Patterns of neural response in scene-selective regions of the human brain are affected by low-level manipulations of spatial frequency
Neuroimaging studies have found distinct patterns of response to different categories of scenes. However, the relative importance of low-level image properties in generating these response patterns is not fully understood. To address this issue, we directly manipulated the low level properties of sc...
Ausführliche Beschreibung
Autor*in: |
Watson, David M. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016transfer abstract |
---|
Umfang: |
11 |
---|
Übergeordnetes Werk: |
Enthalten in: Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements - Nicosia, Alessia ELSEVIER, 2017, a journal of brain function, Orlando, Fla |
---|---|
Übergeordnetes Werk: |
volume:124 ; year:2016 ; day:1 ; month:01 ; pages:107-117 ; extent:11 |
Links: |
---|
DOI / URN: |
10.1016/j.neuroimage.2015.08.058 |
---|
Katalog-ID: |
ELV019679076 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV019679076 | ||
003 | DE-627 | ||
005 | 20230625130434.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.neuroimage.2015.08.058 |2 doi | |
028 | 5 | 2 | |a GBVA2016018000028.pica |
035 | |a (DE-627)ELV019679076 | ||
035 | |a (ELSEVIER)S1053-8119(15)00779-X | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 610 | |
082 | 0 | 4 | |a 610 |q DE-600 |
100 | 1 | |a Watson, David M. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Patterns of neural response in scene-selective regions of the human brain are affected by low-level manipulations of spatial frequency |
264 | 1 | |c 2016transfer abstract | |
300 | |a 11 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Neuroimaging studies have found distinct patterns of response to different categories of scenes. However, the relative importance of low-level image properties in generating these response patterns is not fully understood. To address this issue, we directly manipulated the low level properties of scenes in a way that preserved the ability to perceive the category. We then measured the effect of these manipulations on category-selective patterns of fMRI response in the PPA, RSC and OPA. In Experiment 1, a horizontal-pass or vertical-pass orientation filter was applied to images of indoor and natural scenes. The image filter did not have a large effect on the patterns of response. For example, vertical- and horizontal-pass filtered indoor images generated similar patterns of response. Similarly, vertical- and horizontal-pass filtered natural scenes generated similar patterns of response. In Experiment 2, low-pass or high-pass spatial frequency filters were applied to the images. We found that image filter had a marked effect on the patterns of response in scene-selective regions. For example, low-pass indoor images generated similar patterns of response to low-pass natural images. The effect of filter varied across different scene-selective regions, suggesting differences in the way that scenes are represented in these regions. These results indicate that patterns of response in scene-selective regions are sensitive to the low-level properties of the image, particularly the spatial frequency content. | ||
520 | |a Neuroimaging studies have found distinct patterns of response to different categories of scenes. However, the relative importance of low-level image properties in generating these response patterns is not fully understood. To address this issue, we directly manipulated the low level properties of scenes in a way that preserved the ability to perceive the category. We then measured the effect of these manipulations on category-selective patterns of fMRI response in the PPA, RSC and OPA. In Experiment 1, a horizontal-pass or vertical-pass orientation filter was applied to images of indoor and natural scenes. The image filter did not have a large effect on the patterns of response. For example, vertical- and horizontal-pass filtered indoor images generated similar patterns of response. Similarly, vertical- and horizontal-pass filtered natural scenes generated similar patterns of response. In Experiment 2, low-pass or high-pass spatial frequency filters were applied to the images. We found that image filter had a marked effect on the patterns of response in scene-selective regions. For example, low-pass indoor images generated similar patterns of response to low-pass natural images. The effect of filter varied across different scene-selective regions, suggesting differences in the way that scenes are represented in these regions. These results indicate that patterns of response in scene-selective regions are sensitive to the low-level properties of the image, particularly the spatial frequency content. | ||
700 | 1 | |a Hymers, Mark |4 oth | |
700 | 1 | |a Hartley, Tom |4 oth | |
700 | 1 | |a Andrews, Timothy J. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Academic Press |a Nicosia, Alessia ELSEVIER |t Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements |d 2017 |d a journal of brain function |g Orlando, Fla |w (DE-627)ELV001942808 |
773 | 1 | 8 | |g volume:124 |g year:2016 |g day:1 |g month:01 |g pages:107-117 |g extent:11 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.neuroimage.2015.08.058 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
951 | |a AR | ||
952 | |d 124 |j 2016 |b 1 |c 0101 |h 107-117 |g 11 | ||
