date |
2024-07-06T20:55:56.603Z |
_version_ |
1803864618150395904 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV019243413</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625125548.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ceramint.2015.08.120</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2016008000004.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV019243413</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0272-8842(15)01645-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">670</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Mengying</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Preparation and dielectric properties of X9R core–shell BaTiO3 ceramics coated by BiAlO3–BaTiO3</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">9</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The typical “core–shell” structure in BT ceramics can easily obtain double dielectric anomalies, which greatly improve the dielectric temperature stability for multilayer ceramic capacitors. In this paper, BaTiO3 particles were coated with 0.3BiAlO3–0.7BaTiO3 shell [xBT(0.3BA–0.7BT)] by a sol–gel method. Core–shell structure was proved to exist in ceramic grains by transmission electron microscopy (TEM) and energy-dispersive spectroscopy (EDS). High-temperature X9R dielectrics were obtained when x=0.3 and 0.2, with a high dielectric constant (~1200) and low dielectric loss (<2.0%). Furthermore, the impedance data was fitted by an effective 4RC equivalent circuit, which could be assigned to the core, the shell, the grain boundary, and the ceramic/internal electrode interface regions. The activation energy of the core was found to decrease with x decreasing, while opposite tendency exists in the shell and the grain boundary.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The typical “core–shell” structure in BT ceramics can easily obtain double dielectric anomalies, which greatly improve the dielectric temperature stability for multilayer ceramic capacitors. In this paper, BaTiO3 particles were coated with 0.3BiAlO3–0.7BaTiO3 shell [xBT(0.3BA–0.7BT)] by a sol–gel method. Core–shell structure was proved to exist in ceramic grains by transmission electron microscopy (TEM) and energy-dispersive spectroscopy (EDS). High-temperature X9R dielectrics were obtained when x=0.3 and 0.2, with a high dielectric constant (~1200) and low dielectric loss (<2.0%). Furthermore, the impedance data was fitted by an effective 4RC equivalent circuit, which could be assigned to the core, the shell, the grain boundary, and the ceramic/internal electrode interface regions. The activation energy of the core was found to decrease with x decreasing, while opposite tendency exists in the shell and the grain boundary.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Core–shell structure</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Dielectric properties</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Impedance spectroscopy</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hao, Hua</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Weijin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Dongdong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Appiah, Millicent</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Binzhi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cao, Minghe</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yao, Zhonghua</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Hanxing</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Zishan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Rey, F. ELSEVIER</subfield><subfield code="t">Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration</subfield><subfield code="d">2018</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV000899798</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:42</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:379-387</subfield><subfield code="g">extent:9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ceramint.2015.08.120</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.12</subfield><subfield code="j">Umweltchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.13</subfield><subfield code="j">Umwelttoxikologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.13</subfield><subfield code="j">Medizinische Ökologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">42</subfield><subfield code="j">2016</subfield><subfield code="e">1</subfield><subfield code="h">379-387</subfield><subfield code="g">9</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">670</subfield></datafield></record></collection>
|
score |
7.399419 |