Blue membranes: Sulfonated copper(II) phthalocyanine tetrasulfonic acid based composite membranes for DMFC and low relative humidity PEMFC
Polymer electrolyte membranes (PEMs) consisting of copper(II)phthalocyanine tetrasulfonic acid tetrasodium salt (CuPCSA) and disulfonated poly(arylene ether sulfone) (SES0005) are prepared. The TEM analysis results prove the incorporation of CuPCSA as nanoparticles into the composite membranes. Cata...
Ausführliche Beschreibung
Autor*in: |
Krishnan, N. Nambi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016transfer abstract |
---|
Schlagwörter: |
Copper(II)phthalocyanine tetrasulfonic acid tetrasodium salt |
---|
Umfang: |
10 |
---|
Übergeordnetes Werk: |
Enthalten in: Steering charge kinetics in W - Yue, Xin-Zheng ELSEVIER, 2019, the official journal of the North American Membrane Society, New York, NY [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:502 ; year:2016 ; day:15 ; month:03 ; pages:1-10 ; extent:10 |
Links: |
---|
DOI / URN: |
10.1016/j.memsci.2015.12.035 |
---|
Katalog-ID: |
ELV01939652X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV01939652X | ||
003 | DE-627 | ||
005 | 20230625125905.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.memsci.2015.12.035 |2 doi | |
028 | 5 | 2 | |a GBVA2016012000009.pica |
035 | |a (DE-627)ELV01939652X | ||
035 | |a (ELSEVIER)S0376-7388(15)30377-X | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 570 | |
082 | 0 | 4 | |a 570 |q DE-600 |
082 | 0 | 4 | |a 540 |q VZ |
084 | |a 35.17 |2 bkl | ||
084 | |a 58.50 |2 bkl | ||
084 | |a 43.12 |2 bkl | ||
100 | 1 | |a Krishnan, N. Nambi |e verfasserin |4 aut | |
245 | 1 | 0 | |a Blue membranes: Sulfonated copper(II) phthalocyanine tetrasulfonic acid based composite membranes for DMFC and low relative humidity PEMFC |
264 | 1 | |c 2016transfer abstract | |
300 | |a 10 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Polymer electrolyte membranes (PEMs) consisting of copper(II)phthalocyanine tetrasulfonic acid tetrasodium salt (CuPCSA) and disulfonated poly(arylene ether sulfone) (SES0005) are prepared. The TEM analysis results prove the incorporation of CuPCSA as nanoparticles into the composite membranes. Catalytic activity of CuPCSA towards peroxide degradation is shown by CV. Addition of CuPCSA increases the dimensional stability in contact with water (18% vs. 43% linear swelling for pristine SES0005). Addition of 10wt% CuPCSA (SES0005-IM10) increases the proton conductivity four fold to 16.8mScm−1 at 120°C and 50% relative humidity (rh). Activation energy decreases with CuPCSA content, reducing the conductivity's temperature dependence. Membranes were tested in low and medium temperature PEM fuel cells at 65 and 120°C, respectively, at 50% rh. In the LT-PEMFC, 40µm thick SES0005-IM10 and Nafion 212 based MEAs exhibited current densities of 470 and 454mAcm−2 at 0.7V, respectively. In the MT-PEMFC, SES0005-IM10 based MEAs demonstrated a current density of 405mAcm−2 at 0.5V, 2.4 folds more than pristine membrane based MEAs. In the DMFC, SES0005-IM10 enabled a peak power density of 153mWcm−2 at 70°C and 1M methanol feed, 20% higher than Nafion 212, 38% higher than mPES60. | ||
520 | |a Polymer electrolyte membranes (PEMs) consisting of copper(II)phthalocyanine tetrasulfonic acid tetrasodium salt (CuPCSA) and disulfonated poly(arylene ether sulfone) (SES0005) are prepared. The TEM analysis results prove the incorporation of CuPCSA as nanoparticles into the composite membranes. Catalytic activity of CuPCSA towards peroxide degradation is shown by CV. Addition of CuPCSA increases the dimensional stability in contact with water (18% vs. 43% linear swelling for pristine SES0005). Addition of 10wt% CuPCSA (SES0005-IM10) increases the proton conductivity four fold to 16.8mScm−1 at 120°C and 50% relative humidity (rh). Activation energy decreases with CuPCSA content, reducing the conductivity's temperature dependence. Membranes were tested in low and medium temperature PEM fuel cells at 65 and 120°C, respectively, at 50% rh. In the LT-PEMFC, 40µm thick SES0005-IM10 and Nafion 212 based MEAs exhibited current densities of 470 and 454mAcm−2 at 0.7V, respectively. In the MT-PEMFC, SES0005-IM10 based MEAs demonstrated a current density of 405mAcm−2 at 0.5V, 2.4 folds more than pristine membrane based MEAs. In the DMFC, SES0005-IM10 enabled a peak power density of 153mWcm−2 at 70°C and 1M methanol feed, 20% higher than Nafion 212, 38% higher than mPES60. | ||
650 | 7 | |a PEMFC |2 Elsevier | |
650 | 7 | |a Hydrocarbon membrane |2 Elsevier | |
650 | 7 | |a DMFC |2 Elsevier | |
650 | 7 | |a Composite membrane |2 Elsevier | |
650 | 7 | |a Copper(II)phthalocyanine tetrasulfonic acid tetrasodium salt |2 Elsevier | |
700 | 1 | |a Henkensmeier, Dirk |4 oth | |
700 | 1 | |a Park, Young-Hee |4 oth | |
700 | 1 | |a Jang, Jong-Hyun |4 oth | |
700 | 1 | |a Kwon, Taehoon |4 oth | |
700 | 1 | |a Koo, Chong Min |4 oth | |
700 | 1 | |a Kim, Hyoung-Juhn |4 oth | |
700 | 1 | |a Han, Jonghee |4 oth | |
700 | 1 | |a Nam, Suk-Woo |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Yue, Xin-Zheng ELSEVIER |t Steering charge kinetics in W |d 2019 |d the official journal of the North American Membrane Society |g New York, NY [u.a.] |w (DE-627)ELV002478420 |
773 | 1 | 8 | |g volume:502 |g year:2016 |g day:15 |g month:03 |g pages:1-10 |g extent:10 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.memsci.2015.12.035 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 35.17 |j Katalyse |q VZ |
936 | b | k | |a 58.50 |j Umwelttechnik: Allgemeines |q VZ |
936 | b | k | |a 43.12 |j Umweltchemie |q VZ |
