Efficiency increase of crystalline silicon solar cells with nanoimprinted rear side gratings for enhanced light trapping
We demonstrate diffractive rear side gratings to enhance the near infrared light trapping and thus the quantum efficiency of wafer based crystalline silicon solar cells. Binary crossed gratings with a period of 1µm, produced via nanoimprint lithography and plasma etching, are electrically decoupled...
Ausführliche Beschreibung
Autor*in: |
Eisenlohr, Johannes [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
6 |
---|
Übergeordnetes Werk: |
Enthalten in: Question answering method for infrastructure damage information retrieval from textual data using bidirectional encoder representations from transformers - Kim, Yohan ELSEVIER, 2021, an international journal devoted to photovoltaic, photothermal, and photochemical solar energy conversion, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:155 ; year:2016 ; pages:288-293 ; extent:6 |
Links: |
---|
DOI / URN: |
10.1016/j.solmat.2016.06.033 |
---|
Katalog-ID: |
ELV019598653 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV019598653 | ||
003 | DE-627 | ||
005 | 20230625130307.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.solmat.2016.06.033 |2 doi | |
028 | 5 | 2 | |a GBV00000000000227A.pica |
035 | |a (DE-627)ELV019598653 | ||
035 | |a (ELSEVIER)S0927-0248(16)30207-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 530 |a 620 | |
082 | 0 | 4 | |a 530 |q DE-600 |
082 | 0 | 4 | |a 620 |q DE-600 |
082 | 0 | 4 | |a 690 |q VZ |
084 | |a 56.03 |2 bkl | ||
100 | 1 | |a Eisenlohr, Johannes |e verfasserin |4 aut | |
245 | 1 | 0 | |a Efficiency increase of crystalline silicon solar cells with nanoimprinted rear side gratings for enhanced light trapping |
264 | 1 | |c 2016transfer abstract | |
300 | |a 6 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a We demonstrate diffractive rear side gratings to enhance the near infrared light trapping and thus the quantum efficiency of wafer based crystalline silicon solar cells. Binary crossed gratings with a period of 1µm, produced via nanoimprint lithography and plasma etching, are electrically decoupled from the solar cell by a thin dielectric passivation layer, creating an electrically flat, but optically rough rear side. We fabricated solar cells with thicknesses of 250, 150 and 100µm and demonstrate a short circuit current density gain due to the grating of 1.2, 1.6 and 1.8mA/cm2 for solar cells with planar front surface. For solar cells with pyramidally textured front surface the grating also leads to a small current density gain in the near infrared of approximately 0.3mA/cm2 according to EQE measurements, leading to the best cell's efficiency of 21.1%. By optical simulations we show the potential of the grating structure and identify losses in the fabricated solar cells. | ||
520 | |a We demonstrate diffractive rear side gratings to enhance the near infrared light trapping and thus the quantum efficiency of wafer based crystalline silicon solar cells. Binary crossed gratings with a period of 1µm, produced via nanoimprint lithography and plasma etching, are electrically decoupled from the solar cell by a thin dielectric passivation layer, creating an electrically flat, but optically rough rear side. We fabricated solar cells with thicknesses of 250, 150 and 100µm and demonstrate a short circuit current density gain due to the grating of 1.2, 1.6 and 1.8mA/cm2 for solar cells with planar front surface. For solar cells with pyramidally textured front surface the grating also leads to a small current density gain in the near infrared of approximately 0.3mA/cm2 according to EQE measurements, leading to the best cell's efficiency of 21.1%. By optical simulations we show the potential of the grating structure and identify losses in the fabricated solar cells. | ||
650 | 7 | |a Silicon solar cells |2 Elsevier | |
650 | 7 | |a Light trapping |2 Elsevier | |
650 | 7 | |a Nanoimprint lithography |2 Elsevier | |
650 | 7 | |a Gratings |2 Elsevier | |
700 | 1 | |a Tucher, Nico |4 oth | |
700 | 1 | |a Hauser, Hubert |4 oth | |
700 | 1 | |a Graf, Martin |4 oth | |
700 | 1 | |a Benick, Jan |4 oth | |
700 | 1 | |a Bläsi, Benedikt |4 oth | |
700 | 1 | |a Goldschmidt, Jan Christoph |4 oth | |
700 | 1 | |a Hermle, Martin |4 oth | |
773 | 0 | 8 | |i Enthalten in |n NH, Elsevier |a Kim, Yohan ELSEVIER |t Question answering method for infrastructure damage information retrieval from textual data using bidirectional encoder representations from transformers |d 2021 |d an international journal devoted to photovoltaic, photothermal, and photochemical solar energy conversion |g Amsterdam [u.a.] |w (DE-627)ELV00721202X |
773 | 1 | 8 | |g volume:155 |g year:2016 |g pages:288-293 |g extent:6 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.solmat.2016.06.033 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 56.03 |j Methoden im Bauingenieurwesen |q VZ |