953 | |2 045F |a 610 |
author_variant |
d m w dm dmw |
---|---|
matchkey_str |
watsondavidmhymersmarkhartleytomandrewst:2016----:atrsferlepnencnslcieeinoteuabanrafceblweem |
hierarchy_sort_str |
2016transfer abstract |
publishDate |
2016 |
allfields |
10.1016/j.neuroimage.2015.08.058 doi GBVA2016018000028.pica (DE-627)ELV019679076 (ELSEVIER)S1053-8119(15)00779-X DE-627 ger DE-627 rakwb eng 610 610 DE-600 Watson, David M. verfasserin aut Patterns of neural response in scene-selective regions of the human brain are affected by low-level manipulations of spatial frequency 2016transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Neuroimaging studies have found distinct patterns of response to different categories of scenes. However, the relative importance of low-level image properties in generating these response patterns is not fully understood. To address this issue, we directly manipulated the low level properties of scenes in a way that preserved the ability to perceive the category. We then measured the effect of these manipulations on category-selective patterns of fMRI response in the PPA, RSC and OPA. In Experiment 1, a horizontal-pass or vertical-pass orientation filter was applied to images of indoor and natural scenes. The image filter did not have a large effect on the patterns of response. For example, vertical- and horizontal-pass filtered indoor images generated similar patterns of response. Similarly, vertical- and horizontal-pass filtered natural scenes generated similar patterns of response. In Experiment 2, low-pass or high-pass spatial frequency filters were applied to the images. We found that image filter had a marked effect on the patterns of response in scene-selective regions. For example, low-pass indoor images generated similar patterns of response to low-pass natural images. The effect of filter varied across different scene-selective regions, suggesting differences in the way that scenes are represented in these regions. These results indicate that patterns of response in scene-selective regions are sensitive to the low-level properties of the image, particularly the spatial frequency content. Neuroimaging studies have found distinct patterns of response to different categories of scenes. However, the relative importance of low-level image properties in generating these response patterns is not fully understood. To address this issue, we directly manipulated the low level properties of scenes in a way that preserved the ability to perceive the category. We then measured the effect of these manipulations on category-selective patterns of fMRI response in the PPA, RSC and OPA. In Experiment 1, a horizontal-pass or vertical-pass orientation filter was applied to images of indoor and natural scenes. The image filter did not have a large effect on the patterns of response. For example, vertical- and horizontal-pass filtered indoor images generated similar patterns of response. Similarly, vertical- and horizontal-pass filtered natural scenes generated similar patterns of response. In Experiment 2, low-pass or high-pass spatial frequency filters were applied to the images. We found that image filter had a marked effect on the patterns of response in scene-selective regions. For example, low-pass indoor images generated similar patterns of response to low-pass natural images. The effect of filter varied across different scene-selective regions, suggesting differences in the way that scenes are represented in these regions. These results indicate that patterns of response in scene-selective regions are sensitive to the low-level properties of the image, particularly the spatial frequency content. Hymers, Mark oth Hartley, Tom oth Andrews, Timothy J. oth Enthalten in Academic Press Nicosia, Alessia ELSEVIER Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements 2017 a journal of brain function Orlando, Fla (DE-627)ELV001942808 volume:124 year:2016 day:1 month:01 pages:107-117 extent:11 https://doi.org/10.1016/j.neuroimage.2015.08.058 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U AR 124 2016 1 0101 107-117 11 045F 610 |
spelling |
10.1016/j.neuroimage.2015.08.058 doi GBVA2016018000028.pica (DE-627)ELV019679076 (ELSEVIER)S1053-8119(15)00779-X DE-627 ger DE-627 rakwb eng 610 610 DE-600 Watson, David M. verfasserin aut Patterns of neural response in scene-selective regions of the human brain are affected by low-level manipulations of spatial frequency 2016transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Neuroimaging studies have found distinct patterns of response to different categories of scenes. However, the relative importance of low-level image properties in generating these response patterns is not fully understood. To address this issue, we directly manipulated the low level properties of scenes in a way that preserved the ability to perceive the category. We then measured the effect of these manipulations on category-selective patterns of fMRI response in the PPA, RSC and OPA. In Experiment 1, a horizontal-pass or vertical-pass orientation filter was applied to images of indoor and natural scenes. The image filter did not have a large effect on the patterns of response. For example, vertical- and horizontal-pass filtered indoor images generated similar patterns of response. Similarly, vertical- and horizontal-pass filtered natural scenes generated similar