Advanced thermal simulation of SiGe:C HBTs including back-end-of-line
Advanced 3-D thermal simulations of state-of-the-art SiGe:C HBTs are performed, which ensure improved accuracy with respect to conventional approaches. The whole back-end-of-line architecture is modeled so as to account for the cooling effect due to the upward heat flow. Moreover, a nonuniform power...
Ausführliche Beschreibung
Autor*in: |
d'Alessandro, Vincenzo [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016transfer abstract |
---|
Umfang: |
8 |
---|
Übergeordnetes Werk: |
Enthalten in: Fixed-time neural control for output-constrained synchronization of second-order chaotic systems - Yao, Qijia ELSEVIER, 2023, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:67 ; year:2016 ; pages:38-45 ; extent:8 |
Links: |
---|
DOI / URN: |
10.1016/j.microrel.2016.06.005 |
---|
Katalog-ID: |
ELV019917880 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV019917880 | ||
003 | DE-627 | ||
005 | 20230625130924.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.microrel.2016.06.005 |2 doi | |
028 | 5 | 2 | |a GBV00000000000066A.pica |
035 | |a (DE-627)ELV019917880 | ||
035 | |a (ELSEVIER)S0026-2714(16)30128-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 620 | |
082 | 0 | 4 | |a 620 |q DE-600 |
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 30.20 |2 bkl | ||
084 | |a 31.00 |2 bkl | ||
100 | 1 | |a d'Alessandro, Vincenzo |e verfasserin |4 aut | |
245 | 1 | 0 | |a Advanced thermal simulation of SiGe:C HBTs including back-end-of-line |
264 | 1 | |c 2016transfer abstract | |
300 | |a 8 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Advanced 3-D thermal simulations of state-of-the-art SiGe:C HBTs are performed, which ensure improved accuracy with respect to conventional approaches. The whole back-end-of-line architecture is modeled so as to account for the cooling effect due to the upward heat flow. Moreover, a nonuniform power density is considered to describe the heat source, and thermal conductivity degradation effects due to germanium, doping profile, and phonon scattering in narrow layers are implemented. The numerical thermal resistances are compared with those experimentally evaluated by means of a robust technique relying on the temperature dependence of the base-emitter voltage. | ||
520 | |a Advanced 3-D thermal simulations of state-of-the-art SiGe:C HBTs are performed, which ensure improved accuracy with respect to conventional approaches. The whole back-end-of-line architecture is modeled so as to account for the cooling effect due to the upward heat flow. Moreover, a nonuniform power density is considered to describe the heat source, and thermal conductivity degradation effects due to germanium, doping profile, and phonon scattering in narrow layers are implemented. The numerical thermal resistances are compared with those experimentally evaluated by means of a robust technique relying on the temperature dependence of the base-emitter voltage. | ||
700 | 1 | |a Magnani, Alessandro |4 oth | |
700 | 1 | |a Codecasa, Lorenzo |4 oth | |
700 | 1 | |a Rinaldi, Niccolò |4 oth | |
700 | 1 | |a Aufinger, Klaus |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Yao, Qijia ELSEVIER |t Fixed-time neural control for output-constrained synchronization of second-order chaotic systems |d 2023 |g Amsterdam [u.a.] |w (DE-627)ELV009442901 |
773 | 1 | 8 | |g volume:67 |g year:2016 |g pages:38-45 |g extent:8 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.microrel.2016.06.005 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OPC-MAT | ||
936 | b | k | |a 30.20 |j Nichtlineare Dynamik |q VZ |
936 | b | k | |a 31.00 |j Mathematik: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 67 |j 2016 |h 38-45 |g 8 | ||
953 | |2 045F |a 620 |
author_variant |
v d vd |
---|---|
matchkey_str |
dalessandrovincenzomagnanialessandrocode:2016----:dacdhrasmltoosgcbsnld |
hierarchy_sort_str |
2016transfer abstract |
bklnumber |
30.20 31.00 |
publishDate |
2016 |
allfields |
