A new transient method for determining thermal properties of wall sections
This investigation outlines a straight-forward and low cost methodology for determining thermal properties of wall structures. The method eliminates the need to produce a step change boundary condition, and the error inherent in the departure from a step change that finite properties necessarily imp...
Ausführliche Beschreibung
Autor*in: |
Robinson, A.J. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
8 |
---|
Übergeordnetes Werk: |
Enthalten in: Advanced head and neck surgical techniques: A survey of US otolaryngology resident perspectives - Plonowska, Karolina A. ELSEVIER, 2018, an international journal of research applied to energy efficiency in the built environment, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:142 ; year:2017 ; day:1 ; month:05 ; pages:139-146 ; extent:8 |
Links: |
---|
DOI / URN: |
10.1016/j.enbuild.2017.02.029 |
---|
Katalog-ID: |
ELV020299265 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV020299265 | ||
003 | DE-627 | ||
005 | 20230625131608.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.enbuild.2017.02.029 |2 doi | |
028 | 5 | 2 | |a GBV00000000000080A.pica |
035 | |a (DE-627)ELV020299265 | ||
035 | |a (ELSEVIER)S0378-7788(17)30491-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 690 | |
082 | 0 | 4 | |a 690 |q DE-600 |
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.94 |2 bkl | ||
100 | 1 | |a Robinson, A.J. |e verfasserin |4 aut | |
245 | 1 | 0 | |a A new transient method for determining thermal properties of wall sections |
264 | 1 | |c 2017transfer abstract | |
300 | |a 8 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a This investigation outlines a straight-forward and low cost methodology for determining thermal properties of wall structures. The method eliminates the need to produce a step change boundary condition, and the error inherent in the departure from a step change that finite properties necessarily impose. The transient technique involves an experimental component whereby a high temperature thermal ramp boundary condition is applied to one wall face with the other exposed to the cooler ambient surroundings. Temperature and heat flux sensors are installed to monitor the transient heating behaviour at the wall faces. The measured transient wall temperature profiles are subsequently imposed as boundary equations to Fourier's equation in such a way that the analytic solution can provide a prediction of the transient surface heat flux. With this, the thermal diffusivity is estimated by using the effective thermal diffusivity of the wall material as a tuning parameter to regression fit the predicted and measured heat flux histories. Additionally, the steady solution facilitates the approximation of the effective thermal conductivity when used in conjunction with the steady surface temperature and heat flux measurements. To illustrate the technique, a test was performed on a 900mm×900mm×120mm thick solid concrete wall section. The effective thermal diffusivity was determined to be 7.2×10−7 m2/s with corresponding effective thermal conductivity of 1.64W/mK and specific heat of 0.99kJ/kgK. Each property value is within the range of published literature for concrete. | ||
520 | |a This investigation outlines a straight-forward and low cost methodology for determining thermal properties of wall structures. The method eliminates the need to produce a step change boundary condition, and the error inherent in the departure from a step change that finite properties necessarily impose. The transient technique involves an experimental component whereby a high temperature thermal ramp boundary condition is applied to one wall face with the other exposed to the cooler ambient surroundings. Temperature and heat flux sensors are installed to monitor the transient heating behaviour at the wall faces. The measured transient wall temperature profiles are subsequently imposed as boundary equations to Fourier's equation in such a way that the analytic solution can provide a prediction of the transient surface heat flux. With this, the thermal diffusivity is estimated by using the effective thermal diffusivity of the wall material as a tuning parameter to regression fit the predicted and measured heat flux histories. Additionally, the steady solution facilitates the approximation of the effective thermal conductivity when used in conjunction with the steady surface temperature and heat flux measurements. To illustrate the technique, a test was performed on a 900mm×900mm×120mm thick solid concrete wall section. The effective thermal diffusivity was determined to be 7.2×10−7 m2/s with corresponding effective thermal conductivity of 1.64W/mK and specific heat of 0.99kJ/kgK. Each property value is within the range of published literature for concrete. | ||
650 | 7 | |a Thermal conductivity |2 Elsevier | |
650 | 7 | |a Thermal diffusivity |2 Elsevier | |
650 | 7 | |a Building envelope |2 Elsevier | |
650 | 7 | |a Walls |2 Elsevier | |
650 | 7 | |a Thermal mass |2 Elsevier | |
650 | 7 | |a Heat transfer |2 Elsevier | |
700 | 1 | |a Lesage, F.J. |4 oth | |
700 | 1 | |a Reilly, A. |4 oth | |
700 | 1 | |a McGranaghan, G. |4 oth | |
700 | 1 | |a Byrne, G. |4 oth | |
700 | 1 | |a O’Hegarty, R. |4 oth | |