patterns of response. In Experiment 2, low-pass or high-pass spatial frequency filters were applied to the images. We found that image filter had a marked effect on the patterns of response in scene-selective regions. For example, low-pass indoor images generated similar patterns of response to low-pass natural images. The effect of filter varied across different scene-selective regions, suggesting differences in the way that scenes are represented in these regions. These results indicate that patterns of response in scene-selective regions are sensitive to the low-level properties of the image, particularly the spatial frequency content. Neuroimaging studies have found distinct patterns of response to different categories of scenes. However, the relative importance of low-level image properties in generating these response patterns is not fully understood. To address this issue, we directly manipulated the low level properties of scenes in a way that preserved the ability to perceive the category. We then measured the effect of these manipulations on category-selective patterns of fMRI response in the PPA, RSC and OPA. In Experiment 1, a horizontal-pass or vertical-pass orientation filter was applied to images of indoor and natural scenes. The image filter did not have a large effect on the patterns of response. For example, vertical- and horizontal-pass filtered indoor images generated similar patterns of response. Similarly, vertical- and horizontal-pass filtered natural scenes generated similar patterns of response. In Experiment 2, low-pass or high-pass spatial frequency filters were applied to the images. We found that image filter had a marked effect on the patterns of response in scene-selective regions. For example, low-pass indoor images generated similar patterns of response to low-pass natural images. The effect of filter varied across different scene-selective regions, suggesting differences in the way that scenes are represented in these regions. These results indicate that patterns of response in scene-selective regions are sensitive to the low-level properties of the image, particularly the spatial frequency content. Hymers, Mark oth Hartley, Tom oth Andrews, Timothy J. oth Enthalten in Academic Press Nicosia, Alessia ELSEVIER Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements 2017 a journal of brain function Orlando, Fla (DE-627)ELV001942808 volume:124 year:2016 day:1 month:01 pages:107-117 extent:11 https://doi.org/10.1016/j.neuroimage.2015.08.058 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U AR 124 2016 1 0101 107-117 11 045F 610 |
allfields_unstemmed |
10.1016/j.neuroimage.2015.08.058 doi GBVA2016018000028.pica (DE-627)ELV019679076 (ELSEVIER)S1053-8119(15)00779-X DE-627 ger DE-627 rakwb eng 610 610 DE-600 Watson, David M. verfasserin aut Patterns of neural response in scene-selective regions of the human brain are affected by low-level manipulations of spatial frequency 2016transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Neuroimaging studies have found distinct patterns of response to different categories of scenes. However, the relative importance of low-level image properties in generating these response patterns is not fully understood. To address this issue, we directly manipulated the low level properties of scenes in a way that preserved the ability to perceive the category. We then measured the effect of these manipulations on category-selective patterns of fMRI response in the PPA, RSC and OPA. In Experiment 1, a horizontal-pass or vertical-pass orientation filter was applied to images of indoor and natural scenes. The image filter did not have a large effect on the patterns of response. For example, vertical- and horizontal-pass filtered indoor images generated similar patterns of response. Similarly, vertical- and horizontal-pass filtered natural scenes generated similar patterns of response. In Experiment 2, low-pass or high-pass spatial frequency filters were applied to the images. We found that image filter had a marked effect on the patterns of response in scene-selective regions. For example, low-pass indoor images generated similar patterns of response to low-pass natural images. The effect of filter varied across different scene-selective regions, suggesting differences in the way that scenes are represented in these regions. These results indicate that patterns of response in scene-selective regions are sensitive to the low-level properties of the image, particularly the spatial frequency content. Neuroimaging studies have found distinct patterns of response to different categories of scenes. However, the relative importance of low-level image properties in generating these response patterns is not fully understood. To address this issue, we directly manipulated the low level properties of scenes in a way that preserved the ability to perceive the category. We then measured the effect of these manipulations on category-selective patterns of fMRI response in the PPA, RSC and OPA. In Experiment 1, a horizontal-pass or vertical-pass orientation filter was applied to images of indoor and natural scenes. The image filter did not have a large effect on the patterns of response. For example, vertical- and horizontal-pass filtered indoor images generated similar patterns of response. Similarly, vertical- and horizontal-pass filtered natural scenes