951 | |a AR | ||
952 | |d 155 |j 2016 |h 288-293 |g 6 | ||
953 | |2 045F |a 530 |
author_variant |
j e je |
---|---|
matchkey_str |
eisenlohrjohannestuchernicohauserhubertg:2016----:fiinynraefrsalnslcnoaclsihaomrnerasdgai |
hierarchy_sort_str |
2016transfer abstract |
bklnumber |
56.03 |
publishDate |
2016 |
allfields |
10.1016/j.solmat.2016.06.033 doi GBV00000000000227A.pica (DE-627)ELV019598653 (ELSEVIER)S0927-0248(16)30207-0 DE-627 ger DE-627 rakwb eng 530 620 530 DE-600 620 DE-600 690 VZ 56.03 bkl Eisenlohr, Johannes verfasserin aut Efficiency increase of crystalline silicon solar cells with nanoimprinted rear side gratings for enhanced light trapping 2016transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We demonstrate diffractive rear side gratings to enhance the near infrared light trapping and thus the quantum efficiency of wafer based crystalline silicon solar cells. Binary crossed gratings with a period of 1µm, produced via nanoimprint lithography and plasma etching, are electrically decoupled from the solar cell by a thin dielectric passivation layer, creating an electrically flat, but optically rough rear side. We fabricated solar cells with thicknesses of 250, 150 and 100µm and demonstrate a short circuit current density gain due to the grating of 1.2, 1.6 and 1.8mA/cm2 for solar cells with planar front surface. For solar cells with pyramidally textured front surface the grating also leads to a small current density gain in the near infrared of approximately 0.3mA/cm2 according to EQE measurements, leading to the best cell's efficiency of 21.1%. By optical simulations we show the potential of the grating structure and identify losses in the fabricated solar cells. We demonstrate diffractive rear side gratings to enhance the near infrared light trapping and thus the quantum efficiency of wafer based crystalline silicon solar cells. Binary crossed gratings with a period of 1µm, produced via nanoimprint lithography and plasma etching, are electrically decoupled from the solar cell by a thin dielectric passivation layer, creating an electrically flat, but optically rough rear side. We fabricated solar cells with thicknesses of 250, 150 and 100µm and demonstrate a short circuit current density gain due to the grating of 1.2, 1.6 and 1.8mA/cm2 for solar cells with planar front surface. For solar cells with pyramidally textured front surface the grating also leads to a small current density gain in the near infrared of approximately 0.3mA/cm2 according to EQE measurements, leading to the best cell's efficiency of 21.1%. By optical simulations we show the potential of the grating structure and identify losses in the fabricated solar cells. Silicon solar cells Elsevier Light trapping Elsevier Nanoimprint lithography Elsevier Gratings Elsevier Tucher, Nico oth Hauser, Hubert oth Graf, Martin oth Benick, Jan oth Bläsi, Benedikt oth Goldschmidt, Jan Christoph oth Hermle, Martin oth Enthalten in NH, Elsevier Kim, Yohan ELSEVIER Question answering method for infrastructure damage information retrieval from textual data using bidirectional encoder representations from transformers 2021 an international journal devoted to photovoltaic, photothermal, and photochemical solar energy conversion Amsterdam [u.a.] (DE-627)ELV00721202X volume:155 year:2016 pages:288-293 extent:6 https://doi.org/10.1016/j.solmat.2016.06.033 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 56.03 Methoden im Bauingenieurwesen VZ AR 155 2016 288-293 6 045F 530 |
spelling |
10.1016/j.solmat.2016.06.033 doi GBV00000000000227A.pica (DE-627)ELV019598653 (ELSEVIER)S0927-0248(16)30207-0 DE-627 ger DE-627 rakwb eng 530 620 530 DE-600 620 DE-600 690 VZ 56.03 bkl Eisenlohr, Johannes verfasserin aut Efficiency increase of crystalline silicon solar cells with nanoimprinted rear side gratings for enhanced light trapping 2016transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We demonstrate diffractive rear side gratings to enhance the near infrared light trapping and thus the quantum efficiency of wafer based crystalline silicon solar cells. Binary crossed gratings with a period of 1µm, produced via nanoimprint lithography and plasma etching, are electrically decoupled from the solar cell by a thin dielectric passivation layer, creating an electrically flat, but optically rough rear side. We fabricated solar cells with thicknesses of 250, 150 and 100µm and demonstrate a short circuit current density gain due to the grating of 1.2, 1.6 and 1.8mA/cm2 for solar cells with planar front surface. For solar cells with pyramidally textured front surface the grating also leads to a small current density gain in the near infrared of approximately 0.3mA/cm2 according to EQE measurements, leading to the best cell's efficiency of 21.1%. By optical simulations we show the potential of the grating structure