700 | 1 | |a Kinnane, O. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Plonowska, Karolina A. ELSEVIER |t Advanced head and neck surgical techniques: A survey of US otolaryngology resident perspectives |d 2018 |d an international journal of research applied to energy efficiency in the built environment |g Amsterdam [u.a.] |w (DE-627)ELV001764748 |
773 | 1 | 8 | |g volume:142 |g year:2017 |g day:1 |g month:05 |g pages:139-146 |g extent:8 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.enbuild.2017.02.029 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 44.94 |j Hals-Nasen-Ohrenheilkunde |q VZ |
951 | |a AR | ||
952 | |d 142 |j 2017 |b 1 |c 0501 |h 139-146 |g 8 | ||
953 | |2 045F |a 690 |
author_variant |
a r ar |
---|---|
matchkey_str |
robinsonajlesagefjreillyamcgranaghangbyr:2017----:nwrninmtofreemnntemlrpri |
hierarchy_sort_str |
2017transfer abstract |
bklnumber |
44.94 |
publishDate |
2017 |
allfields |
10.1016/j.enbuild.2017.02.029 doi GBV00000000000080A.pica (DE-627)ELV020299265 (ELSEVIER)S0378-7788(17)30491-7 DE-627 ger DE-627 rakwb eng 690 690 DE-600 610 VZ 44.94 bkl Robinson, A.J. verfasserin aut A new transient method for determining thermal properties of wall sections 2017transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This investigation outlines a straight-forward and low cost methodology for determining thermal properties of wall structures. The method eliminates the need to produce a step change boundary condition, and the error inherent in the departure from a step change that finite properties necessarily impose. The transient technique involves an experimental component whereby a high temperature thermal ramp boundary condition is applied to one wall face with the other exposed to the cooler ambient surroundings. Temperature and heat flux sensors are installed to monitor the transient heating behaviour at the wall faces. The measured transient wall temperature profiles are subsequently imposed as boundary equations to Fourier's equation in such a way that the analytic solution can provide a prediction of the transient surface heat flux. With this, the thermal diffusivity is estimated by using the effective thermal diffusivity of the wall material as a tuning parameter to regression fit the predicted and measured heat flux histories. Additionally, the steady solution facilitates the approximation of the effective thermal conductivity when used in conjunction with the steady surface temperature and heat flux measurements. To illustrate the technique, a test was performed on a 900mm×900mm×120mm thick solid concrete wall section. The effective thermal diffusivity was determined to be 7.2×10−7 m2/s with corresponding effective thermal conductivity of 1.64W/mK and specific heat of 0.99kJ/kgK. Each property value is within the range of published literature for concrete. This investigation outlines a straight-forward and low cost methodology for determining thermal properties of wall structures. The method eliminates the need to produce a step change boundary condition, and the error inherent in the departure from a step change that finite properties necessarily impose. The transient technique involves an experimental component whereby a high temperature thermal ramp boundary condition is applied to one wall face with the other exposed to the cooler ambient surroundings. Temperature and heat flux sensors are installed to monitor the transient heating behaviour at the wall faces. The measured transient wall temperature profiles are subsequently imposed as boundary equations to Fourier's equation in such a way that the analytic solution can provide a prediction of the transient surface heat flux. With this, the thermal diffusivity is estimated by using the effective thermal diffusivity of the wall material as a tuning parameter to regression fit the predicted and measured heat flux histories. Additionally, the steady solution facilitates the approximation of the effective thermal conductivity when used in conjunction with the steady surface temperature and heat flux measurements. To illustrate the technique, a test was performed on a 900mm×900mm×120mm thick solid concrete wall section. The effective thermal diffusivity was determined to be 7.2×10−7 m2/s with corresponding effective thermal conductivity of 1.64W/mK and specific heat of 0.99kJ/kgK. Each property value is within the range of published literature for concrete. Thermal conductivity Elsevier Thermal diffusivity Elsevier Building envelope Elsevier Walls Elsevier Thermal mass Elsevier Heat transfer Elsevier Lesage, F.J. oth Reilly, A. oth McGranaghan, G. oth Byrne, G. oth O’Hegarty, R. oth Kinnane, O. oth Enthalten in Elsevier Science Plonowska, Karolina A. ELSEVIER Advanced head and neck surgical techniques: A survey of US otolaryngology resident perspectives 2018 an international journal of research applied to energy efficiency in the built environment Amsterdam [u.a.] (DE-627)ELV001764748 volume:142 year:2017 day:1 month:05 pages:139-146 extent:8 https://doi.org/10.1016/j.enbuild.2017.02.029 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 142 2017 1 0501 139-146 8 045F 690 |
spelling |