951 | |a AR | ||
952 | |d 502 |j 2016 |b 15 |c 0315 |h 1-10 |g 10 | ||
953 | |2 045F |a 570 |
author_variant |
n n k nn nnk |
---|---|
matchkey_str |
krishnannnambihenkensmeierdirkparkyoungh:2016----:leebaesloaecpeiptaoynnttaufnccdaecmoieebaef |
hierarchy_sort_str |
2016transfer abstract |
bklnumber |
35.17 58.50 43.12 |
publishDate |
2016 |
allfields |
10.1016/j.memsci.2015.12.035 doi GBVA2016012000009.pica (DE-627)ELV01939652X (ELSEVIER)S0376-7388(15)30377-X DE-627 ger DE-627 rakwb eng 570 570 DE-600 540 VZ 35.17 bkl 58.50 bkl 43.12 bkl Krishnan, N. Nambi verfasserin aut Blue membranes: Sulfonated copper(II) phthalocyanine tetrasulfonic acid based composite membranes for DMFC and low relative humidity PEMFC 2016transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Polymer electrolyte membranes (PEMs) consisting of copper(II)phthalocyanine tetrasulfonic acid tetrasodium salt (CuPCSA) and disulfonated poly(arylene ether sulfone) (SES0005) are prepared. The TEM analysis results prove the incorporation of CuPCSA as nanoparticles into the composite membranes. Catalytic activity of CuPCSA towards peroxide degradation is shown by CV. Addition of CuPCSA increases the dimensional stability in contact with water (18% vs. 43% linear swelling for pristine SES0005). Addition of 10wt% CuPCSA (SES0005-IM10) increases the proton conductivity four fold to 16.8mScm−1 at 120°C and 50% relative humidity (rh). Activation energy decreases with CuPCSA content, reducing the conductivity's temperature dependence. Membranes were tested in low and medium temperature PEM fuel cells at 65 and 120°C, respectively, at 50% rh. In the LT-PEMFC, 40µm thick SES0005-IM10 and Nafion 212 based MEAs exhibited current densities of 470 and 454mAcm−2 at 0.7V, respectively. In the MT-PEMFC, SES0005-IM10 based MEAs demonstrated a current density of 405mAcm−2 at 0.5V, 2.4 folds more than pristine membrane based MEAs. In the DMFC, SES0005-IM10 enabled a peak power density of 153mWcm−2 at 70°C and 1M methanol feed, 20% higher than Nafion 212, 38% higher than mPES60. Polymer electrolyte membranes (PEMs) consisting of copper(II)phthalocyanine tetrasulfonic acid tetrasodium salt (CuPCSA) and disulfonated poly(arylene ether sulfone) (SES0005) are prepared. The TEM analysis results prove the incorporation of CuPCSA as nanoparticles into the composite membranes. Catalytic activity of CuPCSA towards peroxide degradation is shown by CV. Addition of CuPCSA increases the dimensional stability in contact with water (18% vs. 43% linear swelling for pristine SES0005). Addition of 10wt% CuPCSA (SES0005-IM10) increases the proton conductivity four fold to 16.8mScm−1 at 120°C and 50% relative humidity (rh). Activation energy decreases with CuPCSA content, reducing the conductivity's temperature dependence. Membranes were tested in low and medium temperature PEM fuel cells at 65 and 120°C, respectively, at 50% rh. In the LT-PEMFC, 40µm thick SES0005-IM10 and Nafion 212 based MEAs exhibited current densities of 470 and 454mAcm−2 at 0.7V, respectively. In the MT-PEMFC, SES0005-IM10 based MEAs demonstrated a current density of 405mAcm−2 at 0.5V, 2.4 folds more than pristine membrane based MEAs. In the DMFC, SES0005-IM10 enabled a peak power density of 153mWcm−2 at 70°C and 1M methanol feed, 20% higher than Nafion 212, 38% higher than mPES60. PEMFC Elsevier Hydrocarbon membrane Elsevier DMFC Elsevier Composite membrane Elsevier Copper(II)phthalocyanine tetrasulfonic acid tetrasodium salt Elsevier Henkensmeier, Dirk oth Park, Young-Hee oth Jang, Jong-Hyun oth Kwon, Taehoon oth Koo, Chong Min oth Kim, Hyoung-Juhn oth Han, Jonghee oth Nam, Suk-Woo oth Enthalten in Elsevier Yue, Xin-Zheng ELSEVIER Steering charge kinetics in W 2019 the official journal of the North American Membrane Society New York, NY [u.a.] (DE-627)ELV002478420 volume:502 year:2016 day:15 month:03 pages:1-10 extent:10 https://doi.org/10.1016/j.memsci.2015.12.035 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.17 Katalyse VZ 58.50 Umwelttechnik: Allgemeines VZ 43.12 Umweltchemie VZ AR 502 2016 15 0315 1-10 10 045F 570 |
spelling |
10.1016/j.memsci.2015.12.035 doi GBVA2016012000009.pica (DE-627)ELV01939652X (ELSEVIER)S0376-7388(15)30377-X DE-627 ger DE-627 rakwb eng 570 570 DE-600 540 VZ 35.17 bkl 58.50 bkl 43.12 bkl Krishnan, N. Nambi verfasserin aut Blue membranes: Sulfonated copper(II) phthalocyanine tetrasulfonic acid based composite membranes for DMFC and low relative humidity PEMFC 2016transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Polymer electrolyte membranes (PEMs) consisting of copper(II)phthalocyanine tetrasulfonic acid tetrasodium salt (CuPCSA) and disulfonated poly(arylene ether sulfone) (SES0005) are prepared. The TEM analysis results prove the incorporation of CuPCSA as nanoparticles into the composite membranes. Catalytic activity of CuPCSA towards peroxide degradation is shown by CV. Addition of CuPCSA increases the dimensional stability in contact with water (18% vs. 43% linear swelling for pristine SES0005). Addition of 10wt% CuPCSA (SES0005-IM10) increases the proton conductivity four fold to 16.8mScm−1 at 120°C and 50% relative humidity (rh). Activation energy decreases with CuPCSA content, reducing the conductivity's temperature dependence. Membranes were tested in low and medium temperature PEM fuel cells at 65 and 120°C, respectively, at 50% rh. In the LT-PEMFC, 40µm thick SES0005-IM10 and Nafion 212 based MEAs exhibited current densities of 470 and 454mAcm−2 at 0.7V, respectively. In the MT-PEMFC, SES0005-IM10 based MEAs demonstrated a current density of 405mAcm−2 at 0.5V, 2.4 folds