and identify losses in the fabricated solar cells. We demonstrate diffractive rear side gratings to enhance the near infrared light trapping and thus the quantum efficiency of wafer based crystalline silicon solar cells. Binary crossed gratings with a period of 1µm, produced via nanoimprint lithography and plasma etching, are electrically decoupled from the solar cell by a thin dielectric passivation layer, creating an electrically flat, but optically rough rear side. We fabricated solar cells with thicknesses of 250, 150 and 100µm and demonstrate a short circuit current density gain due to the grating of 1.2, 1.6 and 1.8mA/cm2 for solar cells with planar front surface. For solar cells with pyramidally textured front surface the grating also leads to a small current density gain in the near infrared of approximately 0.3mA/cm2 according to EQE measurements, leading to the best cell's efficiency of 21.1%. By optical simulations we show the potential of the grating structure and identify losses in the fabricated solar cells. Silicon solar cells Elsevier Light trapping Elsevier Nanoimprint lithography Elsevier Gratings Elsevier Tucher, Nico oth Hauser, Hubert oth Graf, Martin oth Benick, Jan oth Bläsi, Benedikt oth Goldschmidt, Jan Christoph oth Hermle, Martin oth Enthalten in NH, Elsevier Kim, Yohan ELSEVIER Question answering method for infrastructure damage information retrieval from textual data using bidirectional encoder representations from transformers 2021 an international journal devoted to photovoltaic, photothermal, and photochemical solar energy conversion Amsterdam [u.a.] (DE-627)ELV00721202X volume:155 year:2016 pages:288-293 extent:6 https://doi.org/10.1016/j.solmat.2016.06.033 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 56.03 Methoden im Bauingenieurwesen VZ AR 155 2016 288-293 6 045F 530 |
allfields_unstemmed |
10.1016/j.solmat.2016.06.033 doi GBV00000000000227A.pica (DE-627)ELV019598653 (ELSEVIER)S0927-0248(16)30207-0 DE-627 ger DE-627 rakwb eng 530 620 530 DE-600 620 DE-600 690 VZ 56.03 bkl Eisenlohr, Johannes verfasserin aut Efficiency increase of crystalline silicon solar cells with nanoimprinted rear side gratings for enhanced light trapping 2016transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We demonstrate diffractive rear side gratings to enhance the near infrared light trapping and thus the quantum efficiency of wafer based crystalline silicon solar cells. Binary crossed gratings with a period of 1µm, produced via nanoimprint lithography and plasma etching, are electrically decoupled from the solar cell by a thin dielectric passivation layer, creating an electrically flat, but optically rough rear side. We fabricated solar cells with thicknesses of 250, 150 and 100µm and demonstrate a short circuit current density gain due to the grating of 1.2, 1.6 and 1.8mA/cm2 for solar cells with planar front surface. For solar cells with pyramidally textured front surface the grating also leads to a small current density gain in the near infrared of approximately 0.3mA/cm2 according to EQE measurements, leading to the best cell's efficiency of 21.1%. By optical simulations we show the potential of the grating structure and identify losses in the fabricated solar cells. We demonstrate diffractive rear side gratings to enhance the near infrared light trapping and thus the quantum efficiency of wafer based crystalline silicon solar cells. Binary crossed gratings with a period of 1µm, produced via nanoimprint lithography and plasma etching, are electrically decoupled from the solar cell by a thin dielectric passivation layer, creating an electrically flat, but optically rough rear side. We fabricated solar cells with thicknesses of 250, 150 and 100µm and demonstrate a short circuit current density gain due to the grating of 1.2, 1.6 and 1.8mA/cm2 for solar cells with planar front surface. For solar cells with pyramidally textured front surface the grating also leads to a small current density gain in the near infrared of approximately 0.3mA/cm2 according to EQE measurements, leading to the best cell's efficiency of 21.1%. By optical simulations we show the potential of the grating structure and identify losses in the fabricated solar cells. Silicon solar cells Elsevier Light trapping Elsevier Nanoimprint lithography Elsevier Gratings Elsevier Tucher, Nico oth Hauser, Hubert oth Graf, Martin oth Benick, Jan oth Bläsi, Benedikt oth Goldschmidt, Jan Christoph oth Hermle, Martin oth Enthalten in NH, Elsevier Kim, Yohan ELSEVIER Question answering method for infrastructure damage information retrieval from textual data using bidirectional encoder representations from transformers 2021 an international journal devoted to photovoltaic, photothermal, and photochemical solar energy conversion Amsterdam [u.a.] (DE-627)ELV00721202X volume:155 year:2016 pages:288-293 extent:6 https://doi.org/10.1016/j.solmat.2016.06.033 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 56.03 Methoden im Bauingenieurwesen VZ AR 155 2016 288-293 6 045F 530 |