10.1016/j.enbuild.2017.02.029 doi GBV00000000000080A.pica (DE-627)ELV020299265 (ELSEVIER)S0378-7788(17)30491-7 DE-627 ger DE-627 rakwb eng 690 690 DE-600 610 VZ 44.94 bkl Robinson, A.J. verfasserin aut A new transient method for determining thermal properties of wall sections 2017transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This investigation outlines a straight-forward and low cost methodology for determining thermal properties of wall structures. The method eliminates the need to produce a step change boundary condition, and the error inherent in the departure from a step change that finite properties necessarily impose. The transient technique involves an experimental component whereby a high temperature thermal ramp boundary condition is applied to one wall face with the other exposed to the cooler ambient surroundings. Temperature and heat flux sensors are installed to monitor the transient heating behaviour at the wall faces. The measured transient wall temperature profiles are subsequently imposed as boundary equations to Fourier's equation in such a way that the analytic solution can provide a prediction of the transient surface heat flux. With this, the thermal diffusivity is estimated by using the effective thermal diffusivity of the wall material as a tuning parameter to regression fit the predicted and measured heat flux histories. Additionally, the steady solution facilitates the approximation of the effective thermal conductivity when used in conjunction with the steady surface temperature and heat flux measurements. To illustrate the technique, a test was performed on a 900mm×900mm×120mm thick solid concrete wall section. The effective thermal diffusivity was determined to be 7.2×10−7 m2/s with corresponding effective thermal conductivity of 1.64W/mK and specific heat of 0.99kJ/kgK. Each property value is within the range of published literature for concrete. This investigation outlines a straight-forward and low cost methodology for determining thermal properties of wall structures. The method eliminates the need to produce a step change boundary condition, and the error inherent in the departure from a step change that finite properties necessarily impose. The transient technique involves an experimental component whereby a high temperature thermal ramp boundary condition is applied to one wall face with the other exposed to the cooler ambient surroundings. Temperature and heat flux sensors are installed to monitor the transient heating behaviour at the wall faces. The measured transient wall temperature profiles are subsequently imposed as boundary equations to Fourier's equation in such a way that the analytic solution can provide a prediction of the transient surface heat flux. With this, the thermal diffusivity is estimated by using the effective thermal diffusivity of the wall material as a tuning parameter to regression fit the predicted and measured heat flux histories. Additionally, the steady solution facilitates the approximation of the effective thermal conductivity when used in conjunction with the steady surface temperature and heat flux measurements. To illustrate the technique, a test was performed on a 900mm×900mm×120mm thick solid concrete wall section. The effective thermal diffusivity was determined to be 7.2×10−7 m2/s with corresponding effective thermal conductivity of 1.64W/mK and specific heat of 0.99kJ/kgK. Each property value is within the range of published literature for concrete. Thermal conductivity Elsevier Thermal diffusivity Elsevier Building envelope Elsevier Walls Elsevier Thermal mass Elsevier Heat transfer Elsevier Lesage, F.J. oth Reilly, A. oth McGranaghan, G. oth Byrne, G. oth O’Hegarty, R. oth Kinnane, O. oth Enthalten in Elsevier Science Plonowska, Karolina A. ELSEVIER Advanced head and neck surgical techniques: A survey of US otolaryngology resident perspectives 2018 an international journal of research applied to energy efficiency in the built environment Amsterdam [u.a.] (DE-627)ELV001764748 volume:142 year:2017 day:1 month:05 pages:139-146 extent:8 https://doi.org/10.1016/j.enbuild.2017.02.029 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 142 2017 1 0501 139-146 8 045F 690 |
allfields_unstemmed |
10.1016/j.enbuild.2017.02.029 doi GBV00000000000080A.pica (DE-627)ELV020299265 (ELSEVIER)S0378-7788(17)30491-7 DE-627 ger DE-627 rakwb eng 690 690 DE-600 610 VZ 44.94 bkl Robinson, A.J. verfasserin aut A new transient method for determining thermal properties of wall sections 2017transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This investigation outlines a straight-forward and low cost methodology for determining thermal properties of wall structures. The method eliminates the need to produce a step change boundary condition, and the error inherent in the departure from a step change that finite properties necessarily impose. The transient technique involves an experimental component whereby a high temperature thermal ramp boundary condition is applied to one wall face with the other exposed to the cooler ambient surroundings. Temperature and heat flux sensors are installed to monitor the transient heating behaviour at the wall faces. The measured transient wall temperature profiles are subsequently imposed as boundary equations to Fourier's equation in such a way that the analytic solution can provide a prediction of the transient surface heat flux. With this, the thermal diffusivity is estimated by using the effective thermal diffusivity of the wall material as a tuning parameter to regression fit the predicted and measured heat flux histories. Additionally, the steady solution facilitates the approximation of the effective thermal conductivity when used in conjunction with the steady surface temperature and heat flux