generated similar patterns of response. In Experiment 2, low-pass or high-pass spatial frequency filters were applied to the images. We found that image filter had a marked effect on the patterns of response in scene-selective regions. For example, low-pass indoor images generated similar patterns of response to low-pass natural images. The effect of filter varied across different scene-selective regions, suggesting differences in the way that scenes are represented in these regions. These results indicate that patterns of response in scene-selective regions are sensitive to the low-level properties of the image, particularly the spatial frequency content. Hymers, Mark oth Hartley, Tom oth Andrews, Timothy J. oth Enthalten in Academic Press Nicosia, Alessia ELSEVIER Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements 2017 a journal of brain function Orlando, Fla (DE-627)ELV001942808 volume:124 year:2016 day:1 month:01 pages:107-117 extent:11 https://doi.org/10.1016/j.neuroimage.2015.08.058 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U AR 124 2016 1 0101 107-117 11 045F 610 |
allfieldsGer |
10.1016/j.neuroimage.2015.08.058 doi GBVA2016018000028.pica (DE-627)ELV019679076 (ELSEVIER)S1053-8119(15)00779-X DE-627 ger DE-627 rakwb eng 610 610 DE-600 Watson, David M. verfasserin aut Patterns of neural response in scene-selective regions of the human brain are affected by low-level manipulations of spatial frequency 2016transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Neuroimaging studies have found distinct patterns of response to different categories of scenes. However, the relative importance of low-level image properties in generating these response patterns is not fully understood. To address this issue, we directly manipulated the low level properties of scenes in a way that preserved the ability to perceive the category. We then measured the effect of these manipulations on category-selective patterns of fMRI response in the PPA, RSC and OPA. In Experiment 1, a horizontal-pass or vertical-pass orientation filter was applied to images of indoor and natural scenes. The image filter did not have a large effect on the patterns of response. For example, vertical- and horizontal-pass filtered indoor images generated similar patterns of response. Similarly, vertical- and horizontal-pass filtered natural scenes generated similar patterns of response. In Experiment 2, low-pass or high-pass spatial frequency filters were applied to the images. We found that image filter had a marked effect on the patterns of response in scene-selective regions. For example, low-pass indoor images generated similar patterns of response to low-pass natural images. The effect of filter varied across different scene-selective regions, suggesting differences in the way that scenes are represented in these regions. These results indicate that patterns of response in scene-selective regions are sensitive to the low-level properties of the image, particularly the spatial frequency content. Neuroimaging studies have found distinct patterns of response to different categories of scenes. However, the relative importance of low-level image properties in generating these response patterns is not fully understood. To address this issue, we directly manipulated the low level properties of scenes in a way that preserved the ability to perceive the category. We then measured the effect of these manipulations on category-selective patterns of fMRI response in the PPA, RSC and OPA. In Experiment 1, a horizontal-pass or vertical-pass orientation filter was applied to images of indoor and natural scenes. The image filter did not have a large effect on the patterns of response. For example, vertical- and horizontal-pass filtered indoor images generated similar patterns of response. Similarly, vertical- and horizontal-pass filtered natural scenes generated similar patterns of response. In Experiment 2, low-pass or high-pass spatial frequency filters were applied to the images. We found that image filter had a marked effect on the patterns of response in scene-selective regions. For example, low-pass indoor images generated similar patterns of response to low-pass natural images. The effect of filter varied across different scene-selective regions, suggesting differences in the way that scenes are represented in these regions. These results indicate that patterns of response in scene-selective regions are sensitive to the low-level properties of the image, particularly the spatial frequency content. Hymers, Mark oth Hartley, Tom oth Andrews, Timothy J. oth Enthalten in Academic Press Nicosia, Alessia ELSEVIER Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements 2017 a journal of brain function Orlando, Fla (DE-627)ELV001942808 volume:124 year:2016 day:1 month:01 pages:107-117 extent:11 https://doi.org/10.1016/j.neuroimage.2015.08.058 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U AR 124 2016 1 0101 107-117 11 045F 610 |
allfieldsSound |