allfieldsGer |
10.1016/j.solmat.2016.06.033 doi GBV00000000000227A.pica (DE-627)ELV019598653 (ELSEVIER)S0927-0248(16)30207-0 DE-627 ger DE-627 rakwb eng 530 620 530 DE-600 620 DE-600 690 VZ 56.03 bkl Eisenlohr, Johannes verfasserin aut Efficiency increase of crystalline silicon solar cells with nanoimprinted rear side gratings for enhanced light trapping 2016transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We demonstrate diffractive rear side gratings to enhance the near infrared light trapping and thus the quantum efficiency of wafer based crystalline silicon solar cells. Binary crossed gratings with a period of 1µm, produced via nanoimprint lithography and plasma etching, are electrically decoupled from the solar cell by a thin dielectric passivation layer, creating an electrically flat, but optically rough rear side. We fabricated solar cells with thicknesses of 250, 150 and 100µm and demonstrate a short circuit current density gain due to the grating of 1.2, 1.6 and 1.8mA/cm2 for solar cells with planar front surface. For solar cells with pyramidally textured front surface the grating also leads to a small current density gain in the near infrared of approximately 0.3mA/cm2 according to EQE measurements, leading to the best cell's efficiency of 21.1%. By optical simulations we show the potential of the grating structure and identify losses in the fabricated solar cells. We demonstrate diffractive rear side gratings to enhance the near infrared light trapping and thus the quantum efficiency of wafer based crystalline silicon solar cells. Binary crossed gratings with a period of 1µm, produced via nanoimprint lithography and plasma etching, are electrically decoupled from the solar cell by a thin dielectric passivation layer, creating an electrically flat, but optically rough rear side. We fabricated solar cells with thicknesses of 250, 150 and 100µm and demonstrate a short circuit current density gain due to the grating of 1.2, 1.6 and 1.8mA/cm2 for solar cells with planar front surface. For solar cells with pyramidally textured front surface the grating also leads to a small current density gain in the near infrared of approximately 0.3mA/cm2 according to EQE measurements, leading to the best cell's efficiency of 21.1%. By optical simulations we show the potential of the grating structure and identify losses in the fabricated solar cells. Silicon solar cells Elsevier Light trapping Elsevier Nanoimprint lithography Elsevier Gratings Elsevier Tucher, Nico oth Hauser, Hubert oth Graf, Martin oth Benick, Jan oth Bläsi, Benedikt oth Goldschmidt, Jan Christoph oth Hermle, Martin oth Enthalten in NH, Elsevier Kim, Yohan ELSEVIER Question answering method for infrastructure damage information retrieval from textual data using bidirectional encoder representations from transformers 2021 an international journal devoted to photovoltaic, photothermal, and photochemical solar energy conversion Amsterdam [u.a.] (DE-627)ELV00721202X volume:155 year:2016 pages:288-293 extent:6 https://doi.org/10.1016/j.solmat.2016.06.033 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 56.03 Methoden im Bauingenieurwesen VZ AR 155 2016 288-293 6 045F 530 |
allfieldsSound |
10.1016/j.solmat.2016.06.033 doi GBV00000000000227A.pica (DE-627)ELV019598653 (ELSEVIER)S0927-0248(16)30207-0 DE-627 ger DE-627 rakwb eng 530 620 530 DE-600 620 DE-600 690 VZ 56.03 bkl Eisenlohr, Johannes verfasserin aut Efficiency increase of crystalline silicon solar cells with nanoimprinted rear side gratings for enhanced light trapping 2016transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We demonstrate diffractive rear side gratings to enhance the near infrared light trapping and thus the quantum efficiency of wafer based crystalline silicon solar cells. Binary crossed gratings with a period of 1µm, produced via nanoimprint lithography and plasma etching, are electrically decoupled from the solar cell by a thin dielectric passivation layer, creating an electrically flat, but optically rough rear side. We fabricated solar cells with thicknesses of 250, 150 and 100µm and demonstrate a short circuit current density gain due to the grating of 1.2, 1.6 and 1.8mA/cm2 for solar cells with planar front surface. For solar cells with pyramidally textured front surface the grating also leads to a small current density gain in the near infrared of approximately 0.3mA/cm2 according to EQE measurements, leading to the best cell's efficiency of 21.1%. By optical simulations we show the potential of the grating structure and identify losses in the fabricated solar cells. We demonstrate diffractive rear side gratings to enhance the near infrared light trapping and thus the quantum efficiency of wafer based crystalline