measurements. To illustrate the technique, a test was performed on a 900mm×900mm×120mm thick solid concrete wall section. The effective thermal diffusivity was determined to be 7.2×10−7 m2/s with corresponding effective thermal conductivity of 1.64W/mK and specific heat of 0.99kJ/kgK. Each property value is within the range of published literature for concrete. This investigation outlines a straight-forward and low cost methodology for determining thermal properties of wall structures. The method eliminates the need to produce a step change boundary condition, and the error inherent in the departure from a step change that finite properties necessarily impose. The transient technique involves an experimental component whereby a high temperature thermal ramp boundary condition is applied to one wall face with the other exposed to the cooler ambient surroundings. Temperature and heat flux sensors are installed to monitor the transient heating behaviour at the wall faces. The measured transient wall temperature profiles are subsequently imposed as boundary equations to Fourier's equation in such a way that the analytic solution can provide a prediction of the transient surface heat flux. With this, the thermal diffusivity is estimated by using the effective thermal diffusivity of the wall material as a tuning parameter to regression fit the predicted and measured heat flux histories. Additionally, the steady solution facilitates the approximation of the effective thermal conductivity when used in conjunction with the steady surface temperature and heat flux measurements. To illustrate the technique, a test was performed on a 900mm×900mm×120mm thick solid concrete wall section. The effective thermal diffusivity was determined to be 7.2×10−7 m2/s with corresponding effective thermal conductivity of 1.64W/mK and specific heat of 0.99kJ/kgK. Each property value is within the range of published literature for concrete. Thermal conductivity Elsevier Thermal diffusivity Elsevier Building envelope Elsevier Walls Elsevier Thermal mass Elsevier Heat transfer Elsevier Lesage, F.J. oth Reilly, A. oth McGranaghan, G. oth Byrne, G. oth O’Hegarty, R. oth Kinnane, O. oth Enthalten in Elsevier Science Plonowska, Karolina A. ELSEVIER Advanced head and neck surgical techniques: A survey of US otolaryngology resident perspectives 2018 an international journal of research applied to energy efficiency in the built environment Amsterdam [u.a.] (DE-627)ELV001764748 volume:142 year:2017 day:1 month:05 pages:139-146 extent:8 https://doi.org/10.1016/j.enbuild.2017.02.029 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 142 2017 1 0501 139-146 8 045F 690 |
allfieldsGer |
10.1016/j.enbuild.2017.02.029 doi GBV00000000000080A.pica (DE-627)ELV020299265 (ELSEVIER)S0378-7788(17)30491-7 DE-627 ger DE-627 rakwb eng 690 690 DE-600 610 VZ 44.94 bkl Robinson, A.J. verfasserin aut A new transient method for determining thermal properties of wall sections 2017transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This investigation outlines a straight-forward and low cost methodology for determining thermal properties of wall structures. The method eliminates the need to produce a step change boundary condition, and the error inherent in the departure from a step change that finite properties necessarily impose. The transient technique involves an experimental component whereby a high temperature thermal ramp boundary condition is applied to one wall face with the other exposed to the cooler ambient surroundings. Temperature and heat flux sensors are installed to monitor the transient heating behaviour at the wall faces. The measured transient wall temperature profiles are subsequently imposed as boundary equations to Fourier's equation in such a way that the analytic solution can provide a prediction of the transient surface heat flux. With this, the thermal diffusivity is estimated by using the effective thermal diffusivity of the wall material as a tuning parameter to regression fit the predicted and measured heat flux histories. Additionally, the steady solution facilitates the approximation of the effective thermal conductivity when used in conjunction with the steady surface temperature and heat flux measurements. To illustrate the technique, a test was performed on a 900mm×900mm×120mm thick solid concrete wall section. The effective thermal diffusivity was determined to be 7.2×10−7 m2/s with corresponding effective thermal conductivity of 1.64W/mK and specific heat of 0.99kJ/kgK. Each property value is within the range of published literature for concrete. This investigation outlines a straight-forward and low cost methodology for determining thermal properties of wall structures. The method eliminates the need to produce a step change boundary condition, and the error inherent in the departure from a step change that finite properties necessarily impose. The transient technique involves an experimental component whereby a high temperature thermal ramp boundary condition is applied to one wall face with the other exposed to the cooler ambient surroundings. Temperature and heat flux sensors are installed to monitor the transient heating behaviour at the wall faces. The measured transient wall temperature profiles are subsequently imposed as boundary equations to Fourier's equation in such a way that the analytic solution can provide a prediction of the transient surface