Dynamic causal modelling of EEG and fMRI to characterize network architectures in a simple motor task
Dynamic causal modelling (DCM) has extended the understanding of brain network dynamics in a variety of functional systems. In the motor system, DCM studies based on functional magnetic resonance imaging (fMRI) or on magneto-/electroencephalography (M/EEG) have demonstrated movement-related causal i...
Ausführliche Beschreibung
Autor*in: |
Bönstrup, Marlene [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016transfer abstract |
---|
Umfang: |
11 |
---|
Übergeordnetes Werk: |
Enthalten in: Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements - Nicosia, Alessia ELSEVIER, 2017, a journal of brain function, Orlando, Fla |
---|---|
Übergeordnetes Werk: |
volume:124 ; year:2016 ; day:1 ; month:01 ; pages:498-508 ; extent:11 |
Links: |
---|
DOI / URN: |
10.1016/j.neuroimage.2015.08.052 |
---|
Katalog-ID: |
ELV019678991 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV019678991 | ||
003 | DE-627 | ||
005 | 20230625130434.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.neuroimage.2015.08.052 |2 doi | |
028 | 5 | 2 | |a GBVA2016018000028.pica |
035 | |a (DE-627)ELV019678991 | ||
035 | |a (ELSEVIER)S1053-8119(15)00771-5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 610 | |
082 | 0 | 4 | |a 610 |q DE-600 |
100 | 1 | |a Bönstrup, Marlene |e verfasserin |4 aut | |
245 | 1 | 0 | |a Dynamic causal modelling of EEG and fMRI to characterize network architectures in a simple motor task |
264 | 1 | |c 2016transfer abstract | |
300 | |a 11 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Dynamic causal modelling (DCM) has extended the understanding of brain network dynamics in a variety of functional systems. In the motor system, DCM studies based on functional magnetic resonance imaging (fMRI) or on magneto-/electroencephalography (M/EEG) have demonstrated movement-related causal information flow from secondary to primary motor areas and have provided evidence for nonlinear cross-frequency interactions among motor areas. The present study sought to investigate to what extent fMRI- and EEG-based DCM might provide complementary and synergistic insights into neuronal network dynamics. Both modalities share principal similarities in the formulation of the DCM. Thus, we hypothesized that DCM based on induced EEG responses (DCM–IR) and on fMRI would reveal congruent task-dependent network dynamics. | ||
520 | |a Dynamic causal modelling (DCM) has extended the understanding of brain network dynamics in a variety of functional systems. In the motor system, DCM studies based on functional magnetic resonance imaging (fMRI) or on magneto-/electroencephalography (M/EEG) have demonstrated movement-related causal information flow from secondary to primary motor areas and have provided evidence for nonlinear cross-frequency interactions among motor areas. The present study sought to investigate to what extent fMRI- and EEG-based DCM might provide complementary and synergistic insights into neuronal network dynamics. Both modalities share principal similarities in the formulation of the DCM. Thus, we hypothesized that DCM based on induced EEG responses (DCM–IR) and on fMRI would reveal congruent task-dependent network dynamics. | ||
700 | 1 | |a Schulz, Robert |4 oth | |
700 | 1 | |a Feldheim, Jan |4 oth | |
700 | 1 | |a Hummel, Friedhelm C. |4 oth | |
700 | 1 | |a Gerloff, Christian |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Academic Press |a Nicosia, Alessia ELSEVIER |t Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements |d 2017 |d a journal of brain function |g Orlando, Fla |w (DE-627)ELV001942808 |
773 | 1 | 8 | |g volume:124 |g year:2016 |g day:1 |g month:01 |g pages:498-508 |g extent:11 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.neuroimage.2015.08.052 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
951 | |a AR | ||
952 | |d 124 |j 2016 |b 1 |c 0101 |h 498-508 |g 11 | ||
953 | |2 045F |a 610 |
author_variant |
m b mb |
---|---|
matchkey_str |
bnstrupmarleneschulzrobertfeldheimjanhum:2016----:yaicuamdligfeadmiohrceieewracie |
hierarchy_sort_str |
2016transfer abstract |
publishDate |
2016 |
allfields |
10.1016/j.neuroimage.2015.08.052 doi GBVA2016018000028.pica (DE-627)ELV019678991 (ELSEVIER)S1053-8119(15)00771-5 DE-627 ger DE-627 rakwb eng 610 610 DE-600 Bönstrup, Marlene verfasserin aut Dynamic causal modelling of EEG and fMRI to characterize network architectures in a simple motor task 2016transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Dynamic causal modelling (DCM) has extended the understanding of brain network dynamics in a variety of functional systems. In the motor system, DCM studies based on functional magnetic resonance imaging (fMRI) or on magneto-/electroencephalography (M/EEG) have demonstrated movement-related causal information flow from secondary to primary motor areas and have provided evidence for nonlinear