10.1016/j.neuroimage.2015.08.058 doi GBVA2016018000028.pica (DE-627)ELV019679076 (ELSEVIER)S1053-8119(15)00779-X DE-627 ger DE-627 rakwb eng 610 610 DE-600 Watson, David M. verfasserin aut Patterns of neural response in scene-selective regions of the human brain are affected by low-level manipulations of spatial frequency 2016transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Neuroimaging studies have found distinct patterns of response to different categories of scenes. However, the relative importance of low-level image properties in generating these response patterns is not fully understood. To address this issue, we directly manipulated the low level properties of scenes in a way that preserved the ability to perceive the category. We then measured the effect of these manipulations on category-selective patterns of fMRI response in the PPA, RSC and OPA. In Experiment 1, a horizontal-pass or vertical-pass orientation filter was applied to images of indoor and natural scenes. The image filter did not have a large effect on the patterns of response. For example, vertical- and horizontal-pass filtered indoor images generated similar patterns of response. Similarly, vertical- and horizontal-pass filtered natural scenes generated similar patterns of response. In Experiment 2, low-pass or high-pass spatial frequency filters were applied to the images. We found that image filter had a marked effect on the patterns of response in scene-selective regions. For example, low-pass indoor images generated similar patterns of response to low-pass natural images. The effect of filter varied across different scene-selective regions, suggesting differences in the way that scenes are represented in these regions. These results indicate that patterns of response in scene-selective regions are sensitive to the low-level properties of the image, particularly the spatial frequency content. Neuroimaging studies have found distinct patterns of response to different categories of scenes. However, the relative importance of low-level image properties in generating these response patterns is not fully understood. To address this issue, we directly manipulated the low level properties of scenes in a way that preserved the ability to perceive the category. We then measured the effect of these manipulations on category-selective patterns of fMRI response in the PPA, RSC and OPA. In Experiment 1, a horizontal-pass or vertical-pass orientation filter was applied to images of indoor and natural scenes. The image filter did not have a large effect on the patterns of response. For example, vertical- and horizontal-pass filtered indoor images generated similar patterns of response. Similarly, vertical- and horizontal-pass filtered natural scenes generated similar patterns of response. In Experiment 2, low-pass or high-pass spatial frequency filters were applied to the images. We found that image filter had a marked effect on the patterns of response in scene-selective regions. For example, low-pass indoor images generated similar patterns of response to low-pass natural images. The effect of filter varied across different scene-selective regions, suggesting differences in the way that scenes are represented in these regions. These results indicate that patterns of response in scene-selective regions are sensitive to the low-level properties of the image, particularly the spatial frequency content. Hymers, Mark oth Hartley, Tom oth Andrews, Timothy J. oth Enthalten in Academic Press Nicosia, Alessia ELSEVIER Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements 2017 a journal of brain function Orlando, Fla (DE-627)ELV001942808 volume:124 year:2016 day:1 month:01 pages:107-117 extent:11 https://doi.org/10.1016/j.neuroimage.2015.08.058 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U AR 124 2016 1 0101 107-117 11 045F 610 |
language |
English |
source |
Enthalten in Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements Orlando, Fla volume:124 year:2016 day:1 month:01 pages:107-117 extent:11 |
sourceStr |
Enthalten in Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements Orlando, Fla volume:124 year:2016 day:1 month:01 pages:107-117 extent:11 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements |
authorswithroles_txt_mv |
Watson, David M. @@aut@@ Hymers, Mark @@oth@@ Hartley, Tom @@oth@@ Andrews, Timothy J. @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
ELV001942808 |
dewey-sort |
3610 |
id |
ELV019679076 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV019679076</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625130434.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.neuroimage.2015.08.058</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2016018000028.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV019679076</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1053-8119(15)00779-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">610</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Watson, David M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Patterns of neural response in scene-selective regions of the human brain are affected by low-level manipulations of spatial frequency</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">11</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Neuroimaging studies have found distinct patterns of response to different categories of scenes. However, the relative importance of low-level image properties in generating these response patterns is not fully understood. To address this issue, we directly manipulated the low level properties of scenes in a way that preserved the ability to perceive the category. We then measured the effect of these manipulations on category-selective patterns of fMRI response