more than pristine membrane based MEAs. In the DMFC, SES0005-IM10 enabled a peak power density of 153mWcm−2 at 70°C and 1M methanol feed, 20% higher than Nafion 212, 38% higher than mPES60. Polymer electrolyte membranes (PEMs) consisting of copper(II)phthalocyanine tetrasulfonic acid tetrasodium salt (CuPCSA) and disulfonated poly(arylene ether sulfone) (SES0005) are prepared. The TEM analysis results prove the incorporation of CuPCSA as nanoparticles into the composite membranes. Catalytic activity of CuPCSA towards peroxide degradation is shown by CV. Addition of CuPCSA increases the dimensional stability in contact with water (18% vs. 43% linear swelling for pristine SES0005). Addition of 10wt% CuPCSA (SES0005-IM10) increases the proton conductivity four fold to 16.8mScm−1 at 120°C and 50% relative humidity (rh). Activation energy decreases with CuPCSA content, reducing the conductivity's temperature dependence. Membranes were tested in low and medium temperature PEM fuel cells at 65 and 120°C, respectively, at 50% rh. In the LT-PEMFC, 40µm thick SES0005-IM10 and Nafion 212 based MEAs exhibited current densities of 470 and 454mAcm−2 at 0.7V, respectively. In the MT-PEMFC, SES0005-IM10 based MEAs demonstrated a current density of 405mAcm−2 at 0.5V, 2.4 folds more than pristine membrane based MEAs. In the DMFC, SES0005-IM10 enabled a peak power density of 153mWcm−2 at 70°C and 1M methanol feed, 20% higher than Nafion 212, 38% higher than mPES60. PEMFC Elsevier Hydrocarbon membrane Elsevier DMFC Elsevier Composite membrane Elsevier Copper(II)phthalocyanine tetrasulfonic acid tetrasodium salt Elsevier Henkensmeier, Dirk oth Park, Young-Hee oth Jang, Jong-Hyun oth Kwon, Taehoon oth Koo, Chong Min oth Kim, Hyoung-Juhn oth Han, Jonghee oth Nam, Suk-Woo oth Enthalten in Elsevier Yue, Xin-Zheng ELSEVIER Steering charge kinetics in W 2019 the official journal of the North American Membrane Society New York, NY [u.a.] (DE-627)ELV002478420 volume:502 year:2016 day:15 month:03 pages:1-10 extent:10 https://doi.org/10.1016/j.memsci.2015.12.035 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.17 Katalyse VZ 58.50 Umwelttechnik: Allgemeines VZ 43.12 Umweltchemie VZ AR 502 2016 15 0315 1-10 10 045F 570 |
allfields_unstemmed |
10.1016/j.memsci.2015.12.035 doi GBVA2016012000009.pica (DE-627)ELV01939652X (ELSEVIER)S0376-7388(15)30377-X DE-627 ger DE-627 rakwb eng 570 570 DE-600 540 VZ 35.17 bkl 58.50 bkl 43.12 bkl Krishnan, N. Nambi verfasserin aut Blue membranes: Sulfonated copper(II) phthalocyanine tetrasulfonic acid based composite membranes for DMFC and low relative humidity PEMFC 2016transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Polymer electrolyte membranes (PEMs) consisting of copper(II)phthalocyanine tetrasulfonic acid tetrasodium salt (CuPCSA) and disulfonated poly(arylene ether sulfone) (SES0005) are prepared. The TEM analysis results prove the incorporation of CuPCSA as nanoparticles into the composite membranes. Catalytic activity of CuPCSA towards peroxide degradation is shown by CV. Addition of CuPCSA increases the dimensional stability in contact with water (18% vs. 43% linear swelling for pristine SES0005). Addition of 10wt% CuPCSA (SES0005-IM10) increases the proton conductivity four fold to 16.8mScm−1 at 120°C and 50% relative humidity (rh). Activation energy decreases with CuPCSA content, reducing the conductivity's temperature dependence. Membranes were tested in low and medium temperature PEM fuel cells at 65 and 120°C, respectively, at 50% rh. In the LT-PEMFC, 40µm thick SES0005-IM10 and Nafion 212 based MEAs exhibited current densities of 470 and 454mAcm−2 at 0.7V, respectively. In the MT-PEMFC, SES0005-IM10 based MEAs demonstrated a current density of 405mAcm−2 at 0.5V, 2.4 folds more than pristine membrane based MEAs. In the DMFC, SES0005-IM10 enabled a peak power density of 153mWcm−2 at 70°C and 1M methanol feed, 20% higher than Nafion 212, 38% higher than mPES60. Polymer electrolyte membranes (PEMs) consisting of copper(II)phthalocyanine tetrasulfonic acid tetrasodium salt (CuPCSA) and disulfonated poly(arylene ether sulfone) (SES0005) are prepared. The TEM analysis results prove the incorporation of CuPCSA as nanoparticles into the composite membranes. Catalytic activity of CuPCSA towards peroxide degradation is shown by CV. Addition of CuPCSA increases the dimensional stability in contact with water (18% vs. 43% linear swelling for pristine SES0005). Addition of 10wt% CuPCSA (SES0005-IM10) increases the proton conductivity four fold to 16.8mScm−1 at 120°C and 50% relative humidity (rh). Activation energy decreases with CuPCSA content, reducing the conductivity's temperature dependence. Membranes were tested in low and medium temperature PEM fuel cells at 65 and 120°C, respectively, at 50% rh. In the LT-PEMFC, 40µm thick SES0005-IM10 and Nafion 212 based MEAs exhibited current densities of 470 and 454mAcm−2 at 0.7V, respectively. In the MT-PEMFC, SES0005-IM10 based MEAs demonstrated a current density of 405mAcm−2 at 0.5V, 2.4 folds more than pristine membrane based MEAs. In the DMFC, SES0005-IM10 enabled a peak power density of 153mWcm−2 at 70°C and 1M methanol feed, 20% higher than Nafion 212, 38% higher than mPES60. PEMFC Elsevier Hydrocarbon membrane Elsevier DMFC Elsevier Composite membrane Elsevier Copper(II)phthalocyanine tetrasulfonic acid tetrasodium salt Elsevier Henkensmeier, Dirk oth Park, Young-Hee oth Jang, Jong-Hyun oth Kwon, Taehoon oth Koo, Chong Min oth Kim, Hyoung-Juhn oth Han, Jonghee oth Nam, Suk-Woo oth Enthalten in Elsevier Yue, Xin-Zheng ELSEVIER Steering charge kinetics in W 2019 the official journal of the North American Membrane Society New York, NY [u.a.] (DE-627)ELV002478420 volume:502 year:2016 day:15 month:03 pages:1-10 extent:10 https://doi.org/10.1016/j.memsci.2015.12.035 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.17 Katalyse VZ 58.50 Umwelttechnik: Allgemeines VZ 43.12 Umweltchemie VZ AR 502 2016 15 0315 1-10 10 045F 570 |
