Fabrication of substrate supported bimetallic nanoparticles and their optical characterization through reflection spectra
An approach for the fabrication of bimetallic (Au–Ag) nanoparticle is investigated and its optical response in terms of refection spectra is obtained. A bimetallic film is deposited on a c-Si substrate followed by thermal dewetting at 800 °C for 15 min. Randomly dispersed bimetallic nanoparticles ar...
Ausführliche Beschreibung
Autor*in: |
Goswami, A. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
7 |
---|
Übergeordnetes Werk: |
Enthalten in: A two-stage gap safe screening rule for multi-label optimal margin distribution machine - Ma, Mengdan ELSEVIER, 2022, an interdisciplinary journal on the science and technology of nanostructures, Oxford [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:91 ; year:2016 ; pages:252-258 ; extent:7 |
Links: |
---|
DOI / URN: |
10.1016/j.spmi.2016.01.016 |
---|
Katalog-ID: |
ELV019484356 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV019484356 | ||
003 | DE-627 | ||
005 | 20230625130039.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.spmi.2016.01.016 |2 doi | |
028 | 5 | 2 | |a GBVA2016014000006.pica |
035 | |a (DE-627)ELV019484356 | ||
035 | |a (ELSEVIER)S0749-6036(16)30016-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 530 | |
082 | 0 | 4 | |a 530 |q DE-600 |
082 | 0 | 4 | |a 004 |q VZ |
084 | |a 50.23 |2 bkl | ||
084 | |a 54.72 |2 bkl | ||
100 | 1 | |a Goswami, A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Fabrication of substrate supported bimetallic nanoparticles and their optical characterization through reflection spectra |
264 | 1 | |c 2016transfer abstract | |
300 | |a 7 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a An approach for the fabrication of bimetallic (Au–Ag) nanoparticle is investigated and its optical response in terms of refection spectra is obtained. A bimetallic film is deposited on a c-Si substrate followed by thermal dewetting at 800 °C for 15 min. Randomly dispersed bimetallic nanoparticles are formed on the substrate. The sequence of deposition of the metallic film is reversed and reflection spectra for all the samples including the bare c-Si is obtained. It is seen that the reflection of the bimetallic nanoparticle dispersed c-Si substrate is less than the bare c-Si for almost all the wavelengths ranging from 300 to 1100 nm due to the localized surface plasmon resonance of the bimetallic nanoparticles. | ||
520 | |a An approach for the fabrication of bimetallic (Au–Ag) nanoparticle is investigated and its optical response in terms of refection spectra is obtained. A bimetallic film is deposited on a c-Si substrate followed by thermal dewetting at 800 °C for 15 min. Randomly dispersed bimetallic nanoparticles are formed on the substrate. The sequence of deposition of the metallic film is reversed and reflection spectra for all the samples including the bare c-Si is obtained. It is seen that the reflection of the bimetallic nanoparticle dispersed c-Si substrate is less than the bare c-Si for almost all the wavelengths ranging from 300 to 1100 nm due to the localized surface plasmon resonance of the bimetallic nanoparticles. | ||
650 | 7 | |a Thermal dewetting |2 Elsevier | |
650 | 7 | |a Bimetallic nanoparticles |2 Elsevier | |
650 | 7 | |a Reflectance spectra |2 Elsevier | |
650 | 7 | |a Localized surface plasmon resonance |2 Elsevier | |
700 | 1 | |a Aravindan, S. |4 oth | |
700 | 1 | |a Rao, P.V. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science, Academic Press |a Ma, Mengdan ELSEVIER |t A two-stage gap safe screening rule for multi-label optimal margin distribution machine |d 2022 |d an interdisciplinary journal on the science and technology of nanostructures |g Oxford [u.a.] |w (DE-627)ELV008997705 |
773 | 1 | 8 | |g volume:91 |g year:2016 |g pages:252-258 |g extent:7 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.spmi.2016.01.016 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 50.23 |j Regelungstechnik |j Steuerungstechnik |q VZ |
936 | b | k | |a 54.72 |j Künstliche Intelligenz |q VZ |
951 | |a AR | ||
952 | |d 91 |j 2016 |h 252-258 |g 7 | ||
953 | |2 045F |a 530 |
author_variant |
a g ag |
---|---|
matchkey_str |
goswamiaaravindansraopv:2016----:arctoosbtaeuprebmtlinnprilsnterpiacaatrz |
hierarchy_sort_str |
2016transfer abstract |
bklnumber |
50.23 54.72 |
publishDate |
2016 |
allfields |