in the PPA, RSC and OPA. In Experiment 1, a horizontal-pass or vertical-pass orientation filter was applied to images of indoor and natural scenes. The image filter did not have a large effect on the patterns of response. For example, vertical- and horizontal-pass filtered indoor images generated similar patterns of response. Similarly, vertical- and horizontal-pass filtered natural scenes generated similar patterns of response. In Experiment 2, low-pass or high-pass spatial frequency filters were applied to the images. We found that image filter had a marked effect on the patterns of response in scene-selective regions. For example, low-pass indoor images generated similar patterns of response to low-pass natural images. The effect of filter varied across different scene-selective regions, suggesting differences in the way that scenes are represented in these regions. These results indicate that patterns of response in scene-selective regions are sensitive to the low-level properties of the image, particularly the spatial frequency content.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Neuroimaging studies have found distinct patterns of response to different categories of scenes. However, the relative importance of low-level image properties in generating these response patterns is not fully understood. To address this issue, we directly manipulated the low level properties of scenes in a way that preserved the ability to perceive the category. We then measured the effect of these manipulations on category-selective patterns of fMRI response in the PPA, RSC and OPA. In Experiment 1, a horizontal-pass or vertical-pass orientation filter was applied to images of indoor and natural scenes. The image filter did not have a large effect on the patterns of response. For example, vertical- and horizontal-pass filtered indoor images generated similar patterns of response. Similarly, vertical- and horizontal-pass filtered natural scenes generated similar patterns of response. In Experiment 2, low-pass or high-pass spatial frequency filters were applied to the images. We found that image filter had a marked effect on the patterns of response in scene-selective regions. For example, low-pass indoor images generated similar patterns of response to low-pass natural images. The effect of filter varied across different scene-selective regions, suggesting differences in the way that scenes are represented in these regions. These results indicate that patterns of response in scene-selective regions are sensitive to the low-level properties of the image, particularly the spatial frequency content.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hymers, Mark</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hartley, Tom</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Andrews, Timothy J.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Academic Press</subfield><subfield code="a">Nicosia, Alessia ELSEVIER</subfield><subfield code="t">Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements</subfield><subfield code="d">2017</subfield><subfield code="d">a journal of brain function</subfield><subfield code="g">Orlando, Fla</subfield><subfield code="w">(DE-627)ELV001942808</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:124</subfield><subfield code="g">year:2016</subfield><subfield code="g">day:1</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:107-117</subfield><subfield code="g">extent:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.neuroimage.2015.08.058</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">124</subfield><subfield code="j">2016</subfield><subfield code="b">1</subfield><subfield code="c">0101</subfield><subfield code="h">107-117</subfield><subfield code="g">11</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">610</subfield></datafield></record></collection>
|
author |
Watson, David M. |
spellingShingle |
Watson, David M. ddc 610 Patterns of neural response in scene-selective regions of the human brain are affected by low-level manipulations of spatial frequency |
authorStr |
Watson, David M. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV001942808 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
610 610 DE-600 Patterns of neural response in scene-selective regions of the human brain are affected by low-level manipulations of spatial frequency |
topic |
ddc 610 |
topic_unstemmed |
ddc 610 |
topic_browse |
ddc 610 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
m h mh t h th t j a tj tja |
hierarchy_parent_title |
Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements |
hierarchy_parent_id |
ELV001942808 |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV001942808 |
title |
Patterns of neural response in scene-selective regions of the human brain are affected by low-level manipulations of spatial frequency |
ctrlnum |
(DE-627)ELV019679076 (ELSEVIER)S1053-8119(15)00779-X |
title_full |
Patterns of neural response in scene-selective regions of the human brain are affected by low-level manipulations of spatial frequency |
author_sort |
Watson, David M. |
journal |
Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements |
journalStr |
Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
zzz |
container_start_page |
107 |
author_browse |
Watson, David M. |
container_volume |
124 |
physical |
11 |
class |
610 610 DE-600 |
format_se |