allfieldsGer |
10.1016/j.memsci.2015.12.035 doi GBVA2016012000009.pica (DE-627)ELV01939652X (ELSEVIER)S0376-7388(15)30377-X DE-627 ger DE-627 rakwb eng 570 570 DE-600 540 VZ 35.17 bkl 58.50 bkl 43.12 bkl Krishnan, N. Nambi verfasserin aut Blue membranes: Sulfonated copper(II) phthalocyanine tetrasulfonic acid based composite membranes for DMFC and low relative humidity PEMFC 2016transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Polymer electrolyte membranes (PEMs) consisting of copper(II)phthalocyanine tetrasulfonic acid tetrasodium salt (CuPCSA) and disulfonated poly(arylene ether sulfone) (SES0005) are prepared. The TEM analysis results prove the incorporation of CuPCSA as nanoparticles into the composite membranes. Catalytic activity of CuPCSA towards peroxide degradation is shown by CV. Addition of CuPCSA increases the dimensional stability in contact with water (18% vs. 43% linear swelling for pristine SES0005). Addition of 10wt% CuPCSA (SES0005-IM10) increases the proton conductivity four fold to 16.8mScm−1 at 120°C and 50% relative humidity (rh). Activation energy decreases with CuPCSA content, reducing the conductivity's temperature dependence. Membranes were tested in low and medium temperature PEM fuel cells at 65 and 120°C, respectively, at 50% rh. In the LT-PEMFC, 40µm thick SES0005-IM10 and Nafion 212 based MEAs exhibited current densities of 470 and 454mAcm−2 at 0.7V, respectively. In the MT-PEMFC, SES0005-IM10 based MEAs demonstrated a current density of 405mAcm−2 at 0.5V, 2.4 folds more than pristine membrane based MEAs. In the DMFC, SES0005-IM10 enabled a peak power density of 153mWcm−2 at 70°C and 1M methanol feed, 20% higher than Nafion 212, 38% higher than mPES60. Polymer electrolyte membranes (PEMs) consisting of copper(II)phthalocyanine tetrasulfonic acid tetrasodium salt (CuPCSA) and disulfonated poly(arylene ether sulfone) (SES0005) are prepared. The TEM analysis results prove the incorporation of CuPCSA as nanoparticles into the composite membranes. Catalytic activity of CuPCSA towards peroxide degradation is shown by CV. Addition of CuPCSA increases the dimensional stability in contact with water (18% vs. 43% linear swelling for pristine SES0005). Addition of 10wt% CuPCSA (SES0005-IM10) increases the proton conductivity four fold to 16.8mScm−1 at 120°C and 50% relative humidity (rh). Activation energy decreases with CuPCSA content, reducing the conductivity's temperature dependence. Membranes were tested in low and medium temperature PEM fuel cells at 65 and 120°C, respectively, at 50% rh. In the LT-PEMFC, 40µm thick SES0005-IM10 and Nafion 212 based MEAs exhibited current densities of 470 and 454mAcm−2 at 0.7V, respectively. In the MT-PEMFC, SES0005-IM10 based MEAs demonstrated a current density of 405mAcm−2 at 0.5V, 2.4 folds more than pristine membrane based MEAs. In the DMFC, SES0005-IM10 enabled a peak power density of 153mWcm−2 at 70°C and 1M methanol feed, 20% higher than Nafion 212, 38% higher than mPES60. PEMFC Elsevier Hydrocarbon membrane Elsevier DMFC Elsevier Composite membrane Elsevier Copper(II)phthalocyanine tetrasulfonic acid tetrasodium salt Elsevier Henkensmeier, Dirk oth Park, Young-Hee oth Jang, Jong-Hyun oth Kwon, Taehoon oth Koo, Chong Min oth Kim, Hyoung-Juhn oth Han, Jonghee oth Nam, Suk-Woo oth Enthalten in Elsevier Yue, Xin-Zheng ELSEVIER Steering charge kinetics in W 2019 the official journal of the North American Membrane Society New York, NY [u.a.] (DE-627)ELV002478420 volume:502 year:2016 day:15 month:03 pages:1-10 extent:10 https://doi.org/10.1016/j.memsci.2015.12.035 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.17 Katalyse VZ 58.50 Umwelttechnik: Allgemeines VZ 43.12 Umweltchemie VZ AR 502 2016 15 0315 1-10 10 045F 570 |
allfieldsSound |
10.1016/j.memsci.2015.12.035 doi GBVA2016012000009.pica (DE-627)ELV01939652X (ELSEVIER)S0376-7388(15)30377-X DE-627 ger DE-627 rakwb eng 570 570 DE-600 540 VZ 35.17 bkl 58.50 bkl 43.12 bkl Krishnan, N. Nambi verfasserin aut Blue membranes: Sulfonated copper(II) phthalocyanine tetrasulfonic acid based composite membranes for DMFC and low relative humidity PEMFC 2016transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Polymer electrolyte membranes (PEMs) consisting of copper(II)phthalocyanine tetrasulfonic acid tetrasodium salt (CuPCSA) and disulfonated poly(arylene ether sulfone) (SES0005) are prepared. The TEM analysis results prove the incorporation of CuPCSA as nanoparticles into the composite membranes. Catalytic activity of CuPCSA towards peroxide degradation is shown by CV. Addition of CuPCSA increases the dimensional stability in contact with water (18% vs. 43% linear swelling for pristine SES0005). Addition of 10wt% CuPCSA (SES0005-IM10) increases the proton conductivity four fold to 16.8mScm−1 at 120°C and 50% relative humidity (rh). Activation energy decreases with CuPCSA content, reducing the conductivity's temperature dependence. Membranes were tested in low and medium temperature PEM fuel cells at 65 and 120°C, respectively, at 50% rh. In the LT-PEMFC, 40µm thick SES0005-IM10 and Nafion 212 based MEAs exhibited current densities of 470 and 454mAcm−2 at 0.7V, respectively. In the MT-PEMFC, SES0005-IM10 based MEAs demonstrated