cross-frequency interactions among motor areas. The present study sought to investigate to what extent fMRI- and EEG-based DCM might provide complementary and synergistic insights into neuronal network dynamics. Both modalities share principal similarities in the formulation of the DCM. Thus, we hypothesized that DCM based on induced EEG responses (DCM–IR) and on fMRI would reveal congruent task-dependent network dynamics. Dynamic causal modelling (DCM) has extended the understanding of brain network dynamics in a variety of functional systems. In the motor system, DCM studies based on functional magnetic resonance imaging (fMRI) or on magneto-/electroencephalography (M/EEG) have demonstrated movement-related causal information flow from secondary to primary motor areas and have provided evidence for nonlinear cross-frequency interactions among motor areas. The present study sought to investigate to what extent fMRI- and EEG-based DCM might provide complementary and synergistic insights into neuronal network dynamics. Both modalities share principal similarities in the formulation of the DCM. Thus, we hypothesized that DCM based on induced EEG responses (DCM–IR) and on fMRI would reveal congruent task-dependent network dynamics. Schulz, Robert oth Feldheim, Jan oth Hummel, Friedhelm C. oth Gerloff, Christian oth Enthalten in Academic Press Nicosia, Alessia ELSEVIER Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements 2017 a journal of brain function Orlando, Fla (DE-627)ELV001942808 volume:124 year:2016 day:1 month:01 pages:498-508 extent:11 https://doi.org/10.1016/j.neuroimage.2015.08.052 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U AR 124 2016 1 0101 498-508 11 045F 610 |
spelling |
10.1016/j.neuroimage.2015.08.052 doi GBVA2016018000028.pica (DE-627)ELV019678991 (ELSEVIER)S1053-8119(15)00771-5 DE-627 ger DE-627 rakwb eng 610 610 DE-600 Bönstrup, Marlene verfasserin aut Dynamic causal modelling of EEG and fMRI to characterize network architectures in a simple motor task 2016transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Dynamic causal modelling (DCM) has extended the understanding of brain network dynamics in a variety of functional systems. In the motor system, DCM studies based on functional magnetic resonance imaging (fMRI) or on magneto-/electroencephalography (M/EEG) have demonstrated movement-related causal information flow from secondary to primary motor areas and have provided evidence for nonlinear cross-frequency interactions among motor areas. The present study sought to investigate to what extent fMRI- and EEG-based DCM might provide complementary and synergistic insights into neuronal network dynamics. Both modalities share principal similarities in the formulation of the DCM. Thus, we hypothesized that DCM based on induced EEG responses (DCM–IR) and on fMRI would reveal congruent task-dependent network dynamics. Dynamic causal modelling (DCM) has extended the understanding of brain network dynamics in a variety of functional systems. In the motor system, DCM studies based on functional magnetic resonance imaging (fMRI) or on magneto-/electroencephalography (M/EEG) have demonstrated movement-related causal information flow from secondary to primary motor areas and have provided evidence for nonlinear cross-frequency interactions among motor areas. The present study sought to investigate to what extent fMRI- and EEG-based DCM might provide complementary and synergistic insights into neuronal network dynamics. Both modalities share principal similarities in the formulation of the DCM. Thus, we hypothesized that DCM based on induced EEG responses (DCM–IR) and on fMRI would reveal congruent task-dependent network dynamics. Schulz, Robert oth Feldheim, Jan oth Hummel, Friedhelm C. oth Gerloff, Christian oth Enthalten in Academic Press Nicosia, Alessia ELSEVIER Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements 2017 a journal of brain function Orlando, Fla (DE-627)ELV001942808 volume:124 year:2016 day:1 month:01 pages:498-508 extent:11 https://doi.org/10.1016/j.neuroimage.2015.08.052 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U AR 124 2016 1 0101 498-508 11 045F 610 |
allfields_unstemmed |
10.1016/j.neuroimage.2015.08.052 doi GBVA2016018000028.pica (DE-627)ELV019678991 (ELSEVIER)S1053-8119(15)00771-5 DE-627 ger DE-627 rakwb eng 610 610 DE-600 Bönstrup, Marlene verfasserin aut Dynamic causal modelling of EEG and fMRI to characterize network architectures in a simple motor task 2016transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Dynamic causal modelling (DCM) has extended the understanding of brain network dynamics in a variety of functional systems. In the motor system, DCM studies based on functional magnetic resonance imaging (fMRI) or on magneto-/electroencephalography (M/EEG) have demonstrated movement-related causal information flow from secondary to primary motor areas and have provided evidence for nonlinear