10.1016/j.microrel.2016.06.005 doi GBV00000000000066A.pica (DE-627)ELV019917880 (ELSEVIER)S0026-2714(16)30128-7 DE-627 ger DE-627 rakwb eng 620 620 DE-600 510 VZ 30.20 bkl 31.00 bkl d'Alessandro, Vincenzo verfasserin aut Advanced thermal simulation of SiGe:C HBTs including back-end-of-line 2016transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Advanced 3-D thermal simulations of state-of-the-art SiGe:C HBTs are performed, which ensure improved accuracy with respect to conventional approaches. The whole back-end-of-line architecture is modeled so as to account for the cooling effect due to the upward heat flow. Moreover, a nonuniform power density is considered to describe the heat source, and thermal conductivity degradation effects due to germanium, doping profile, and phonon scattering in narrow layers are implemented. The numerical thermal resistances are compared with those experimentally evaluated by means of a robust technique relying on the temperature dependence of the base-emitter voltage. Advanced 3-D thermal simulations of state-of-the-art SiGe:C HBTs are performed, which ensure improved accuracy with respect to conventional approaches. The whole back-end-of-line architecture is modeled so as to account for the cooling effect due to the upward heat flow. Moreover, a nonuniform power density is considered to describe the heat source, and thermal conductivity degradation effects due to germanium, doping profile, and phonon scattering in narrow layers are implemented. The numerical thermal resistances are compared with those experimentally evaluated by means of a robust technique relying on the temperature dependence of the base-emitter voltage. Magnani, Alessandro oth Codecasa, Lorenzo oth Rinaldi, Niccolò oth Aufinger, Klaus oth Enthalten in Elsevier Yao, Qijia ELSEVIER Fixed-time neural control for output-constrained synchronization of second-order chaotic systems 2023 Amsterdam [u.a.] (DE-627)ELV009442901 volume:67 year:2016 pages:38-45 extent:8 https://doi.org/10.1016/j.microrel.2016.06.005 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT 30.20 Nichtlineare Dynamik VZ 31.00 Mathematik: Allgemeines VZ AR 67 2016 38-45 8 045F 620 |
spelling |
10.1016/j.microrel.2016.06.005 doi GBV00000000000066A.pica (DE-627)ELV019917880 (ELSEVIER)S0026-2714(16)30128-7 DE-627 ger DE-627 rakwb eng 620 620 DE-600 510 VZ 30.20 bkl 31.00 bkl d'Alessandro, Vincenzo verfasserin aut Advanced thermal simulation of SiGe:C HBTs including back-end-of-line 2016transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Advanced 3-D thermal simulations of state-of-the-art SiGe:C HBTs are performed, which ensure improved accuracy with respect to conventional approaches. The whole back-end-of-line architecture is modeled so as to account for the cooling effect due to the upward heat flow. Moreover, a nonuniform power density is considered to describe the heat source, and thermal conductivity degradation effects due to germanium, doping profile, and phonon scattering in narrow layers are implemented. The numerical thermal resistances are compared with those experimentally evaluated by means of a robust technique relying on the temperature dependence of the base-emitter voltage. Advanced 3-D thermal simulations of state-of-the-art SiGe:C HBTs are performed, which ensure improved accuracy with respect to conventional approaches. The whole back-end-of-line architecture is modeled so as to account for the cooling effect due to the upward heat flow. Moreover, a nonuniform power density is considered to describe the heat source, and thermal conductivity degradation effects due to germanium, doping profile, and phonon scattering in narrow layers are implemented. The numerical thermal resistances are compared with those experimentally evaluated by means of a robust technique relying on the temperature dependence of the base-emitter voltage. Magnani, Alessandro oth Codecasa, Lorenzo oth Rinaldi, Niccolò oth Aufinger, Klaus oth Enthalten in Elsevier Yao, Qijia ELSEVIER Fixed-time neural control for output-constrained synchronization of second-order chaotic systems 2023 Amsterdam [u.a.] (DE-627)ELV009442901 volume:67 year:2016 pages:38-45 extent:8 https://doi.org/10.1016/j.microrel.2016.06.005 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT 30.20 Nichtlineare Dynamik VZ 31.00 Mathematik: Allgemeines VZ AR 67 2016 38-45 8 045F 620 |
allfields_unstemmed |
10.1016/j.microrel.2016.06.005 doi GBV00000000000066A.pica (DE-627)ELV019917880 (ELSEVIER)S0026-2714(16)30128-7 DE-627 ger DE-627 rakwb eng 620 620 DE-600 510 VZ 30.20 bkl 31.00 bkl d'Alessandro, Vincenzo verfasserin aut Advanced thermal simulation of SiGe:C HBTs including back-end-of-line 2016transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Advanced 3-D thermal simulations of state-of-the-art SiGe:C HBTs are performed, which ensure improved accuracy with respect to conventional approaches. The whole back-end-of-line architecture is modeled so as to account for the cooling effect due to the upward heat flow. Moreover, a nonuniform power density is considered to describe the heat source, and thermal conductivity