heat flux. With this, the thermal diffusivity is estimated by using the effective thermal diffusivity of the wall material as a tuning parameter to regression fit the predicted and measured heat flux histories. Additionally, the steady solution facilitates the approximation of the effective thermal conductivity when used in conjunction with the steady surface temperature and heat flux measurements. To illustrate the technique, a test was performed on a 900mm×900mm×120mm thick solid concrete wall section. The effective thermal diffusivity was determined to be 7.2×10−7 m2/s with corresponding effective thermal conductivity of 1.64W/mK and specific heat of 0.99kJ/kgK. Each property value is within the range of published literature for concrete. Thermal conductivity Elsevier Thermal diffusivity Elsevier Building envelope Elsevier Walls Elsevier Thermal mass Elsevier Heat transfer Elsevier Lesage, F.J. oth Reilly, A. oth McGranaghan, G. oth Byrne, G. oth O’Hegarty, R. oth Kinnane, O. oth Enthalten in Elsevier Science Plonowska, Karolina A. ELSEVIER Advanced head and neck surgical techniques: A survey of US otolaryngology resident perspectives 2018 an international journal of research applied to energy efficiency in the built environment Amsterdam [u.a.] (DE-627)ELV001764748 volume:142 year:2017 day:1 month:05 pages:139-146 extent:8 https://doi.org/10.1016/j.enbuild.2017.02.029 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 142 2017 1 0501 139-146 8 045F 690 |
allfieldsSound |
10.1016/j.enbuild.2017.02.029 doi GBV00000000000080A.pica (DE-627)ELV020299265 (ELSEVIER)S0378-7788(17)30491-7 DE-627 ger DE-627 rakwb eng 690 690 DE-600 610 VZ 44.94 bkl Robinson, A.J. verfasserin aut A new transient method for determining thermal properties of wall sections 2017transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This investigation outlines a straight-forward and low cost methodology for determining thermal properties of wall structures. The method eliminates the need to produce a step change boundary condition, and the error inherent in the departure from a step change that finite properties necessarily impose. The transient technique involves an experimental component whereby a high temperature thermal ramp boundary condition is applied to one wall face with the other exposed to the cooler ambient surroundings. Temperature and heat flux sensors are installed to monitor the transient heating behaviour at the wall faces. The measured transient wall temperature profiles are subsequently imposed as boundary equations to Fourier's equation in such a way that the analytic solution can provide a prediction of the transient surface heat flux. With this, the thermal diffusivity is estimated by using the effective thermal diffusivity of the wall material as a tuning parameter to regression fit the predicted and measured heat flux histories. Additionally, the steady solution facilitates the approximation of the effective thermal conductivity when used in conjunction with the steady surface temperature and heat flux measurements. To illustrate the technique, a test was performed on a 900mm×900mm×120mm thick solid concrete wall section. The effective thermal diffusivity was determined to be 7.2×10−7 m2/s with corresponding effective thermal conductivity of 1.64W/mK and specific heat of 0.99kJ/kgK. Each property value is within the range of published literature for concrete. This investigation outlines a straight-forward and low cost methodology for determining thermal properties of wall structures. The method eliminates the need to produce a step change boundary condition, and the error inherent in the departure from a step change that finite properties necessarily impose. The transient technique involves an experimental component whereby a high temperature thermal ramp boundary condition is applied to one wall face with the other exposed to the cooler ambient surroundings. Temperature and heat flux sensors are installed to monitor the transient heating behaviour at the wall faces. The measured transient wall temperature profiles are subsequently imposed as boundary equations to Fourier's equation in such a way that the analytic solution can provide a prediction of the transient surface heat flux. With this, the thermal diffusivity is estimated by using the effective thermal diffusivity of the wall material as a tuning parameter to regression fit the predicted and measured heat flux histories. Additionally, the steady solution facilitates the approximation of the effective thermal conductivity when used in conjunction with the steady surface temperature and heat flux measurements. To illustrate the technique, a test was performed on a 900mm×900mm×120mm thick solid concrete wall section. The effective thermal diffusivity was determined to be 7.2×10−7 m2/s with corresponding effective thermal conductivity of 1.64W/mK and specific heat of 0.99kJ/kgK. Each property value is within the range of published literature for concrete. Thermal conductivity Elsevier Thermal diffusivity Elsevier Building envelope Elsevier Walls Elsevier Thermal mass Elsevier Heat transfer Elsevier Lesage, F.J. oth Reilly, A. oth McGranaghan, G. oth Byrne, G. oth O’Hegarty, R. oth Kinnane, O. oth Enthalten in Elsevier Science Plonowska, Karolina A. ELSEVIER Advanced head and neck surgical techniques: A survey of US otolaryngology resident perspectives 2018 an international journal of research applied to energy efficiency in the built environment Amsterdam [u.a.] (DE-627)ELV001764748 volume:142 year:2017 day:1 month:05 pages:139-146 extent:8 https://doi.org/10.1016/j.enbuild.2017.02.029 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 142 2017 1 0501 139-146 8 045F 690 |