a current density of 405mAcm−2 at 0.5V, 2.4 folds more than pristine membrane based MEAs. In the DMFC, SES0005-IM10 enabled a peak power density of 153mWcm−2 at 70°C and 1M methanol feed, 20% higher than Nafion 212, 38% higher than mPES60. Polymer electrolyte membranes (PEMs) consisting of copper(II)phthalocyanine tetrasulfonic acid tetrasodium salt (CuPCSA) and disulfonated poly(arylene ether sulfone) (SES0005) are prepared. The TEM analysis results prove the incorporation of CuPCSA as nanoparticles into the composite membranes. Catalytic activity of CuPCSA towards peroxide degradation is shown by CV. Addition of CuPCSA increases the dimensional stability in contact with water (18% vs. 43% linear swelling for pristine SES0005). Addition of 10wt% CuPCSA (SES0005-IM10) increases the proton conductivity four fold to 16.8mScm−1 at 120°C and 50% relative humidity (rh). Activation energy decreases with CuPCSA content, reducing the conductivity's temperature dependence. Membranes were tested in low and medium temperature PEM fuel cells at 65 and 120°C, respectively, at 50% rh. In the LT-PEMFC, 40µm thick SES0005-IM10 and Nafion 212 based MEAs exhibited current densities of 470 and 454mAcm−2 at 0.7V, respectively. In the MT-PEMFC, SES0005-IM10 based MEAs demonstrated a current density of 405mAcm−2 at 0.5V, 2.4 folds more than pristine membrane based MEAs. In the DMFC, SES0005-IM10 enabled a peak power density of 153mWcm−2 at 70°C and 1M methanol feed, 20% higher than Nafion 212, 38% higher than mPES60. PEMFC Elsevier Hydrocarbon membrane Elsevier DMFC Elsevier Composite membrane Elsevier Copper(II)phthalocyanine tetrasulfonic acid tetrasodium salt Elsevier Henkensmeier, Dirk oth Park, Young-Hee oth Jang, Jong-Hyun oth Kwon, Taehoon oth Koo, Chong Min oth Kim, Hyoung-Juhn oth Han, Jonghee oth Nam, Suk-Woo oth Enthalten in Elsevier Yue, Xin-Zheng ELSEVIER Steering charge kinetics in W 2019 the official journal of the North American Membrane Society New York, NY [u.a.] (DE-627)ELV002478420 volume:502 year:2016 day:15 month:03 pages:1-10 extent:10 https://doi.org/10.1016/j.memsci.2015.12.035 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.17 Katalyse VZ 58.50 Umwelttechnik: Allgemeines VZ 43.12 Umweltchemie VZ AR 502 2016 15 0315 1-10 10 045F 570 |
language |
English |
source |
Enthalten in Steering charge kinetics in W New York, NY [u.a.] volume:502 year:2016 day:15 month:03 pages:1-10 extent:10 |
sourceStr |
Enthalten in Steering charge kinetics in W New York, NY [u.a.] volume:502 year:2016 day:15 month:03 pages:1-10 extent:10 |
format_phy_str_mv |
Article |
bklname |
Katalyse Umwelttechnik: Allgemeines Umweltchemie |
institution |
findex.gbv.de |
topic_facet |
PEMFC Hydrocarbon membrane DMFC Composite membrane Copper(II)phthalocyanine tetrasulfonic acid tetrasodium salt |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
Steering charge kinetics in W |
authorswithroles_txt_mv |
Krishnan, N. Nambi @@aut@@ Henkensmeier, Dirk @@oth@@ Park, Young-Hee @@oth@@ Jang, Jong-Hyun @@oth@@ Kwon, Taehoon @@oth@@ Koo, Chong Min @@oth@@ Kim, Hyoung-Juhn @@oth@@ Han, Jonghee @@oth@@ Nam, Suk-Woo @@oth@@ |
publishDateDaySort_date |
2016-01-15T00:00:00Z |
hierarchy_top_id |
ELV002478420 |
dewey-sort |
3570 |
id |
ELV01939652X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV01939652X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625125905.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.memsci.2015.12.035</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2016012000009.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV01939652X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0376-7388(15)30377-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">570</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.17</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.50</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Krishnan, N. Nambi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Blue membranes: Sulfonated copper(II) phthalocyanine tetrasulfonic acid based composite membranes for DMFC and low relative humidity PEMFC</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Polymer electrolyte membranes (PEMs) consisting of copper(II)phthalocyanine tetrasulfonic acid tetrasodium salt (CuPCSA) and disulfonated poly(arylene ether sulfone) (SES0005) are prepared. The TEM analysis results prove the incorporation of CuPCSA as nanoparticles into the composite membranes. Catalytic activity of CuPCSA towards peroxide degradation is shown by CV. Addition of CuPCSA increases the dimensional stability in contact with water (18% vs. 43% linear swelling for pristine SES0005). Addition of 10wt% CuPCSA (SES0005-IM10) increases the proton conductivity four fold to 16.8mScm−1 at 120°C and 50% relative humidity (rh). Activation energy decreases with CuPCSA content, reducing the conductivity's temperature dependence. Membranes were tested in low and medium temperature PEM fuel cells at 65 and 120°C, respectively, at 50% rh. In the LT-PEMFC, 40µm thick SES0005-IM10 and Nafion 212 based MEAs exhibited current densities of 470 and 454mAcm−2 at 0.7V, respectively. In the MT-PEMFC, SES0005-IM10 based MEAs demonstrated a current density of 405mAcm−2 at 0.5V, 2.4 folds more than pristine membrane based MEAs. In the DMFC, SES0005-IM10 enabled a peak power density of 153mWcm−2 at 70°C and 1M methanol feed, 20% higher than Nafion 212, 38% higher than mPES60.