degradation effects due to germanium, doping profile, and phonon scattering in narrow layers are implemented. The numerical thermal resistances are compared with those experimentally evaluated by means of a robust technique relying on the temperature dependence of the base-emitter voltage. Advanced 3-D thermal simulations of state-of-the-art SiGe:C HBTs are performed, which ensure improved accuracy with respect to conventional approaches. The whole back-end-of-line architecture is modeled so as to account for the cooling effect due to the upward heat flow. Moreover, a nonuniform power density is considered to describe the heat source, and thermal conductivity degradation effects due to germanium, doping profile, and phonon scattering in narrow layers are implemented. The numerical thermal resistances are compared with those experimentally evaluated by means of a robust technique relying on the temperature dependence of the base-emitter voltage. Magnani, Alessandro oth Codecasa, Lorenzo oth Rinaldi, Niccolò oth Aufinger, Klaus oth Enthalten in Elsevier Yao, Qijia ELSEVIER Fixed-time neural control for output-constrained synchronization of second-order chaotic systems 2023 Amsterdam [u.a.] (DE-627)ELV009442901 volume:67 year:2016 pages:38-45 extent:8 https://doi.org/10.1016/j.microrel.2016.06.005 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT 30.20 Nichtlineare Dynamik VZ 31.00 Mathematik: Allgemeines VZ AR 67 2016 38-45 8 045F 620 |
allfieldsGer |
10.1016/j.microrel.2016.06.005 doi GBV00000000000066A.pica (DE-627)ELV019917880 (ELSEVIER)S0026-2714(16)30128-7 DE-627 ger DE-627 rakwb eng 620 620 DE-600 510 VZ 30.20 bkl 31.00 bkl d'Alessandro, Vincenzo verfasserin aut Advanced thermal simulation of SiGe:C HBTs including back-end-of-line 2016transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Advanced 3-D thermal simulations of state-of-the-art SiGe:C HBTs are performed, which ensure improved accuracy with respect to conventional approaches. The whole back-end-of-line architecture is modeled so as to account for the cooling effect due to the upward heat flow. Moreover, a nonuniform power density is considered to describe the heat source, and thermal conductivity degradation effects due to germanium, doping profile, and phonon scattering in narrow layers are implemented. The numerical thermal resistances are compared with those experimentally evaluated by means of a robust technique relying on the temperature dependence of the base-emitter voltage. Advanced 3-D thermal simulations of state-of-the-art SiGe:C HBTs are performed, which ensure improved accuracy with respect to conventional approaches. The whole back-end-of-line architecture is modeled so as to account for the cooling effect due to the upward heat flow. Moreover, a nonuniform power density is considered to describe the heat source, and thermal conductivity degradation effects due to germanium, doping profile, and phonon scattering in narrow layers are implemented. The numerical thermal resistances are compared with those experimentally evaluated by means of a robust technique relying on the temperature dependence of the base-emitter voltage. Magnani, Alessandro oth Codecasa, Lorenzo oth Rinaldi, Niccolò oth Aufinger, Klaus oth Enthalten in Elsevier Yao, Qijia ELSEVIER Fixed-time neural control for output-constrained synchronization of second-order chaotic systems 2023 Amsterdam [u.a.] (DE-627)ELV009442901 volume:67 year:2016 pages:38-45 extent:8 https://doi.org/10.1016/j.microrel.2016.06.005 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT 30.20 Nichtlineare Dynamik VZ 31.00 Mathematik: Allgemeines VZ AR 67 2016 38-45 8 045F 620 |
allfieldsSound |
10.1016/j.microrel.2016.06.005 doi GBV00000000000066A.pica (DE-627)ELV019917880 (ELSEVIER)S0026-2714(16)30128-7 DE-627 ger DE-627 rakwb eng 620 620 DE-600 510 VZ 30.20 bkl 31.00 bkl d'Alessandro, Vincenzo verfasserin aut Advanced thermal simulation of SiGe:C HBTs including back-end-of-line 2016transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Advanced 3-D thermal simulations of state-of-the-art SiGe:C HBTs are performed, which ensure improved accuracy with respect to conventional approaches. The whole back-end-of-line architecture is modeled so as to account for the cooling effect due to the upward heat flow. Moreover, a nonuniform power density is considered to describe the heat source, and thermal conductivity degradation effects due to germanium, doping profile, and phonon scattering in narrow layers are implemented. The numerical thermal resistances are compared with those