language |
English |
source |
Enthalten in Advanced head and neck surgical techniques: A survey of US otolaryngology resident perspectives Amsterdam [u.a.] volume:142 year:2017 day:1 month:05 pages:139-146 extent:8 |
sourceStr |
Enthalten in Advanced head and neck surgical techniques: A survey of US otolaryngology resident perspectives Amsterdam [u.a.] volume:142 year:2017 day:1 month:05 pages:139-146 extent:8 |
format_phy_str_mv |
Article |
bklname |
Hals-Nasen-Ohrenheilkunde |
institution |
findex.gbv.de |
topic_facet |
Thermal conductivity Thermal diffusivity Building envelope Walls Thermal mass Heat transfer |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
Advanced head and neck surgical techniques: A survey of US otolaryngology resident perspectives |
authorswithroles_txt_mv |
Robinson, A.J. @@aut@@ Lesage, F.J. @@oth@@ Reilly, A. @@oth@@ McGranaghan, G. @@oth@@ Byrne, G. @@oth@@ O’Hegarty, R. @@oth@@ Kinnane, O. @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
ELV001764748 |
dewey-sort |
3690 |
id |
ELV020299265 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV020299265</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625131608.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.enbuild.2017.02.029</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000080A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV020299265</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0378-7788(17)30491-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">690</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.94</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Robinson, A.J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A new transient method for determining thermal properties of wall sections</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This investigation outlines a straight-forward and low cost methodology for determining thermal properties of wall structures. The method eliminates the need to produce a step change boundary condition, and the error inherent in the departure from a step change that finite properties necessarily impose. The transient technique involves an experimental component whereby a high temperature thermal ramp boundary condition is applied to one wall face with the other exposed to the cooler ambient surroundings. Temperature and heat flux sensors are installed to monitor the transient heating behaviour at the wall faces. The measured transient wall temperature profiles are subsequently imposed as boundary equations to Fourier's equation in such a way that the analytic solution can provide a prediction of the transient surface heat flux. With this, the thermal diffusivity is estimated by using the effective thermal diffusivity of the wall material as a tuning parameter to regression fit the predicted and measured heat flux histories. Additionally, the steady solution facilitates the approximation of the effective thermal conductivity when used in conjunction with the steady surface temperature and heat flux measurements. To illustrate the technique, a test was performed on a 900mm×900mm×120mm thick solid concrete wall section. The effective thermal diffusivity was determined to be 7.2×10−7 m2/s with corresponding effective thermal conductivity of 1.64W/mK and specific heat of 0.99kJ/kgK. Each property value is within the range of published literature for concrete.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This investigation outlines a straight-forward and low cost methodology for determining thermal properties of wall structures. The method eliminates the need to produce a step change boundary condition, and the error inherent in the departure from a step change that finite properties necessarily impose. The transient technique involves an experimental component whereby a high temperature thermal ramp boundary condition is applied to one wall face with the other exposed to the cooler ambient surroundings. Temperature and heat flux sensors are installed to monitor the transient heating behaviour at the wall faces. The measured transient wall temperature profiles are subsequently imposed as boundary equations to Fourier's equation in such a way that the analytic solution can provide a prediction of the transient surface heat flux. With this, the thermal diffusivity is estimated by using the effective thermal diffusivity of the wall material as a tuning parameter to regression fit the predicted and measured heat flux histories. Additionally, the steady solution facilitates the approximation of the effective thermal conductivity when used in conjunction with the steady surface temperature and heat flux measurements. To illustrate the technique, a test was performed on a 900mm×900mm×120mm thick solid concrete wall section. The effective thermal diffusivity was determined to be 7.2×10−7 m2/s with corresponding effective thermal conductivity of 1.64W/mK and specific heat of 0.99kJ/kgK. Each property value is within the range of published literature for concrete.