silicon solar cells. Binary crossed gratings with a period of 1µm, produced via nanoimprint lithography and plasma etching, are electrically decoupled from the solar cell by a thin dielectric passivation layer, creating an electrically flat, but optically rough rear side. We fabricated solar cells with thicknesses of 250, 150 and 100µm and demonstrate a short circuit current density gain due to the grating of 1.2, 1.6 and 1.8mA/cm2 for solar cells with planar front surface. For solar cells with pyramidally textured front surface the grating also leads to a small current density gain in the near infrared of approximately 0.3mA/cm2 according to EQE measurements, leading to the best cell's efficiency of 21.1%. By optical simulations we show the potential of the grating structure and identify losses in the fabricated solar cells. Silicon solar cells Elsevier Light trapping Elsevier Nanoimprint lithography Elsevier Gratings Elsevier Tucher, Nico oth Hauser, Hubert oth Graf, Martin oth Benick, Jan oth Bläsi, Benedikt oth Goldschmidt, Jan Christoph oth Hermle, Martin oth Enthalten in NH, Elsevier Kim, Yohan ELSEVIER Question answering method for infrastructure damage information retrieval from textual data using bidirectional encoder representations from transformers 2021 an international journal devoted to photovoltaic, photothermal, and photochemical solar energy conversion Amsterdam [u.a.] (DE-627)ELV00721202X volume:155 year:2016 pages:288-293 extent:6 https://doi.org/10.1016/j.solmat.2016.06.033 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 56.03 Methoden im Bauingenieurwesen VZ AR 155 2016 288-293 6 045F 530 |
language |
English |
source |
Enthalten in Question answering method for infrastructure damage information retrieval from textual data using bidirectional encoder representations from transformers Amsterdam [u.a.] volume:155 year:2016 pages:288-293 extent:6 |
sourceStr |
Enthalten in Question answering method for infrastructure damage information retrieval from textual data using bidirectional encoder representations from transformers Amsterdam [u.a.] volume:155 year:2016 pages:288-293 extent:6 |
format_phy_str_mv |
Article |
bklname |
Methoden im Bauingenieurwesen |
institution |
findex.gbv.de |
topic_facet |
Silicon solar cells Light trapping Nanoimprint lithography Gratings |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Question answering method for infrastructure damage information retrieval from textual data using bidirectional encoder representations from transformers |
authorswithroles_txt_mv |
Eisenlohr, Johannes @@aut@@ Tucher, Nico @@oth@@ Hauser, Hubert @@oth@@ Graf, Martin @@oth@@ Benick, Jan @@oth@@ Bläsi, Benedikt @@oth@@ Goldschmidt, Jan Christoph @@oth@@ Hermle, Martin @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
ELV00721202X |
dewey-sort |
3530 |
id |
ELV019598653 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV019598653</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625130307.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.solmat.2016.06.033</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000227A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV019598653</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0927-0248(16)30207-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530</subfield><subfield code="a">620</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">56.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Eisenlohr, Johannes</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Efficiency increase of crystalline silicon solar cells with nanoimprinted rear side gratings for enhanced light trapping</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">6</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We demonstrate diffractive rear side gratings to enhance the near infrared light trapping and thus the quantum efficiency of wafer based crystalline silicon solar cells. Binary crossed gratings with a period of 1µm, produced via nanoimprint lithography and plasma etching, are electrically decoupled from the solar cell by a thin dielectric passivation layer, creating an electrically flat, but optically rough rear side. We fabricated solar cells with thicknesses of 250, 150 and 100µm and demonstrate a short circuit current density gain due to the grating of 1.2, 1.6 and 1.8mA/cm2 for solar cells with planar front surface. For solar cells with pyramidally textured front surface the grating also leads to a small current density gain in the near infrared of approximately 0.3mA/cm2 according to EQE measurements, leading to the best cell's efficiency of 21.1%. By optical simulations we show the potential of the grating structure and identify losses in the fabricated solar cells.