cross-frequency interactions among motor areas. The present study sought to investigate to what extent fMRI- and EEG-based DCM might provide complementary and synergistic insights into neuronal network dynamics. Both modalities share principal similarities in the formulation of the DCM. Thus, we hypothesized that DCM based on induced EEG responses (DCM–IR) and on fMRI would reveal congruent task-dependent network dynamics. Dynamic causal modelling (DCM) has extended the understanding of brain network dynamics in a variety of functional systems. In the motor system, DCM studies based on functional magnetic resonance imaging (fMRI) or on magneto-/electroencephalography (M/EEG) have demonstrated movement-related causal information flow from secondary to primary motor areas and have provided evidence for nonlinear cross-frequency interactions among motor areas. The present study sought to investigate to what extent fMRI- and EEG-based DCM might provide complementary and synergistic insights into neuronal network dynamics. Both modalities share principal similarities in the formulation of the DCM. Thus, we hypothesized that DCM based on induced EEG responses (DCM–IR) and on fMRI would reveal congruent task-dependent network dynamics. Schulz, Robert oth Feldheim, Jan oth Hummel, Friedhelm C. oth Gerloff, Christian oth Enthalten in Academic Press Nicosia, Alessia ELSEVIER Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements 2017 a journal of brain function Orlando, Fla (DE-627)ELV001942808 volume:124 year:2016 day:1 month:01 pages:498-508 extent:11 https://doi.org/10.1016/j.neuroimage.2015.08.052 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U AR 124 2016 1 0101 498-508 11 045F 610 |
allfieldsGer |
10.1016/j.neuroimage.2015.08.052 doi GBVA2016018000028.pica (DE-627)ELV019678991 (ELSEVIER)S1053-8119(15)00771-5 DE-627 ger DE-627 rakwb eng 610 610 DE-600 Bönstrup, Marlene verfasserin aut Dynamic causal modelling of EEG and fMRI to characterize network architectures in a simple motor task 2016transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Dynamic causal modelling (DCM) has extended the understanding of brain network dynamics in a variety of functional systems. In the motor system, DCM studies based on functional magnetic resonance imaging (fMRI) or on magneto-/electroencephalography (M/EEG) have demonstrated movement-related causal information flow from secondary to primary motor areas and have provided evidence for nonlinear cross-frequency interactions among motor areas. The present study sought to investigate to what extent fMRI- and EEG-based DCM might provide complementary and synergistic insights into neuronal network dynamics. Both modalities share principal similarities in the formulation of the DCM. Thus, we hypothesized that DCM based on induced EEG responses (DCM–IR) and on fMRI would reveal congruent task-dependent network dynamics. Dynamic causal modelling (DCM) has extended the understanding of brain network dynamics in a variety of functional systems. In the motor system, DCM studies based on functional magnetic resonance imaging (fMRI) or on magneto-/electroencephalography (M/EEG) have demonstrated movement-related causal information flow from secondary to primary motor areas and have provided evidence for nonlinear cross-frequency interactions among motor areas. The present study sought to investigate to what extent fMRI- and EEG-based DCM might provide complementary and synergistic insights into neuronal network dynamics. Both modalities share principal similarities in the formulation of the DCM. Thus, we hypothesized that DCM based on induced EEG responses (DCM–IR) and on fMRI would reveal congruent task-dependent network dynamics. Schulz, Robert oth Feldheim, Jan oth Hummel, Friedhelm C. oth Gerloff, Christian oth Enthalten in Academic Press Nicosia, Alessia ELSEVIER Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements 2017 a journal of brain function Orlando, Fla (DE-627)ELV001942808 volume:124 year:2016 day:1 month:01 pages:498-508 extent:11 https://doi.org/10.1016/j.neuroimage.2015.08.052 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U AR 124 2016 1 0101 498-508 11 045F 610 |
allfieldsSound |
10.1016/j.neuroimage.2015.08.052 doi GBVA2016018000028.pica (DE-627)ELV019678991 (ELSEVIER)S1053-8119(15)00771-5 DE-627 ger DE-627 rakwb eng 610 610 DE-600 Bönstrup, Marlene verfasserin aut Dynamic causal modelling of EEG and fMRI to characterize network architectures in a simple motor task 2016transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Dynamic causal modelling (DCM) has extended the understanding of brain network dynamics in a variety of functional systems. In the motor system, DCM studies based on functional magnetic resonance imaging (fMRI) or on magneto-/electroencephalography (M/EEG) have demonstrated movement-related causal information flow from secondary to primary motor areas and have provided evidence for nonlinear