Elektronische Aufsätze |
author-letter |
Watson, David M. |
doi_str_mv |
10.1016/j.neuroimage.2015.08.058 |
dewey-full |
610 |
title_sort |
patterns of neural response in scene-selective regions of the human brain are affected by low-level manipulations of spatial frequency |
title_auth |
Patterns of neural response in scene-selective regions of the human brain are affected by low-level manipulations of spatial frequency |
abstract |
Neuroimaging studies have found distinct patterns of response to different categories of scenes. However, the relative importance of low-level image properties in generating these response patterns is not fully understood. To address this issue, we directly manipulated the low level properties of scenes in a way that preserved the ability to perceive the category. We then measured the effect of these manipulations on category-selective patterns of fMRI response in the PPA, RSC and OPA. In Experiment 1, a horizontal-pass or vertical-pass orientation filter was applied to images of indoor and natural scenes. The image filter did not have a large effect on the patterns of response. For example, vertical- and horizontal-pass filtered indoor images generated similar patterns of response. Similarly, vertical- and horizontal-pass filtered natural scenes generated similar patterns of response. In Experiment 2, low-pass or high-pass spatial frequency filters were applied to the images. We found that image filter had a marked effect on the patterns of response in scene-selective regions. For example, low-pass indoor images generated similar patterns of response to low-pass natural images. The effect of filter varied across different scene-selective regions, suggesting differences in the way that scenes are represented in these regions. These results indicate that patterns of response in scene-selective regions are sensitive to the low-level properties of the image, particularly the spatial frequency content. |
abstractGer |
Neuroimaging studies have found distinct patterns of response to different categories of scenes. However, the relative importance of low-level image properties in generating these response patterns is not fully understood. To address this issue, we directly manipulated the low level properties of scenes in a way that preserved the ability to perceive the category. We then measured the effect of these manipulations on category-selective patterns of fMRI response in the PPA, RSC and OPA. In Experiment 1, a horizontal-pass or vertical-pass orientation filter was applied to images of indoor and natural scenes. The image filter did not have a large effect on the patterns of response. For example, vertical- and horizontal-pass filtered indoor images generated similar patterns of response. Similarly, vertical- and horizontal-pass filtered natural scenes generated similar patterns of response. In Experiment 2, low-pass or high-pass spatial frequency filters were applied to the images. We found that image filter had a marked effect on the patterns of response in scene-selective regions. For example, low-pass indoor images generated similar patterns of response to low-pass natural images. The effect of filter varied across different scene-selective regions, suggesting differences in the way that scenes are represented in these regions. These results indicate that patterns of response in scene-selective regions are sensitive to the low-level properties of the image, particularly the spatial frequency content. |
abstract_unstemmed |
Neuroimaging studies have found distinct patterns of response to different categories of scenes. However, the relative importance of low-level image properties in generating these response patterns is not fully understood. To address this issue, we directly manipulated the low level properties of scenes in a way that preserved the ability to perceive the category. We then measured the effect of these manipulations on category-selective patterns of fMRI response in the PPA, RSC and OPA. In Experiment 1, a horizontal-pass or vertical-pass orientation filter was applied to images of indoor and natural scenes. The image filter did not have a large effect on the patterns of response. For example, vertical- and horizontal-pass filtered indoor images generated similar patterns of response. Similarly, vertical- and horizontal-pass filtered natural scenes generated similar patterns of response. In Experiment 2, low-pass or high-pass spatial frequency filters were applied to the images. We found that image filter had a marked effect on the patterns of response in scene-selective regions. For example, low-pass indoor images generated similar patterns of response to low-pass natural images. The effect of filter varied across different scene-selective regions, suggesting differences in the way that scenes are represented in these regions. These results indicate that patterns of response in scene-selective regions are sensitive to the low-level properties of the image, particularly the spatial frequency content. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
Patterns of neural response in scene-selective regions of the human brain are affected by low-level manipulations of spatial frequency |
url |
https://doi.org/10.1016/j.neuroimage.2015.08.058 |
remote_bool |
true |
author2 |
Hymers, Mark Hartley, Tom Andrews, Timothy J. |
author2Str |