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We demonstrate diffractive rear side gratings to enhance the near infrared light trapping and thus the quantum efficiency of wafer based crystalline silicon solar cells. Binary crossed gratings with a period of 1µm, produced via nanoimprint lithography and plasma etching, are electrically decoupled from the solar cell by a thin dielectric passivation layer, creating an electrically flat, but optically rough rear side. We fabricated solar cells with thicknesses of 250, 150 and 100µm and demonstrate a short circuit current density gain due to the grating of 1.2, 1.6 and 1.8mA/cm2 for solar cells with planar front surface. For solar cells with pyramidally textured front surface the grating also leads to a small current density gain in the near infrared of approximately 0.3mA/cm2 according to EQE measurements, leading to the best cell's efficiency of 21.1%. By optical simulations we show the potential of the grating structure and identify losses in the fabricated solar cells.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Silicon solar cells</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Light trapping</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nanoimprint lithography</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Gratings</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tucher, Nico</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hauser, Hubert</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Graf, Martin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Benick, Jan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bläsi, Benedikt</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Goldschmidt, Jan Christoph</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hermle, Martin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">NH, Elsevier</subfield><subfield code="a">Kim, Yohan ELSEVIER</subfield><subfield code="t">Question answering method for infrastructure damage information retrieval from textual data using bidirectional encoder representations from transformers</subfield><subfield code="d">2021</subfield><subfield code="d">an international journal devoted to photovoltaic, photothermal, and photochemical solar energy conversion</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV00721202X</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:155</subfield><subfield code="g">year:2016</subfield><subfield code="g">pages:288-293</subfield><subfield code="g">extent:6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.solmat.2016.06.033</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">56.03</subfield><subfield code="j">Methoden im Bauingenieurwesen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">155</subfield><subfield code="j">2016</subfield><subfield code="h">288-293</subfield><subfield code="g">6</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">530</subfield></datafield></record></collection>
|
author |
Eisenlohr, Johannes |
spellingShingle |
Eisenlohr, Johannes ddc 530 ddc 620 ddc 690 bkl 56.03 Elsevier Silicon solar cells Elsevier Light trapping Elsevier Nanoimprint lithography Elsevier Gratings Efficiency increase of crystalline silicon solar cells with nanoimprinted rear side gratings for enhanced light trapping |
authorStr |
Eisenlohr, Johannes |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV00721202X |
format |
electronic Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations 690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
530 620 530 DE-600 620 DE-600 690 VZ 56.03 bkl Efficiency increase of crystalline silicon solar cells with nanoimprinted rear side gratings for enhanced light trapping Silicon solar cells Elsevier Light trapping Elsevier Nanoimprint lithography Elsevier Gratings Elsevier |
topic |
ddc 530 ddc 620 ddc 690 bkl 56.03 Elsevier Silicon solar cells Elsevier Light trapping Elsevier Nanoimprint lithography Elsevier Gratings |
topic_unstemmed |
ddc 530 ddc 620 ddc 690 bkl 56.03 Elsevier Silicon solar cells Elsevier Light trapping Elsevier Nanoimprint lithography Elsevier Gratings |
topic_browse |
ddc 530 ddc 620 ddc 690 bkl 56.03 Elsevier Silicon solar cells Elsevier Light trapping Elsevier Nanoimprint lithography Elsevier Gratings |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
n t nt h h hh m g mg j b jb b b bb j c g jc jcg m h mh |
hierarchy_parent_title |
Question answering method for infrastructure damage information retrieval from textual data using bidirectional encoder representations from transformers |
hierarchy_parent_id |
ELV00721202X |
dewey-tens |
530 - Physics 620 - Engineering 690 - Building & construction |
hierarchy_top_title |
Question answering method for infrastructure damage information retrieval from textual data using bidirectional encoder representations from transformers |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV00721202X |
title |
Efficiency increase of crystalline silicon solar cells with nanoimprinted rear side gratings for enhanced light trapping |