cross-frequency interactions among motor areas. The present study sought to investigate to what extent fMRI- and EEG-based DCM might provide complementary and synergistic insights into neuronal network dynamics. Both modalities share principal similarities in the formulation of the DCM. Thus, we hypothesized that DCM based on induced EEG responses (DCM–IR) and on fMRI would reveal congruent task-dependent network dynamics. Dynamic causal modelling (DCM) has extended the understanding of brain network dynamics in a variety of functional systems. In the motor system, DCM studies based on functional magnetic resonance imaging (fMRI) or on magneto-/electroencephalography (M/EEG) have demonstrated movement-related causal information flow from secondary to primary motor areas and have provided evidence for nonlinear cross-frequency interactions among motor areas. The present study sought to investigate to what extent fMRI- and EEG-based DCM might provide complementary and synergistic insights into neuronal network dynamics. Both modalities share principal similarities in the formulation of the DCM. Thus, we hypothesized that DCM based on induced EEG responses (DCM–IR) and on fMRI would reveal congruent task-dependent network dynamics. Schulz, Robert oth Feldheim, Jan oth Hummel, Friedhelm C. oth Gerloff, Christian oth Enthalten in Academic Press Nicosia, Alessia ELSEVIER Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements 2017 a journal of brain function Orlando, Fla (DE-627)ELV001942808 volume:124 year:2016 day:1 month:01 pages:498-508 extent:11 https://doi.org/10.1016/j.neuroimage.2015.08.052 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U AR 124 2016 1 0101 498-508 11 045F 610 |
language |
English |
source |
Enthalten in Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements Orlando, Fla volume:124 year:2016 day:1 month:01 pages:498-508 extent:11 |
sourceStr |
Enthalten in Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements Orlando, Fla volume:124 year:2016 day:1 month:01 pages:498-508 extent:11 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements |
authorswithroles_txt_mv |
Bönstrup, Marlene @@aut@@ Schulz, Robert @@oth@@ Feldheim, Jan @@oth@@ Hummel, Friedhelm C. @@oth@@ Gerloff, Christian @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
ELV001942808 |
dewey-sort |
3610 |
id |
ELV019678991 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV019678991</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625130434.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.neuroimage.2015.08.052</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2016018000028.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV019678991</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1053-8119(15)00771-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">610</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bönstrup, Marlene</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dynamic causal modelling of EEG and fMRI to characterize network architectures in a simple motor task</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">11</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Dynamic causal modelling (DCM) has extended the understanding of brain network dynamics in a variety of functional systems. In the motor system, DCM studies based on functional magnetic resonance imaging (fMRI) or on magneto-/electroencephalography (M/EEG) have demonstrated movement-related causal information flow from secondary to primary motor areas and have provided evidence for nonlinear cross-frequency interactions among motor areas. The present study sought to investigate to what extent fMRI- and EEG-based DCM might provide complementary and synergistic insights into neuronal network dynamics. Both modalities share principal similarities in the formulation of the DCM. Thus, we hypothesized that DCM based on induced EEG responses (DCM–IR) and on fMRI would reveal congruent task-dependent network dynamics.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Dynamic causal modelling (DCM) has extended the understanding of brain network dynamics in a variety of functional systems. In the motor system, DCM studies based on functional magnetic resonance imaging (fMRI) or on magneto-/electroencephalography (M/EEG) have demonstrated movement-related causal information flow from secondary to primary motor areas and have provided evidence for nonlinear cross-frequency interactions among motor areas. The present study sought to investigate to what extent fMRI- and EEG-based DCM might provide complementary and synergistic insights into neuronal network dynamics. Both modalities share principal similarities in the formulation of the DCM. Thus, we hypothesized that DCM based on induced EEG responses (DCM–IR) and on fMRI would reveal congruent task-dependent network dynamics.