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Thermal conductivity</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Thermal diffusivity</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Building envelope</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Walls</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Thermal mass</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Heat transfer</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lesage, F.J.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Reilly, A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">McGranaghan, G.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Byrne, G.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">O’Hegarty, R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kinnane, O.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Plonowska, Karolina A. ELSEVIER</subfield><subfield code="t">Advanced head and neck surgical techniques: A survey of US otolaryngology resident perspectives</subfield><subfield code="d">2018</subfield><subfield code="d">an international journal of research applied to energy efficiency in the built environment</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV001764748</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:142</subfield><subfield code="g">year:2017</subfield><subfield code="g">day:1</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:139-146</subfield><subfield code="g">extent:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.enbuild.2017.02.029</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.94</subfield><subfield code="j">Hals-Nasen-Ohrenheilkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">142</subfield><subfield code="j">2017</subfield><subfield code="b">1</subfield><subfield code="c">0501</subfield><subfield code="h">139-146</subfield><subfield code="g">8</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">690</subfield></datafield></record></collection>
|
author |
Robinson, A.J. |
spellingShingle |
Robinson, A.J. ddc 690 ddc 610 bkl 44.94 Elsevier Thermal conductivity Elsevier Thermal diffusivity Elsevier Building envelope Elsevier Walls Elsevier Thermal mass Elsevier Heat transfer A new transient method for determining thermal properties of wall sections |
authorStr |
Robinson, A.J. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV001764748 |
format |
electronic Article |
dewey-ones |
690 - Buildings 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
690 690 DE-600 610 VZ 44.94 bkl A new transient method for determining thermal properties of wall sections Thermal conductivity Elsevier Thermal diffusivity Elsevier Building envelope Elsevier Walls Elsevier Thermal mass Elsevier Heat transfer Elsevier |
topic |
ddc 690 ddc 610 bkl 44.94 Elsevier Thermal conductivity Elsevier Thermal diffusivity Elsevier Building envelope Elsevier Walls Elsevier Thermal mass Elsevier Heat transfer |
topic_unstemmed |
ddc 690 ddc 610 bkl 44.94 Elsevier Thermal conductivity Elsevier Thermal diffusivity Elsevier Building envelope Elsevier Walls Elsevier Thermal mass Elsevier Heat transfer |
topic_browse |
ddc 690 ddc 610 bkl 44.94 Elsevier Thermal conductivity Elsevier Thermal diffusivity Elsevier Building envelope Elsevier Walls Elsevier Thermal mass Elsevier Heat transfer |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
f l fl a r ar g m gm g b gb r o ro o k ok |
hierarchy_parent_title |
Advanced head and neck surgical techniques: A survey of US otolaryngology resident perspectives |
hierarchy_parent_id |
ELV001764748 |
dewey-tens |
690 - Building & construction 610 - Medicine & health |
hierarchy_top_title |
Advanced head and neck surgical techniques: A survey of US otolaryngology resident perspectives |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV001764748 |
title |
A new transient method for determining thermal properties of wall sections |
ctrlnum |
(DE-627)ELV020299265 (ELSEVIER)S0378-7788(17)30491-7 |
title_full |
A new transient method for determining thermal properties of wall sections |
author_sort |
Robinson, A.J. |
journal |
Advanced head and neck surgical techniques: A survey of US otolaryngology resident perspectives |
journalStr |
Advanced head and neck surgical techniques: A survey of US otolaryngology resident perspectives |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
zzz |
container_start_page |
139 |
author_browse |
Robinson, A.J. |
container_volume |
142 |
physical |
8 |
class |
690 690 DE-600 610 VZ 44.94 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Robinson, A.J. |
doi_str_mv |
10.1016/j.enbuild.2017.02.029 |
dewey-full |
690 610 |
title_sort |
a new transient method for determining thermal properties of wall sections |
title_auth |
A new transient method for determining thermal properties of wall sections |
abstract |