experimentally evaluated by means of a robust technique relying on the temperature dependence of the base-emitter voltage. Advanced 3-D thermal simulations of state-of-the-art SiGe:C HBTs are performed, which ensure improved accuracy with respect to conventional approaches. The whole back-end-of-line architecture is modeled so as to account for the cooling effect due to the upward heat flow. Moreover, a nonuniform power density is considered to describe the heat source, and thermal conductivity degradation effects due to germanium, doping profile, and phonon scattering in narrow layers are implemented. The numerical thermal resistances are compared with those experimentally evaluated by means of a robust technique relying on the temperature dependence of the base-emitter voltage. Magnani, Alessandro oth Codecasa, Lorenzo oth Rinaldi, Niccolò oth Aufinger, Klaus oth Enthalten in Elsevier Yao, Qijia ELSEVIER Fixed-time neural control for output-constrained synchronization of second-order chaotic systems 2023 Amsterdam [u.a.] (DE-627)ELV009442901 volume:67 year:2016 pages:38-45 extent:8 https://doi.org/10.1016/j.microrel.2016.06.005 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT 30.20 Nichtlineare Dynamik VZ 31.00 Mathematik: Allgemeines VZ AR 67 2016 38-45 8 045F 620 |
language |
English |
source |
Enthalten in Fixed-time neural control for output-constrained synchronization of second-order chaotic systems Amsterdam [u.a.] volume:67 year:2016 pages:38-45 extent:8 |
sourceStr |
Enthalten in Fixed-time neural control for output-constrained synchronization of second-order chaotic systems Amsterdam [u.a.] volume:67 year:2016 pages:38-45 extent:8 |
format_phy_str_mv |
Article |
bklname |
Nichtlineare Dynamik Mathematik: Allgemeines |
institution |
findex.gbv.de |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Fixed-time neural control for output-constrained synchronization of second-order chaotic systems |
authorswithroles_txt_mv |
d'Alessandro, Vincenzo @@aut@@ Magnani, Alessandro @@oth@@ Codecasa, Lorenzo @@oth@@ Rinaldi, Niccolò @@oth@@ Aufinger, Klaus @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
ELV009442901 |
dewey-sort |
3620 |
id |
ELV019917880 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV019917880</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625130924.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.microrel.2016.06.005</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000066A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV019917880</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0026-2714(16)30128-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">30.20</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">d'Alessandro, Vincenzo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Advanced thermal simulation of SiGe:C HBTs including back-end-of-line</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Advanced 3-D thermal simulations of state-of-the-art SiGe:C HBTs are performed, which ensure improved accuracy with respect to conventional approaches. The whole back-end-of-line architecture is modeled so as to account for the cooling effect due to the upward heat flow. Moreover, a nonuniform power density is considered to describe the heat source, and thermal conductivity degradation effects due to germanium, doping profile, and phonon scattering in narrow layers are implemented. The numerical thermal resistances are compared with those experimentally evaluated by means of a robust technique relying on the temperature dependence of the base-emitter voltage.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Advanced 3-D thermal simulations of state-of-the-art SiGe:C HBTs are performed, which ensure improved accuracy with respect to conventional approaches. The whole back-end-of-line architecture is modeled so as to account for the cooling effect due to the upward heat flow. Moreover, a nonuniform power density is considered to describe the heat source, and thermal conductivity degradation effects due to germanium, doping profile, and phonon scattering in narrow layers are implemented. The numerical thermal resistances are compared with those experimentally evaluated by means of a robust technique relying on the temperature dependence of the base-emitter voltage.