ctrlnum |
(DE-627)ELV019598653 (ELSEVIER)S0927-0248(16)30207-0 |
title_full |
Efficiency increase of crystalline silicon solar cells with nanoimprinted rear side gratings for enhanced light trapping |
author_sort |
Eisenlohr, Johannes |
journal |
Question answering method for infrastructure damage information retrieval from textual data using bidirectional encoder representations from transformers |
journalStr |
Question answering method for infrastructure damage information retrieval from textual data using bidirectional encoder representations from transformers |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
zzz |
container_start_page |
288 |
author_browse |
Eisenlohr, Johannes |
container_volume |
155 |
physical |
6 |
class |
530 620 530 DE-600 620 DE-600 690 VZ 56.03 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Eisenlohr, Johannes |
doi_str_mv |
10.1016/j.solmat.2016.06.033 |
dewey-full |
530 620 690 |
title_sort |
efficiency increase of crystalline silicon solar cells with nanoimprinted rear side gratings for enhanced light trapping |
title_auth |
Efficiency increase of crystalline silicon solar cells with nanoimprinted rear side gratings for enhanced light trapping |
abstract |
We demonstrate diffractive rear side gratings to enhance the near infrared light trapping and thus the quantum efficiency of wafer based crystalline silicon solar cells. Binary crossed gratings with a period of 1µm, produced via nanoimprint lithography and plasma etching, are electrically decoupled from the solar cell by a thin dielectric passivation layer, creating an electrically flat, but optically rough rear side. We fabricated solar cells with thicknesses of 250, 150 and 100µm and demonstrate a short circuit current density gain due to the grating of 1.2, 1.6 and 1.8mA/cm2 for solar cells with planar front surface. For solar cells with pyramidally textured front surface the grating also leads to a small current density gain in the near infrared of approximately 0.3mA/cm2 according to EQE measurements, leading to the best cell's efficiency of 21.1%. By optical simulations we show the potential of the grating structure and identify losses in the fabricated solar cells. |
abstractGer |
We demonstrate diffractive rear side gratings to enhance the near infrared light trapping and thus the quantum efficiency of wafer based crystalline silicon solar cells. Binary crossed gratings with a period of 1µm, produced via nanoimprint lithography and plasma etching, are electrically decoupled from the solar cell by a thin dielectric passivation layer, creating an electrically flat, but optically rough rear side. We fabricated solar cells with thicknesses of 250, 150 and 100µm and demonstrate a short circuit current density gain due to the grating of 1.2, 1.6 and 1.8mA/cm2 for solar cells with planar front surface. For solar cells with pyramidally textured front surface the grating also leads to a small current density gain in the near infrared of approximately 0.3mA/cm2 according to EQE measurements, leading to the best cell's efficiency of 21.1%. By optical simulations we show the potential of the grating structure and identify losses in the fabricated solar cells. |
abstract_unstemmed |
We demonstrate diffractive rear side gratings to enhance the near infrared light trapping and thus the quantum efficiency of wafer based crystalline silicon solar cells. Binary crossed gratings with a period of 1µm, produced via nanoimprint lithography and plasma etching, are electrically decoupled from the solar cell by a thin dielectric passivation layer, creating an electrically flat, but optically rough rear side. We fabricated solar cells with thicknesses of 250, 150 and 100µm and demonstrate a short circuit current density gain due to the grating of 1.2, 1.6 and 1.8mA/cm2 for solar cells with planar front surface. For solar cells with pyramidally textured front surface the grating also leads to a small current density gain in the near infrared of approximately 0.3mA/cm2 according to EQE measurements, leading to the best cell's efficiency of 21.1%. By optical simulations we show the potential of the grating structure and identify losses in the fabricated solar cells. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
Efficiency increase of crystalline silicon solar cells with nanoimprinted rear side gratings for enhanced light trapping |
url |
https://doi.org/10.1016/j.solmat.2016.06.033 |
remote_bool |
true |
author2 |
Tucher, Nico Hauser, Hubert Graf, Martin Benick, Jan Bläsi, Benedikt Goldschmidt, Jan Christoph Hermle, Martin |
author2Str |
Tucher, Nico Hauser, Hubert Graf, Martin Benick, Jan Bläsi, Benedikt Goldschmidt, Jan Christoph Hermle, Martin |
ppnlink |
ELV00721202X |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth |
doi_str |
10.1016/j.solmat.2016.06.033 |
up_date |
2024-07-06T21:52:04.475Z |
_version_ |