10.1016/j.spmi.2016.01.016 doi GBVA2016014000006.pica (DE-627)ELV019484356 (ELSEVIER)S0749-6036(16)30016-7 DE-627 ger DE-627 rakwb eng 530 530 DE-600 004 VZ 50.23 bkl 54.72 bkl Goswami, A. verfasserin aut Fabrication of substrate supported bimetallic nanoparticles and their optical characterization through reflection spectra 2016transfer abstract 7 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier An approach for the fabrication of bimetallic (Au–Ag) nanoparticle is investigated and its optical response in terms of refection spectra is obtained. A bimetallic film is deposited on a c-Si substrate followed by thermal dewetting at 800 °C for 15 min. Randomly dispersed bimetallic nanoparticles are formed on the substrate. The sequence of deposition of the metallic film is reversed and reflection spectra for all the samples including the bare c-Si is obtained. It is seen that the reflection of the bimetallic nanoparticle dispersed c-Si substrate is less than the bare c-Si for almost all the wavelengths ranging from 300 to 1100 nm due to the localized surface plasmon resonance of the bimetallic nanoparticles. An approach for the fabrication of bimetallic (Au–Ag) nanoparticle is investigated and its optical response in terms of refection spectra is obtained. A bimetallic film is deposited on a c-Si substrate followed by thermal dewetting at 800 °C for 15 min. Randomly dispersed bimetallic nanoparticles are formed on the substrate. The sequence of deposition of the metallic film is reversed and reflection spectra for all the samples including the bare c-Si is obtained. It is seen that the reflection of the bimetallic nanoparticle dispersed c-Si substrate is less than the bare c-Si for almost all the wavelengths ranging from 300 to 1100 nm due to the localized surface plasmon resonance of the bimetallic nanoparticles. Thermal dewetting Elsevier Bimetallic nanoparticles Elsevier Reflectance spectra Elsevier Localized surface plasmon resonance Elsevier Aravindan, S. oth Rao, P.V. oth Enthalten in Elsevier Science, Academic Press Ma, Mengdan ELSEVIER A two-stage gap safe screening rule for multi-label optimal margin distribution machine 2022 an interdisciplinary journal on the science and technology of nanostructures Oxford [u.a.] (DE-627)ELV008997705 volume:91 year:2016 pages:252-258 extent:7 https://doi.org/10.1016/j.spmi.2016.01.016 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.23 Regelungstechnik Steuerungstechnik VZ 54.72 Künstliche Intelligenz VZ AR 91 2016 252-258 7 045F 530 |
spelling |
10.1016/j.spmi.2016.01.016 doi GBVA2016014000006.pica (DE-627)ELV019484356 (ELSEVIER)S0749-6036(16)30016-7 DE-627 ger DE-627 rakwb eng 530 530 DE-600 004 VZ 50.23 bkl 54.72 bkl Goswami, A. verfasserin aut Fabrication of substrate supported bimetallic nanoparticles and their optical characterization through reflection spectra 2016transfer abstract 7 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier An approach for the fabrication of bimetallic (Au–Ag) nanoparticle is investigated and its optical response in terms of refection spectra is obtained. A bimetallic film is deposited on a c-Si substrate followed by thermal dewetting at 800 °C for 15 min. Randomly dispersed bimetallic nanoparticles are formed on the substrate. The sequence of deposition of the metallic film is reversed and reflection spectra for all the samples including the bare c-Si is obtained. It is seen that the reflection of the bimetallic nanoparticle dispersed c-Si substrate is less than the bare c-Si for almost all the wavelengths ranging from 300 to 1100 nm due to the localized surface plasmon resonance of the bimetallic nanoparticles. An approach for the fabrication of bimetallic (Au–Ag) nanoparticle is investigated and its optical response in terms of refection spectra is obtained. A bimetallic film is deposited on a c-Si substrate followed by thermal dewetting at 800 °C for 15 min. Randomly dispersed bimetallic nanoparticles are formed on the substrate. The sequence of deposition of the metallic film is reversed and reflection spectra for all the samples including the bare c-Si is obtained. It is seen that the reflection of the bimetallic nanoparticle dispersed c-Si substrate is less than the bare c-Si for almost all the wavelengths ranging from 300 to 1100 nm due to the localized surface plasmon resonance of the bimetallic nanoparticles. Thermal dewetting Elsevier Bimetallic nanoparticles Elsevier Reflectance spectra Elsevier Localized surface plasmon resonance Elsevier Aravindan, S. oth Rao, P.V. oth Enthalten in Elsevier Science, Academic Press Ma, Mengdan ELSEVIER A two-stage gap safe screening rule for multi-label optimal margin distribution machine 2022 an interdisciplinary journal on the science and technology of nanostructures Oxford [u.a.] (DE-627)ELV008997705 volume:91 year:2016 pages:252-258 extent:7 https://doi.org/10.1016/j.spmi.2016.01.016 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.23 Regelungstechnik Steuerungstechnik VZ 54.72 Künstliche Intelligenz VZ AR 91 2016 252-258 7 045F 530 |