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Polymer electrolyte membranes (PEMs) consisting of copper(II)phthalocyanine tetrasulfonic acid tetrasodium salt (CuPCSA) and disulfonated poly(arylene ether sulfone) (SES0005) are prepared. The TEM analysis results prove the incorporation of CuPCSA as nanoparticles into the composite membranes. Catalytic activity of CuPCSA towards peroxide degradation is shown by CV. Addition of CuPCSA increases the dimensional stability in contact with water (18% vs. 43% linear swelling for pristine SES0005). Addition of 10wt% CuPCSA (SES0005-IM10) increases the proton conductivity four fold to 16.8mScm−1 at 120°C and 50% relative humidity (rh). Activation energy decreases with CuPCSA content, reducing the conductivity's temperature dependence. Membranes were tested in low and medium temperature PEM fuel cells at 65 and 120°C, respectively, at 50% rh. In the LT-PEMFC, 40µm thick SES0005-IM10 and Nafion 212 based MEAs exhibited current densities of 470 and 454mAcm−2 at 0.7V, respectively. In the MT-PEMFC, SES0005-IM10 based MEAs demonstrated a current density of 405mAcm−2 at 0.5V, 2.4 folds more than pristine membrane based MEAs. In the DMFC, SES0005-IM10 enabled a peak power density of 153mWcm−2 at 70°C and 1M methanol feed, 20% higher than Nafion 212, 38% higher than mPES60.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">PEMFC</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hydrocarbon membrane</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">DMFC</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Composite membrane</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Copper(II)phthalocyanine tetrasulfonic acid tetrasodium salt</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Henkensmeier, Dirk</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Park, Young-Hee</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jang, Jong-Hyun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kwon, Taehoon</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Koo, Chong Min</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Hyoung-Juhn</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Han, Jonghee</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nam, Suk-Woo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Yue, Xin-Zheng ELSEVIER</subfield><subfield code="t">Steering charge kinetics in W</subfield><subfield code="d">2019</subfield><subfield code="d">the official journal of the North American Membrane Society</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV002478420</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:502</subfield><subfield code="g">year:2016</subfield><subfield code="g">day:15</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:1-10</subfield><subfield code="g">extent:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.memsci.2015.12.035</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.17</subfield><subfield code="j">Katalyse</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.50</subfield><subfield code="j">Umwelttechnik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.12</subfield><subfield code="j">Umweltchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">502</subfield><subfield code="j">2016</subfield><subfield code="b">15</subfield><subfield code="c">0315</subfield><subfield code="h">1-10</subfield><subfield code="g">10</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">570</subfield></datafield></record></collection>
|
author |
Krishnan, N. Nambi |
spellingShingle |
Krishnan, N. Nambi ddc 570 ddc 540 bkl 35.17 bkl 58.50 bkl 43.12 Elsevier PEMFC Elsevier Hydrocarbon membrane Elsevier DMFC Elsevier Composite membrane Elsevier Copper(II)phthalocyanine tetrasulfonic acid tetrasodium salt Blue membranes: Sulfonated copper(II) phthalocyanine tetrasulfonic acid based composite membranes for DMFC and low relative humidity PEMFC |
authorStr |
Krishnan, N. Nambi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV002478420 |
format |
electronic Article |
dewey-ones |
570 - Life sciences; biology 540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
570 570 DE-600 540 VZ 35.17 bkl 58.50 bkl 43.12 bkl Blue membranes: Sulfonated copper(II) phthalocyanine tetrasulfonic acid based composite membranes for DMFC and low relative humidity PEMFC PEMFC Elsevier Hydrocarbon membrane Elsevier DMFC Elsevier Composite membrane Elsevier Copper(II)phthalocyanine tetrasulfonic acid tetrasodium salt Elsevier |
topic |
ddc 570 ddc 540 bkl 35.17 bkl 58.50 bkl 43.12 Elsevier PEMFC Elsevier Hydrocarbon membrane Elsevier DMFC Elsevier Composite membrane Elsevier Copper(II)phthalocyanine tetrasulfonic acid tetrasodium salt |
topic_unstemmed |
ddc 570 ddc 540 bkl 35.17 bkl 58.50 bkl 43.12 Elsevier PEMFC Elsevier Hydrocarbon membrane Elsevier DMFC Elsevier Composite membrane Elsevier Copper(II)phthalocyanine tetrasulfonic acid tetrasodium salt |
topic_browse |
ddc 570 ddc 540 bkl 35.17 bkl 58.50 bkl 43.12 Elsevier PEMFC Elsevier Hydrocarbon membrane Elsevier DMFC Elsevier Composite membrane Elsevier Copper(II)phthalocyanine tetrasulfonic acid tetrasodium salt |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
d h dh y h p yhp j h j jhj t k tk c m k cm cmk h j k hjk j h jh s w n swn |
hierarchy_parent_title |
Steering charge kinetics in W |
hierarchy_parent_id |
ELV002478420 |
dewey-tens |
570 - Life sciences; biology 540 - Chemistry |
hierarchy_top_title |
Steering charge kinetics in W |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV002478420 |
title |
Blue membranes: Sulfonated copper(II) phthalocyanine tetrasulfonic acid based composite membranes for DMFC and low relative humidity PEMFC |
ctrlnum |
(DE-627)ELV01939652X (ELSEVIER)S0376-7388(15)30377-X |
title_full |