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schulz, Robert</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Feldheim, Jan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hummel, Friedhelm C.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gerloff, Christian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Academic Press</subfield><subfield code="a">Nicosia, Alessia ELSEVIER</subfield><subfield code="t">Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements</subfield><subfield code="d">2017</subfield><subfield code="d">a journal of brain function</subfield><subfield code="g">Orlando, Fla</subfield><subfield code="w">(DE-627)ELV001942808</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:124</subfield><subfield code="g">year:2016</subfield><subfield code="g">day:1</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:498-508</subfield><subfield code="g">extent:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.neuroimage.2015.08.052</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">124</subfield><subfield code="j">2016</subfield><subfield code="b">1</subfield><subfield code="c">0101</subfield><subfield code="h">498-508</subfield><subfield code="g">11</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">610</subfield></datafield></record></collection>
|
author |
Bönstrup, Marlene |
spellingShingle |
Bönstrup, Marlene ddc 610 Dynamic causal modelling of EEG and fMRI to characterize network architectures in a simple motor task |
authorStr |
Bönstrup, Marlene |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV001942808 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
610 610 DE-600 Dynamic causal modelling of EEG and fMRI to characterize network architectures in a simple motor task |
topic |
ddc 610 |
topic_unstemmed |
ddc 610 |
topic_browse |
ddc 610 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
r s rs j f jf f c h fc fch c g cg |
hierarchy_parent_title |
Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements |
hierarchy_parent_id |
ELV001942808 |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV001942808 |
title |
Dynamic causal modelling of EEG and fMRI to characterize network architectures in a simple motor task |
ctrlnum |
(DE-627)ELV019678991 (ELSEVIER)S1053-8119(15)00771-5 |
title_full |
Dynamic causal modelling of EEG and fMRI to characterize network architectures in a simple motor task |
author_sort |
Bönstrup, Marlene |
journal |
Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements |
journalStr |
Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
zzz |
container_start_page |
498 |
author_browse |
Bönstrup, Marlene |
container_volume |
124 |
physical |
11 |
class |
610 610 DE-600 |
format_se |
Elektronische Aufsätze |
author-letter |
Bönstrup, Marlene |
doi_str_mv |
10.1016/j.neuroimage.2015.08.052 |
dewey-full |
610 |
title_sort |
dynamic causal modelling of eeg and fmri to characterize network architectures in a simple motor task |
title_auth |
Dynamic causal modelling of EEG and fMRI to characterize network architectures in a simple motor task |
abstract |
Dynamic causal modelling (DCM) has extended the understanding of brain network dynamics in a variety of functional systems. In the motor system, DCM studies based on functional magnetic resonance imaging (fMRI) or on magneto-/electroencephalography (M/EEG) have demonstrated movement-related causal information flow from secondary to primary motor areas and have provided evidence for nonlinear cross-frequency interactions among motor areas. The present study sought to investigate to what extent fMRI- and EEG-based DCM might provide complementary and synergistic insights into neuronal network dynamics. Both modalities share principal similarities in the formulation of the DCM. Thus, we hypothesized that DCM based on induced EEG responses (DCM–IR) and on fMRI would reveal congruent task-dependent network dynamics. |
abstractGer |
Dynamic causal modelling (DCM) has extended the understanding of brain network dynamics in a variety of functional systems. In the motor system, DCM studies based on functional magnetic resonance imaging (fMRI) or on magneto-/electroencephalography (M/EEG) have demonstrated movement-related causal information flow from secondary to primary motor areas and have provided evidence for nonlinear cross-frequency interactions among motor areas. The present study sought to investigate to what extent fMRI- and EEG-based DCM might provide complementary and synergistic insights into neuronal network dynamics. Both modalities share principal similarities in the formulation of the DCM. Thus, we hypothesized that DCM based on induced EEG responses (DCM–IR) and on fMRI would reveal congruent task-dependent network dynamics. |
abstract_unstemmed |