allfields_unstemmed |
10.1016/j.spmi.2016.01.016 doi GBVA2016014000006.pica (DE-627)ELV019484356 (ELSEVIER)S0749-6036(16)30016-7 DE-627 ger DE-627 rakwb eng 530 530 DE-600 004 VZ 50.23 bkl 54.72 bkl Goswami, A. verfasserin aut Fabrication of substrate supported bimetallic nanoparticles and their optical characterization through reflection spectra 2016transfer abstract 7 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier An approach for the fabrication of bimetallic (Au–Ag) nanoparticle is investigated and its optical response in terms of refection spectra is obtained. A bimetallic film is deposited on a c-Si substrate followed by thermal dewetting at 800 °C for 15 min. Randomly dispersed bimetallic nanoparticles are formed on the substrate. The sequence of deposition of the metallic film is reversed and reflection spectra for all the samples including the bare c-Si is obtained. It is seen that the reflection of the bimetallic nanoparticle dispersed c-Si substrate is less than the bare c-Si for almost all the wavelengths ranging from 300 to 1100 nm due to the localized surface plasmon resonance of the bimetallic nanoparticles. An approach for the fabrication of bimetallic (Au–Ag) nanoparticle is investigated and its optical response in terms of refection spectra is obtained. A bimetallic film is deposited on a c-Si substrate followed by thermal dewetting at 800 °C for 15 min. Randomly dispersed bimetallic nanoparticles are formed on the substrate. The sequence of deposition of the metallic film is reversed and reflection spectra for all the samples including the bare c-Si is obtained. It is seen that the reflection of the bimetallic nanoparticle dispersed c-Si substrate is less than the bare c-Si for almost all the wavelengths ranging from 300 to 1100 nm due to the localized surface plasmon resonance of the bimetallic nanoparticles. Thermal dewetting Elsevier Bimetallic nanoparticles Elsevier Reflectance spectra Elsevier Localized surface plasmon resonance Elsevier Aravindan, S. oth Rao, P.V. oth Enthalten in Elsevier Science, Academic Press Ma, Mengdan ELSEVIER A two-stage gap safe screening rule for multi-label optimal margin distribution machine 2022 an interdisciplinary journal on the science and technology of nanostructures Oxford [u.a.] (DE-627)ELV008997705 volume:91 year:2016 pages:252-258 extent:7 https://doi.org/10.1016/j.spmi.2016.01.016 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.23 Regelungstechnik Steuerungstechnik VZ 54.72 Künstliche Intelligenz VZ AR 91 2016 252-258 7 045F 530 |
allfieldsGer |
10.1016/j.spmi.2016.01.016 doi GBVA2016014000006.pica (DE-627)ELV019484356 (ELSEVIER)S0749-6036(16)30016-7 DE-627 ger DE-627 rakwb eng 530 530 DE-600 004 VZ 50.23 bkl 54.72 bkl Goswami, A. verfasserin aut Fabrication of substrate supported bimetallic nanoparticles and their optical characterization through reflection spectra 2016transfer abstract 7 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier An approach for the fabrication of bimetallic (Au–Ag) nanoparticle is investigated and its optical response in terms of refection spectra is obtained. A bimetallic film is deposited on a c-Si substrate followed by thermal dewetting at 800 °C for 15 min. Randomly dispersed bimetallic nanoparticles are formed on the substrate. The sequence of deposition of the metallic film is reversed and reflection spectra for all the samples including the bare c-Si is obtained. It is seen that the reflection of the bimetallic nanoparticle dispersed c-Si substrate is less than the bare c-Si for almost all the wavelengths ranging from 300 to 1100 nm due to the localized surface plasmon resonance of the bimetallic nanoparticles. An approach for the fabrication of bimetallic (Au–Ag) nanoparticle is investigated and its optical response in terms of refection spectra is obtained. A bimetallic film is deposited on a c-Si substrate followed by thermal dewetting at 800 °C for 15 min. Randomly dispersed bimetallic nanoparticles are formed on the substrate. The sequence of deposition of the metallic film is reversed and reflection spectra for all the samples including the bare c-Si is obtained. It is seen that the reflection of the