Blue membranes: Sulfonated copper(II) phthalocyanine tetrasulfonic acid based composite membranes for DMFC and low relative humidity PEMFC |
author_sort |
Krishnan, N. Nambi |
journal |
Steering charge kinetics in W |
journalStr |
Steering charge kinetics in W |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
zzz |
container_start_page |
1 |
author_browse |
Krishnan, N. Nambi |
container_volume |
502 |
physical |
10 |
class |
570 570 DE-600 540 VZ 35.17 bkl 58.50 bkl 43.12 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Krishnan, N. Nambi |
doi_str_mv |
10.1016/j.memsci.2015.12.035 |
dewey-full |
570 540 |
title_sort |
blue membranes: sulfonated copper(ii) phthalocyanine tetrasulfonic acid based composite membranes for dmfc and low relative humidity pemfc |
title_auth |
Blue membranes: Sulfonated copper(II) phthalocyanine tetrasulfonic acid based composite membranes for DMFC and low relative humidity PEMFC |
abstract |
Polymer electrolyte membranes (PEMs) consisting of copper(II)phthalocyanine tetrasulfonic acid tetrasodium salt (CuPCSA) and disulfonated poly(arylene ether sulfone) (SES0005) are prepared. The TEM analysis results prove the incorporation of CuPCSA as nanoparticles into the composite membranes. Catalytic activity of CuPCSA towards peroxide degradation is shown by CV. Addition of CuPCSA increases the dimensional stability in contact with water (18% vs. 43% linear swelling for pristine SES0005). Addition of 10wt% CuPCSA (SES0005-IM10) increases the proton conductivity four fold to 16.8mScm−1 at 120°C and 50% relative humidity (rh). Activation energy decreases with CuPCSA content, reducing the conductivity's temperature dependence. Membranes were tested in low and medium temperature PEM fuel cells at 65 and 120°C, respectively, at 50% rh. In the LT-PEMFC, 40µm thick SES0005-IM10 and Nafion 212 based MEAs exhibited current densities of 470 and 454mAcm−2 at 0.7V, respectively. In the MT-PEMFC, SES0005-IM10 based MEAs demonstrated a current density of 405mAcm−2 at 0.5V, 2.4 folds more than pristine membrane based MEAs. In the DMFC, SES0005-IM10 enabled a peak power density of 153mWcm−2 at 70°C and 1M methanol feed, 20% higher than Nafion 212, 38% higher than mPES60. |
abstractGer |
Polymer electrolyte membranes (PEMs) consisting of copper(II)phthalocyanine tetrasulfonic acid tetrasodium salt (CuPCSA) and disulfonated poly(arylene ether sulfone) (SES0005) are prepared. The TEM analysis results prove the incorporation of CuPCSA as nanoparticles into the composite membranes. Catalytic activity of CuPCSA towards peroxide degradation is shown by CV. Addition of CuPCSA increases the dimensional stability in contact with water (18% vs. 43% linear swelling for pristine SES0005). Addition of 10wt% CuPCSA (SES0005-IM10) increases the proton conductivity four fold to 16.8mScm−1 at 120°C and 50% relative humidity (rh). Activation energy decreases with CuPCSA content, reducing the conductivity's temperature dependence. Membranes were tested in low and medium temperature PEM fuel cells at 65 and 120°C, respectively, at 50% rh. In the LT-PEMFC, 40µm thick SES0005-IM10 and Nafion 212 based MEAs exhibited current densities of 470 and 454mAcm−2 at 0.7V, respectively. In the MT-PEMFC, SES0005-IM10 based MEAs demonstrated a current density of 405mAcm−2 at 0.5V, 2.4 folds more than pristine membrane based MEAs. In the DMFC, SES0005-IM10 enabled a peak power density of 153mWcm−2 at 70°C and 1M methanol feed, 20% higher than Nafion 212, 38% higher than mPES60. |
abstract_unstemmed |
Polymer electrolyte membranes (PEMs) consisting of copper(II)phthalocyanine tetrasulfonic acid tetrasodium salt (CuPCSA) and disulfonated poly(arylene ether sulfone) (SES0005) are prepared. The TEM analysis results prove the incorporation of CuPCSA as nanoparticles into the composite membranes. Catalytic activity of CuPCSA towards peroxide degradation is shown by CV. Addition of CuPCSA increases the dimensional stability in contact with water (18% vs. 43% linear swelling for pristine SES0005). Addition of 10wt% CuPCSA (SES0005-IM10) increases the proton conductivity four fold to 16.8mScm−1 at 120°C and 50% relative humidity (rh). Activation energy decreases with CuPCSA content, reducing the conductivity's temperature dependence. Membranes were tested in low and medium temperature PEM fuel cells at 65 and 120°C, respectively, at 50% rh. In the LT-PEMFC, 40µm thick SES0005-IM10 and Nafion 212 based MEAs exhibited current densities of 470 and 454mAcm−2 at 0.7V, respectively. In the MT-PEMFC, SES0005-IM10 based MEAs demonstrated a current density of 405mAcm−2 at 0.5V, 2.4 folds more than pristine membrane based MEAs. In the DMFC, SES0005-IM10 enabled a peak power density of 153mWcm−2 at 70°C and 1M methanol feed, 20% higher than Nafion 212, 38% higher than mPES60. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
title_short |
Blue membranes: Sulfonated copper(II) phthalocyanine tetrasulfonic acid based composite membranes for DMFC and low relative humidity PEMFC |
url |
https://doi.org/10.1016/j.memsci.2015.12.035 |
remote_bool |
true |
author2 |
Henkensmeier, Dirk Park, Young-Hee Jang, Jong-Hyun Kwon, Taehoon Koo, Chong Min Kim, Hyoung-Juhn Han, Jonghee Nam, Suk-Woo |
author2Str |
Henkensmeier, Dirk Park, Young-Hee Jang, Jong-Hyun Kwon, Taehoon Koo, Chong Min Kim, Hyoung-Juhn Han, Jonghee Nam, Suk-Woo |
ppnlink |
ELV002478420 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth oth |
doi_str |
10.1016/j.memsci.2015.12.035 |
up_date |
2024-07-06T21:20:38.986Z |
_version_ |