Dynamic causal modelling (DCM) has extended the understanding of brain network dynamics in a variety of functional systems. In the motor system, DCM studies based on functional magnetic resonance imaging (fMRI) or on magneto-/electroencephalography (M/EEG) have demonstrated movement-related causal information flow from secondary to primary motor areas and have provided evidence for nonlinear cross-frequency interactions among motor areas. The present study sought to investigate to what extent fMRI- and EEG-based DCM might provide complementary and synergistic insights into neuronal network dynamics. Both modalities share principal similarities in the formulation of the DCM. Thus, we hypothesized that DCM based on induced EEG responses (DCM–IR) and on fMRI would reveal congruent task-dependent network dynamics. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
Dynamic causal modelling of EEG and fMRI to characterize network architectures in a simple motor task |
url |
https://doi.org/10.1016/j.neuroimage.2015.08.052 |
remote_bool |
true |
author2 |
Schulz, Robert Feldheim, Jan Hummel, Friedhelm C. Gerloff, Christian |
author2Str |
Schulz, Robert Feldheim, Jan Hummel, Friedhelm C. Gerloff, Christian |
ppnlink |
ELV001942808 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1016/j.neuroimage.2015.08.052 |
up_date |
2024-07-06T22:04:24.437Z |
_version_ |
1803868925526540288 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV019678991</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625130434.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.neuroimage.2015.08.052</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2016018000028.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV019678991</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1053-8119(15)00771-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">610</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bönstrup, Marlene</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dynamic causal modelling of EEG and fMRI to characterize network architectures in a simple motor task</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">11</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Dynamic causal modelling (DCM) has extended the understanding of brain network dynamics in a variety of functional systems. In the motor system, DCM studies based on functional magnetic resonance imaging (fMRI) or on magneto-/electroencephalography (M/EEG) have demonstrated movement-related causal information flow from secondary to primary motor areas and have provided evidence for nonlinear cross-frequency interactions among motor areas. The present study sought to investigate to what extent fMRI- and EEG-based DCM might provide complementary and synergistic insights into neuronal network dynamics. Both modalities share principal similarities in the formulation of the DCM. Thus, we hypothesized that DCM based on induced EEG responses (DCM–IR) and on fMRI would reveal congruent task-dependent network dynamics.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Dynamic causal modelling (DCM) has extended the understanding of brain network dynamics in a variety of functional systems. In the motor system, DCM studies based on functional magnetic resonance imaging (fMRI) or on magneto-/electroencephalography (M/EEG) have demonstrated movement-related causal information flow from secondary to primary motor areas and have provided evidence for nonlinear cross-frequency interactions among motor areas. The present study sought to investigate to what extent fMRI- and EEG-based DCM might provide complementary and synergistic insights into neuronal network dynamics. Both modalities share principal similarities in the formulation of the DCM. Thus, we hypothesized that DCM based on induced EEG responses (DCM–IR) and on fMRI would reveal congruent task-dependent network dynamics.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schulz, Robert</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Feldheim, Jan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hummel, Friedhelm C.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gerloff, Christian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Academic Press</subfield><subfield code="a">Nicosia, Alessia ELSEVIER</subfield><subfield code="t">Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements</subfield><subfield code="d">2017</subfield><subfield code="d">a journal of brain function</subfield><subfield code="g">Orlando, Fla</subfield><subfield code="w">(DE-627)ELV001942808</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:124</subfield><subfield code="g">year:2016</subfield><subfield code="g">day:1</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:498-508</subfield><subfield code="g">extent:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.neuroimage.2015.08.052</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">124</subfield><subfield code="j">2016</subfield><subfield code="b">1</subfield><subfield code="c">0101</subfield><subfield code="h">498-508</subfield><subfield code="g">11</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">610</subfield></datafield></record></collection>
|
score |
7.4009056 |