1803868149621194752 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV019598653</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625130307.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.solmat.2016.06.033</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000227A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV019598653</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0927-0248(16)30207-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530</subfield><subfield code="a">620</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">56.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Eisenlohr, Johannes</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Efficiency increase of crystalline silicon solar cells with nanoimprinted rear side gratings for enhanced light trapping</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">6</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We demonstrate diffractive rear side gratings to enhance the near infrared light trapping and thus the quantum efficiency of wafer based crystalline silicon solar cells. Binary crossed gratings with a period of 1µm, produced via nanoimprint lithography and plasma etching, are electrically decoupled from the solar cell by a thin dielectric passivation layer, creating an electrically flat, but optically rough rear side. We fabricated solar cells with thicknesses of 250, 150 and 100µm and demonstrate a short circuit current density gain due to the grating of 1.2, 1.6 and 1.8mA/cm2 for solar cells with planar front surface. For solar cells with pyramidally textured front surface the grating also leads to a small current density gain in the near infrared of approximately 0.3mA/cm2 according to EQE measurements, leading to the best cell's efficiency of 21.1%. By optical simulations we show the potential of the grating structure and identify losses in the fabricated solar cells.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We demonstrate diffractive rear side gratings to enhance the near infrared light trapping and thus the quantum efficiency of wafer based crystalline silicon solar cells. Binary crossed gratings with a period of 1µm, produced via nanoimprint lithography and plasma etching, are electrically decoupled from the solar cell by a thin dielectric passivation layer, creating an electrically flat, but optically rough rear side. We fabricated solar cells with thicknesses of 250, 150 and 100µm and demonstrate a short circuit current density gain due to the grating of 1.2, 1.6 and 1.8mA/cm2 for solar cells with planar front surface. For solar cells with pyramidally textured front surface the grating also leads to a small current density gain in the near infrared of approximately 0.3mA/cm2 according to EQE measurements, leading to the best cell's efficiency of 21.1%. By optical simulations we show the potential of the grating structure and identify losses in the fabricated solar cells.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Silicon solar cells</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Light trapping</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nanoimprint lithography</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Gratings</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tucher, Nico</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hauser, Hubert</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Graf, Martin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Benick, Jan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bläsi, Benedikt</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Goldschmidt, Jan Christoph</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hermle, Martin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">NH, Elsevier</subfield><subfield code="a">Kim, Yohan ELSEVIER</subfield><subfield code="t">Question answering method for infrastructure damage information retrieval from textual data using bidirectional encoder representations from transformers</subfield><subfield code="d">2021</subfield><subfield code="d">an international journal devoted to photovoltaic, photothermal, and photochemical solar energy conversion</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV00721202X</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:155</subfield><subfield code="g">year:2016</subfield><subfield code="g">pages:288-293</subfield><subfield code="g">extent:6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.solmat.2016.06.033</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">56.03</subfield><subfield code="j">Methoden im Bauingenieurwesen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">155</subfield><subfield code="j">2016</subfield><subfield code="h">288-293</subfield><subfield code="g">6</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">530</subfield></datafield></record></collection>
|
score |
7.399441 |