bimetallic nanoparticle dispersed c-Si substrate is less than the bare c-Si for almost all the wavelengths ranging from 300 to 1100 nm due to the localized surface plasmon resonance of the bimetallic nanoparticles. Thermal dewetting Elsevier Bimetallic nanoparticles Elsevier Reflectance spectra Elsevier Localized surface plasmon resonance Elsevier Aravindan, S. oth Rao, P.V. oth Enthalten in Elsevier Science, Academic Press Ma, Mengdan ELSEVIER A two-stage gap safe screening rule for multi-label optimal margin distribution machine 2022 an interdisciplinary journal on the science and technology of nanostructures Oxford [u.a.] (DE-627)ELV008997705 volume:91 year:2016 pages:252-258 extent:7 https://doi.org/10.1016/j.spmi.2016.01.016 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.23 Regelungstechnik Steuerungstechnik VZ 54.72 Künstliche Intelligenz VZ AR 91 2016 252-258 7 045F 530 |
allfieldsSound |
10.1016/j.spmi.2016.01.016 doi GBVA2016014000006.pica (DE-627)ELV019484356 (ELSEVIER)S0749-6036(16)30016-7 DE-627 ger DE-627 rakwb eng 530 530 DE-600 004 VZ 50.23 bkl 54.72 bkl Goswami, A. verfasserin aut Fabrication of substrate supported bimetallic nanoparticles and their optical characterization through reflection spectra 2016transfer abstract 7 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier An approach for the fabrication of bimetallic (Au–Ag) nanoparticle is investigated and its optical response in terms of refection spectra is obtained. A bimetallic film is deposited on a c-Si substrate followed by thermal dewetting at 800 °C for 15 min. Randomly dispersed bimetallic nanoparticles are formed on the substrate. The sequence of deposition of the metallic film is reversed and reflection spectra for all the samples including the bare c-Si is obtained. It is seen that the reflection of the bimetallic nanoparticle dispersed c-Si substrate is less than the bare c-Si for almost all the wavelengths ranging from 300 to 1100 nm due to the localized surface plasmon resonance of the bimetallic nanoparticles. An approach for the fabrication of bimetallic (Au–Ag) nanoparticle is investigated and its optical response in terms of refection spectra is obtained. A bimetallic film is deposited on a c-Si substrate followed by thermal dewetting at 800 °C for 15 min. Randomly dispersed bimetallic nanoparticles are formed on the substrate. The sequence of deposition of the metallic film is reversed and reflection spectra for all the samples including the bare c-Si is obtained. It is seen that the reflection of the bimetallic nanoparticle dispersed c-Si substrate is less than the bare c-Si for almost all the wavelengths ranging from 300 to 1100 nm due to the localized surface plasmon resonance of the bimetallic nanoparticles. Thermal dewetting Elsevier Bimetallic nanoparticles Elsevier Reflectance spectra Elsevier Localized surface plasmon resonance Elsevier Aravindan, S. oth Rao, P.V. oth Enthalten in Elsevier Science, Academic Press Ma, Mengdan ELSEVIER A two-stage gap safe screening rule for multi-label optimal margin distribution machine 2022 an interdisciplinary journal on the science and technology of nanostructures Oxford [u.a.] (DE-627)ELV008997705 volume:91 year:2016 pages:252-258 extent:7 https://doi.org/10.1016/j.spmi.2016.01.016 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.23 Regelungstechnik Steuerungstechnik VZ 54.72 Künstliche Intelligenz VZ AR 91 2016 252-258 7 045F 530 |
language |
English |
source |
Enthalten in A two-stage gap safe screening rule for multi-label optimal margin distribution machine Oxford [u.a.] volume:91 year:2016 pages:252-258 extent:7 |
sourceStr |
Enthalten in A two-stage gap safe screening rule for multi-label optimal margin distribution machine Oxford [u.a.] volume:91 year:2016 pages:252-258 extent:7 |
format_phy_str_mv |
Article |
bklname |
Regelungstechnik Steuerungstechnik Künstliche Intelligenz |
institution |
findex.gbv.de |
topic_facet |
Thermal dewetting Bimetallic nanoparticles Reflectance spectra Localized surface plasmon resonance |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
A two-stage gap safe screening rule for multi-label optimal margin distribution machine |
authorswithroles_txt_mv |
Goswami, A. @@aut@@ Aravindan, S. @@oth@@ Rao, P.V. @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
ELV008997705 |
dewey-sort |
3530 |
id |