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Magnani, Alessandro</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Codecasa, Lorenzo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rinaldi, Niccolò</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Aufinger, Klaus</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Yao, Qijia ELSEVIER</subfield><subfield code="t">Fixed-time neural control for output-constrained synchronization of second-order chaotic systems</subfield><subfield code="d">2023</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV009442901</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:67</subfield><subfield code="g">year:2016</subfield><subfield code="g">pages:38-45</subfield><subfield code="g">extent:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.microrel.2016.06.005</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">30.20</subfield><subfield code="j">Nichtlineare Dynamik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="j">Mathematik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">67</subfield><subfield code="j">2016</subfield><subfield code="h">38-45</subfield><subfield code="g">8</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">620</subfield></datafield></record></collection>
|
author |
d'Alessandro, Vincenzo |
spellingShingle |
d'Alessandro, Vincenzo ddc 620 ddc 510 bkl 30.20 bkl 31.00 Advanced thermal simulation of SiGe:C HBTs including back-end-of-line |
authorStr |
d'Alessandro, Vincenzo |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV009442901 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations 510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
620 620 DE-600 510 VZ 30.20 bkl 31.00 bkl Advanced thermal simulation of SiGe:C HBTs including back-end-of-line |
topic |
ddc 620 ddc 510 bkl 30.20 bkl 31.00 |
topic_unstemmed |
ddc 620 ddc 510 bkl 30.20 bkl 31.00 |
topic_browse |
ddc 620 ddc 510 bkl 30.20 bkl 31.00 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
a m am l c lc n r nr k a ka |
hierarchy_parent_title |
Fixed-time neural control for output-constrained synchronization of second-order chaotic systems |
hierarchy_parent_id |
ELV009442901 |
dewey-tens |
620 - Engineering 510 - Mathematics |
hierarchy_top_title |
Fixed-time neural control for output-constrained synchronization of second-order chaotic systems |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV009442901 |
title |
Advanced thermal simulation of SiGe:C HBTs including back-end-of-line |
ctrlnum |
(DE-627)ELV019917880 (ELSEVIER)S0026-2714(16)30128-7 |
title_full |
Advanced thermal simulation of SiGe:C HBTs including back-end-of-line |
author_sort |
d'Alessandro, Vincenzo |
journal |
Fixed-time neural control for output-constrained synchronization of second-order chaotic systems |
journalStr |
Fixed-time neural control for output-constrained synchronization of second-order chaotic systems |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
zzz |
container_start_page |
38 |
author_browse |
d'Alessandro, Vincenzo |
container_volume |
67 |
physical |
8 |
class |
620 620 DE-600 510 VZ 30.20 bkl 31.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
d'Alessandro, Vincenzo |
doi_str_mv |
10.1016/j.microrel.2016.06.005 |
dewey-full |
620 510 |
title_sort |
advanced thermal simulation of sige:c hbts including back-end-of-line |
title_auth |
Advanced thermal simulation of SiGe:C HBTs including back-end-of-line |
abstract |
Advanced 3-D thermal simulations of state-of-the-art SiGe:C HBTs are performed, which ensure improved accuracy with respect to conventional approaches. The whole back-end-of-line architecture is modeled so as to account for the cooling effect due to the upward heat flow. Moreover, a nonuniform power density is considered to describe the heat source, and thermal conductivity degradation effects due to germanium, doping profile, and phonon scattering in narrow layers are implemented. The numerical thermal resistances are compared with those experimentally evaluated by means of a robust technique relying on the temperature dependence of the base-emitter voltage. |
abstractGer |
Advanced 3-D thermal simulations of state-of-the-art SiGe:C HBTs are performed, which ensure improved accuracy with respect to conventional approaches. The whole back-end-of-line architecture is modeled so as to account for the cooling effect due to the upward heat flow. Moreover, a nonuniform power density is considered to describe the heat source, and thermal conductivity degradation effects due to germanium, doping profile, and phonon scattering in narrow layers are implemented. The numerical thermal resistances are compared with those experimentally evaluated by means of a robust technique relying on the temperature dependence of the base-emitter voltage. |
abstract_unstemmed |