Hymers, Mark Hartley, Tom Andrews, Timothy J. |
ppnlink |
ELV001942808 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1016/j.neuroimage.2015.08.058 |
up_date |
2024-07-06T22:04:25.353Z |
_version_ |
1803868926488084480 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV019679076</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625130434.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.neuroimage.2015.08.058</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2016018000028.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV019679076</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1053-8119(15)00779-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">610</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Watson, David M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Patterns of neural response in scene-selective regions of the human brain are affected by low-level manipulations of spatial frequency</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">11</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Neuroimaging studies have found distinct patterns of response to different categories of scenes. However, the relative importance of low-level image properties in generating these response patterns is not fully understood. To address this issue, we directly manipulated the low level properties of scenes in a way that preserved the ability to perceive the category. We then measured the effect of these manipulations on category-selective patterns of fMRI response in the PPA, RSC and OPA. In Experiment 1, a horizontal-pass or vertical-pass orientation filter was applied to images of indoor and natural scenes. The image filter did not have a large effect on the patterns of response. For example, vertical- and horizontal-pass filtered indoor images generated similar patterns of response. Similarly, vertical- and horizontal-pass filtered natural scenes generated similar patterns of response. In Experiment 2, low-pass or high-pass spatial frequency filters were applied to the images. We found that image filter had a marked effect on the patterns of response in scene-selective regions. For example, low-pass indoor images generated similar patterns of response to low-pass natural images. The effect of filter varied across different scene-selective regions, suggesting differences in the way that scenes are represented in these regions. These results indicate that patterns of response in scene-selective regions are sensitive to the low-level properties of the image, particularly the spatial frequency content.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Neuroimaging studies have found distinct patterns of response to different categories of scenes. However, the relative importance of low-level image properties in generating these response patterns is not fully understood. To address this issue, we directly manipulated the low level properties of scenes in a way that preserved the ability to perceive the category. We then measured the effect of these manipulations on category-selective patterns of fMRI response in the PPA, RSC and OPA. In Experiment 1, a horizontal-pass or vertical-pass orientation filter was applied to images of indoor and natural scenes. The image filter did not have a large effect on the patterns of response. For example, vertical- and horizontal-pass filtered indoor images generated similar patterns of response. Similarly, vertical- and horizontal-pass filtered natural scenes generated similar patterns of response. In Experiment 2, low-pass or high-pass spatial frequency filters were applied to the images. We found that image filter had a marked effect on the patterns of response in scene-selective regions. For example, low-pass indoor images generated similar patterns of response to low-pass natural images. The effect of filter varied across different scene-selective regions, suggesting differences in the way that scenes are represented in these regions. These results indicate that patterns of response in scene-selective regions are sensitive to the low-level properties of the image, particularly the spatial frequency content.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hymers, Mark</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hartley, Tom</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Andrews, Timothy J.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Academic Press</subfield><subfield code="a">Nicosia, Alessia ELSEVIER</subfield><subfield code="t">Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements</subfield><subfield code="d">2017</subfield><subfield code="d">a journal of brain function</subfield><subfield code="g">Orlando, Fla</subfield><subfield code="w">(DE-627)ELV001942808</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:124</subfield><subfield code="g">year:2016</subfield><subfield code="g">day:1</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:107-117</subfield><subfield code="g">extent:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.neuroimage.2015.08.058</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">124</subfield><subfield code="j">2016</subfield><subfield code="b">1</subfield><subfield code="c">0101</subfield><subfield code="h">107-117</subfield><subfield code="g">11</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">610</subfield></datafield></record></collection>
|
score |
7.399046 |