ELV019484356 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV019484356</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625130039.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.spmi.2016.01.016</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2016014000006.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV019484356</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0749-6036(16)30016-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.23</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.72</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Goswami, A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fabrication of substrate supported bimetallic nanoparticles and their optical characterization through reflection spectra</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">7</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">An approach for the fabrication of bimetallic (Au–Ag) nanoparticle is investigated and its optical response in terms of refection spectra is obtained. A bimetallic film is deposited on a c-Si substrate followed by thermal dewetting at 800 °C for 15 min. Randomly dispersed bimetallic nanoparticles are formed on the substrate. The sequence of deposition of the metallic film is reversed and reflection spectra for all the samples including the bare c-Si is obtained. It is seen that the reflection of the bimetallic nanoparticle dispersed c-Si substrate is less than the bare c-Si for almost all the wavelengths ranging from 300 to 1100 nm due to the localized surface plasmon resonance of the bimetallic nanoparticles.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">An approach for the fabrication of bimetallic (Au–Ag) nanoparticle is investigated and its optical response in terms of refection spectra is obtained. A bimetallic film is deposited on a c-Si substrate followed by thermal dewetting at 800 °C for 15 min. Randomly dispersed bimetallic nanoparticles are formed on the substrate. The sequence of deposition of the metallic film is reversed and reflection spectra for all the samples including the bare c-Si is obtained. It is seen that the reflection of the bimetallic nanoparticle dispersed c-Si substrate is less than the bare c-Si for almost all the wavelengths ranging from 300 to 1100 nm due to the localized surface plasmon resonance of the bimetallic nanoparticles.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Thermal dewetting</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bimetallic nanoparticles</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Reflectance spectra</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Localized surface plasmon resonance</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Aravindan, S.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rao, P.V.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science, Academic Press</subfield><subfield code="a">Ma, Mengdan ELSEVIER</subfield><subfield code="t">A two-stage gap safe screening rule for multi-label optimal margin distribution machine</subfield><subfield code="d">2022</subfield><subfield code="d">an interdisciplinary journal on the science and technology of nanostructures</subfield><subfield code="g">Oxford [u.a.]</subfield><subfield code="w">(DE-627)ELV008997705</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:91</subfield><subfield code="g">year:2016</subfield><subfield code="g">pages:252-258</subfield><subfield code="g">extent:7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.spmi.2016.01.016</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.23</subfield><subfield code="j">Regelungstechnik</subfield><subfield code="j">Steuerungstechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.72</subfield><subfield code="j">Künstliche Intelligenz</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">91</subfield><subfield code="j">2016</subfield><subfield code="h">252-258</subfield><subfield code="g">7</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">530</subfield></datafield></record></collection>
|
author |
Goswami, A. |
spellingShingle |
Goswami, A. ddc 530 ddc 004 bkl 50.23 bkl 54.72 Elsevier Thermal dewetting Elsevier Bimetallic nanoparticles Elsevier Reflectance spectra Elsevier Localized surface plasmon resonance Fabrication of substrate supported bimetallic nanoparticles and their optical characterization through reflection spectra |
authorStr |
Goswami, A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV008997705 |
format |
electronic Article |
dewey-ones |
530 - Physics 004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