1803866172541632512 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV01939652X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625125905.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.memsci.2015.12.035</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2016012000009.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV01939652X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0376-7388(15)30377-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">570</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.17</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.50</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Krishnan, N. Nambi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Blue membranes: Sulfonated copper(II) phthalocyanine tetrasulfonic acid based composite membranes for DMFC and low relative humidity PEMFC</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Polymer electrolyte membranes (PEMs) consisting of copper(II)phthalocyanine tetrasulfonic acid tetrasodium salt (CuPCSA) and disulfonated poly(arylene ether sulfone) (SES0005) are prepared. The TEM analysis results prove the incorporation of CuPCSA as nanoparticles into the composite membranes. Catalytic activity of CuPCSA towards peroxide degradation is shown by CV. Addition of CuPCSA increases the dimensional stability in contact with water (18% vs. 43% linear swelling for pristine SES0005). Addition of 10wt% CuPCSA (SES0005-IM10) increases the proton conductivity four fold to 16.8mScm−1 at 120°C and 50% relative humidity (rh). Activation energy decreases with CuPCSA content, reducing the conductivity's temperature dependence. Membranes were tested in low and medium temperature PEM fuel cells at 65 and 120°C, respectively, at 50% rh. In the LT-PEMFC, 40µm thick SES0005-IM10 and Nafion 212 based MEAs exhibited current densities of 470 and 454mAcm−2 at 0.7V, respectively. In the MT-PEMFC, SES0005-IM10 based MEAs demonstrated a current density of 405mAcm−2 at 0.5V, 2.4 folds more than pristine membrane based MEAs. In the DMFC, SES0005-IM10 enabled a peak power density of 153mWcm−2 at 70°C and 1M methanol feed, 20% higher than Nafion 212, 38% higher than mPES60.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Polymer electrolyte membranes (PEMs) consisting of copper(II)phthalocyanine tetrasulfonic acid tetrasodium salt (CuPCSA) and disulfonated poly(arylene ether sulfone) (SES0005) are prepared. The TEM analysis results prove the incorporation of CuPCSA as nanoparticles into the composite membranes. Catalytic activity of CuPCSA towards peroxide degradation is shown by CV. Addition of CuPCSA increases the dimensional stability in contact with water (18% vs. 43% linear swelling for pristine SES0005). Addition of 10wt% CuPCSA (SES0005-IM10) increases the proton conductivity four fold to 16.8mScm−1 at 120°C and 50% relative humidity (rh). Activation energy decreases with CuPCSA content, reducing the conductivity's temperature dependence. Membranes were tested in low and medium temperature PEM fuel cells at 65 and 120°C, respectively, at 50% rh. In the LT-PEMFC, 40µm thick SES0005-IM10 and Nafion 212 based MEAs exhibited current densities of 470 and 454mAcm−2 at 0.7V, respectively. In the MT-PEMFC, SES0005-IM10 based MEAs demonstrated a current density of 405mAcm−2 at 0.5V, 2.4 folds more than pristine membrane based MEAs. In the DMFC, SES0005-IM10 enabled a peak power density of 153mWcm−2 at 70°C and 1M methanol feed, 20% higher than Nafion 212, 38% higher than mPES60.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">PEMFC</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hydrocarbon membrane</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">DMFC</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Composite membrane</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Copper(II)phthalocyanine tetrasulfonic acid tetrasodium salt</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Henkensmeier, Dirk</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Park, Young-Hee</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jang, Jong-Hyun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kwon, Taehoon</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Koo, Chong Min</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Hyoung-Juhn</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Han, Jonghee</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nam, Suk-Woo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Yue, Xin-Zheng ELSEVIER</subfield><subfield code="t">Steering charge kinetics in W</subfield><subfield code="d">2019</subfield><subfield code="d">the official journal of the North American Membrane Society</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV002478420</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:502</subfield><subfield code="g">year:2016</subfield><subfield code="g">day:15</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:1-10</subfield><subfield code="g">extent:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.memsci.2015.12.035</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.17</subfield><subfield code="j">Katalyse</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.50</subfield><subfield code="j">Umwelttechnik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.12</subfield><subfield code="j">Umweltchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">502</subfield><subfield code="j">2016</subfield><subfield code="b">15</subfield><subfield code="c">0315</subfield><subfield code="h">1-10</subfield><subfield code="g">10</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">570</subfield></datafield></record></collection>
|
score |
7.400757 |