Advanced 3-D thermal simulations of state-of-the-art SiGe:C HBTs are performed, which ensure improved accuracy with respect to conventional approaches. The whole back-end-of-line architecture is modeled so as to account for the cooling effect due to the upward heat flow. Moreover, a nonuniform power density is considered to describe the heat source, and thermal conductivity degradation effects due to germanium, doping profile, and phonon scattering in narrow layers are implemented. The numerical thermal resistances are compared with those experimentally evaluated by means of a robust technique relying on the temperature dependence of the base-emitter voltage. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT |
title_short |
Advanced thermal simulation of SiGe:C HBTs including back-end-of-line |
url |
https://doi.org/10.1016/j.microrel.2016.06.005 |
remote_bool |
true |
author2 |
Magnani, Alessandro Codecasa, Lorenzo Rinaldi, Niccolò Aufinger, Klaus |
author2Str |
Magnani, Alessandro Codecasa, Lorenzo Rinaldi, Niccolò Aufinger, Klaus |
ppnlink |
ELV009442901 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1016/j.microrel.2016.06.005 |
up_date |
2024-07-06T22:43:23.647Z |
_version_ |
1803871378367053824 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV019917880</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625130924.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.microrel.2016.06.005</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000066A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV019917880</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0026-2714(16)30128-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">30.20</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">d'Alessandro, Vincenzo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Advanced thermal simulation of SiGe:C HBTs including back-end-of-line</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Advanced 3-D thermal simulations of state-of-the-art SiGe:C HBTs are performed, which ensure improved accuracy with respect to conventional approaches. The whole back-end-of-line architecture is modeled so as to account for the cooling effect due to the upward heat flow. Moreover, a nonuniform power density is considered to describe the heat source, and thermal conductivity degradation effects due to germanium, doping profile, and phonon scattering in narrow layers are implemented. The numerical thermal resistances are compared with those experimentally evaluated by means of a robust technique relying on the temperature dependence of the base-emitter voltage.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Advanced 3-D thermal simulations of state-of-the-art SiGe:C HBTs are performed, which ensure improved accuracy with respect to conventional approaches. The whole back-end-of-line architecture is modeled so as to account for the cooling effect due to the upward heat flow. Moreover, a nonuniform power density is considered to describe the heat source, and thermal conductivity degradation effects due to germanium, doping profile, and phonon scattering in narrow layers are implemented. The numerical thermal resistances are compared with those experimentally evaluated by means of a robust technique relying on the temperature dependence of the base-emitter voltage.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Magnani, Alessandro</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Codecasa, Lorenzo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rinaldi, Niccolò</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Aufinger, Klaus</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Yao, Qijia ELSEVIER</subfield><subfield code="t">Fixed-time neural control for output-constrained synchronization of second-order chaotic systems</subfield><subfield code="d">2023</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV009442901</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:67</subfield><subfield code="g">year:2016</subfield><subfield code="g">pages:38-45</subfield><subfield code="g">extent:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.microrel.2016.06.005</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">30.20</subfield><subfield code="j">Nichtlineare Dynamik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="j">Mathematik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">67</subfield><subfield code="j">2016</subfield><subfield code="h">38-45</subfield><subfield code="g">8</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">620</subfield></datafield></record></collection>
|
score |
7.3997507 |