530 530 DE-600 004 VZ 50.23 bkl 54.72 bkl Fabrication of substrate supported bimetallic nanoparticles and their optical characterization through reflection spectra Thermal dewetting Elsevier Bimetallic nanoparticles Elsevier Reflectance spectra Elsevier Localized surface plasmon resonance Elsevier |
topic |
ddc 530 ddc 004 bkl 50.23 bkl 54.72 Elsevier Thermal dewetting Elsevier Bimetallic nanoparticles Elsevier Reflectance spectra Elsevier Localized surface plasmon resonance |
topic_unstemmed |
ddc 530 ddc 004 bkl 50.23 bkl 54.72 Elsevier Thermal dewetting Elsevier Bimetallic nanoparticles Elsevier Reflectance spectra Elsevier Localized surface plasmon resonance |
topic_browse |
ddc 530 ddc 004 bkl 50.23 bkl 54.72 Elsevier Thermal dewetting Elsevier Bimetallic nanoparticles Elsevier Reflectance spectra Elsevier Localized surface plasmon resonance |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
s a sa p r pr |
hierarchy_parent_title |
A two-stage gap safe screening rule for multi-label optimal margin distribution machine |
hierarchy_parent_id |
ELV008997705 |
dewey-tens |
530 - Physics 000 - Computer science, knowledge & systems |
hierarchy_top_title |
A two-stage gap safe screening rule for multi-label optimal margin distribution machine |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV008997705 |
title |
Fabrication of substrate supported bimetallic nanoparticles and their optical characterization through reflection spectra |
ctrlnum |
(DE-627)ELV019484356 (ELSEVIER)S0749-6036(16)30016-7 |
title_full |
Fabrication of substrate supported bimetallic nanoparticles and their optical characterization through reflection spectra |
author_sort |
Goswami, A. |
journal |
A two-stage gap safe screening rule for multi-label optimal margin distribution machine |
journalStr |
A two-stage gap safe screening rule for multi-label optimal margin distribution machine |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
zzz |
container_start_page |
252 |
author_browse |
Goswami, A. |
container_volume |
91 |
physical |
7 |
class |
530 530 DE-600 004 VZ 50.23 bkl 54.72 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Goswami, A. |
doi_str_mv |
10.1016/j.spmi.2016.01.016 |
dewey-full |
530 004 |
title_sort |
fabrication of substrate supported bimetallic nanoparticles and their optical characterization through reflection spectra |
title_auth |
Fabrication of substrate supported bimetallic nanoparticles and their optical characterization through reflection spectra |
abstract |
An approach for the fabrication of bimetallic (Au–Ag) nanoparticle is investigated and its optical response in terms of refection spectra is obtained. A bimetallic film is deposited on a c-Si substrate followed by thermal dewetting at 800 °C for 15 min. Randomly dispersed bimetallic nanoparticles are formed on the substrate. The sequence of deposition of the metallic film is reversed and reflection spectra for all the samples including the bare c-Si is obtained. It is seen that the reflection of the bimetallic nanoparticle dispersed c-Si substrate is less than the bare c-Si for almost all the wavelengths ranging from 300 to 1100 nm due to the localized surface plasmon resonance of the bimetallic nanoparticles. |
abstractGer |
An approach for the fabrication of bimetallic (Au–Ag) nanoparticle is investigated and its optical response in terms of refection spectra is obtained. A bimetallic film is deposited on a c-Si substrate followed by thermal dewetting at 800 °C for 15 min. Randomly dispersed bimetallic nanoparticles are formed on the substrate. The sequence of deposition of the metallic film is reversed and reflection spectra for all the samples including the bare c-Si is obtained. It is seen that the reflection of the bimetallic nanoparticle dispersed c-Si substrate is less than the bare c-Si for almost all the wavelengths ranging from 300 to 1100 nm due to the localized surface plasmon resonance of the bimetallic nanoparticles. |
abstract_unstemmed |
An approach for the fabrication of bimetallic (Au–Ag) nanoparticle is investigated and its optical response in terms of refection spectra is obtained. A bimetallic film is deposited on a c-Si substrate followed by thermal dewetting at 800 °C for 15 min. Randomly dispersed bimetallic nanoparticles are formed on the substrate. The sequence of deposition of the metallic film is reversed and reflection spectra for all the samples including the bare c-Si is obtained. It is seen that the reflection of the bimetallic nanoparticle dispersed c-Si substrate is less than the bare c-Si for almost all the wavelengths ranging from 300 to 1100 nm due to the localized surface plasmon resonance of the bimetallic nanoparticles. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
Fabrication of substrate supported bimetallic nanoparticles and their optical characterization through reflection spectra |
url |
https://doi.org/10.1016/j.spmi.2016.01.016 |
remote_bool |
true |
author2 |
Aravindan, S. Rao, P.V. |
author2Str |
Aravindan, S. Rao, P.V. |
ppnlink |
ELV008997705 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1016/j.spmi.2016.01.016 |
up_date |
2024-07-06T21:33:25.907Z |
_version_ |
1803866976717635584 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV019484356</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625130039.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.spmi.2016.01.016</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2016014000006.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV019484356</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0749-6036(16)30016-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.23</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.72</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Goswami, A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fabrication of substrate supported bimetallic nanoparticles and their optical characterization through reflection spectra</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">7</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">An approach for the fabrication of bimetallic (Au–Ag) nanoparticle is investigated and its optical response in terms of refection spectra is obtained. A bimetallic film is deposited on a c-Si substrate followed by thermal dewetting at 800 °C for 15 min. Randomly dispersed bimetallic nanoparticles are formed on the substrate. The sequence of deposition of the metallic film is reversed and reflection spectra for all the samples including the bare c-Si is obtained. It is seen that the reflection of the bimetallic nanoparticle dispersed c-Si substrate is less than the bare c-Si for almost all the wavelengths ranging from 300 to 1100 nm due to the localized surface plasmon resonance of the bimetallic nanoparticles.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">An approach for the fabrication of bimetallic (Au–Ag) nanoparticle is investigated and its optical response in terms of refection spectra is obtained. A bimetallic film is deposited on a c-Si substrate followed by thermal dewetting at 800 °C for 15 min. Randomly dispersed bimetallic nanoparticles are formed on the substrate. The sequence of deposition of the metallic film is reversed and reflection spectra for all the samples including the bare c-Si is obtained. It is seen that the reflection of the bimetallic nanoparticle dispersed c-Si substrate is less than the bare c-Si for almost all the wavelengths ranging from 300 to 1100 nm due to the localized surface plasmon resonance of the bimetallic nanoparticles.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Thermal dewetting</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bimetallic nanoparticles</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Reflectance spectra</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Localized surface plasmon resonance</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Aravindan, S.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rao, P.V.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science, Academic Press</subfield><subfield code="a">Ma, Mengdan ELSEVIER</subfield><subfield code="t">A two-stage gap safe screening rule for multi-label optimal margin distribution machine</subfield><subfield code="d">2022</subfield><subfield code="d">an interdisciplinary journal on the science and technology of nanostructures</subfield><subfield code="g">Oxford [u.a.]</subfield><subfield code="w">(DE-627)ELV008997705</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:91</subfield><subfield code="g">year:2016</subfield><subfield code="g">pages:252-258</subfield><subfield code="g">extent:7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.spmi.2016.01.016</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.23</subfield><subfield code="j">Regelungstechnik</subfield><subfield code="j">Steuerungstechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.72</subfield><subfield code="j">Künstliche Intelligenz</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">91</subfield><subfield code="j">2016</subfield><subfield code="h">252-258</subfield><subfield code="g">7</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">530</subfield></datafield></record></collection>
|
score |
7.402501 |