This investigation outlines a straight-forward and low cost methodology for determining thermal properties of wall structures. The method eliminates the need to produce a step change boundary condition, and the error inherent in the departure from a step change that finite properties necessarily impose. The transient technique involves an experimental component whereby a high temperature thermal ramp boundary condition is applied to one wall face with the other exposed to the cooler ambient surroundings. Temperature and heat flux sensors are installed to monitor the transient heating behaviour at the wall faces. The measured transient wall temperature profiles are subsequently imposed as boundary equations to Fourier's equation in such a way that the analytic solution can provide a prediction of the transient surface heat flux. With this, the thermal diffusivity is estimated by using the effective thermal diffusivity of the wall material as a tuning parameter to regression fit the predicted and measured heat flux histories. Additionally, the steady solution facilitates the approximation of the effective thermal conductivity when used in conjunction with the steady surface temperature and heat flux measurements. To illustrate the technique, a test was performed on a 900mm×900mm×120mm thick solid concrete wall section. The effective thermal diffusivity was determined to be 7.2×10−7 m2/s with corresponding effective thermal conductivity of 1.64W/mK and specific heat of 0.99kJ/kgK. Each property value is within the range of published literature for concrete. |
abstractGer |
This investigation outlines a straight-forward and low cost methodology for determining thermal properties of wall structures. The method eliminates the need to produce a step change boundary condition, and the error inherent in the departure from a step change that finite properties necessarily impose. The transient technique involves an experimental component whereby a high temperature thermal ramp boundary condition is applied to one wall face with the other exposed to the cooler ambient surroundings. Temperature and heat flux sensors are installed to monitor the transient heating behaviour at the wall faces. The measured transient wall temperature profiles are subsequently imposed as boundary equations to Fourier's equation in such a way that the analytic solution can provide a prediction of the transient surface heat flux. With this, the thermal diffusivity is estimated by using the effective thermal diffusivity of the wall material as a tuning parameter to regression fit the predicted and measured heat flux histories. Additionally, the steady solution facilitates the approximation of the effective thermal conductivity when used in conjunction with the steady surface temperature and heat flux measurements. To illustrate the technique, a test was performed on a 900mm×900mm×120mm thick solid concrete wall section. The effective thermal diffusivity was determined to be 7.2×10−7 m2/s with corresponding effective thermal conductivity of 1.64W/mK and specific heat of 0.99kJ/kgK. Each property value is within the range of published literature for concrete. |
abstract_unstemmed |
This investigation outlines a straight-forward and low cost methodology for determining thermal properties of wall structures. The method eliminates the need to produce a step change boundary condition, and the error inherent in the departure from a step change that finite properties necessarily impose. The transient technique involves an experimental component whereby a high temperature thermal ramp boundary condition is applied to one wall face with the other exposed to the cooler ambient surroundings. Temperature and heat flux sensors are installed to monitor the transient heating behaviour at the wall faces. The measured transient wall temperature profiles are subsequently imposed as boundary equations to Fourier's equation in such a way that the analytic solution can provide a prediction of the transient surface heat flux. With this, the thermal diffusivity is estimated by using the effective thermal diffusivity of the wall material as a tuning parameter to regression fit the predicted and measured heat flux histories. Additionally, the steady solution facilitates the approximation of the effective thermal conductivity when used in conjunction with the steady surface temperature and heat flux measurements. To illustrate the technique, a test was performed on a 900mm×900mm×120mm thick solid concrete wall section. The effective thermal diffusivity was determined to be 7.2×10−7 m2/s with corresponding effective thermal conductivity of 1.64W/mK and specific heat of 0.99kJ/kgK. Each property value is within the range of published literature for concrete. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
title_short |
A new transient method for determining thermal properties of wall sections |
url |
https://doi.org/10.1016/j.enbuild.2017.02.029 |
remote_bool |
true |
author2 |
Lesage, F.J. Reilly, A. McGranaghan, G. Byrne, G. O’Hegarty, R. Kinnane, O. |
author2Str |
Lesage, F.J. Reilly, A. McGranaghan, G. Byrne, G. O’Hegarty, R. Kinnane, O. |
ppnlink |
ELV001764748 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth |
doi_str |
10.1016/j.enbuild.2017.02.029 |
up_date |
2024-07-06T17:14:19.391Z |
_version_ |
1803850675013025792 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV020299265</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625131608.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.enbuild.2017.02.029</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000080A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV020299265</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0378-7788(17)30491-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">690</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.94</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Robinson, A.J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A new transient method for determining thermal properties of wall sections</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This investigation outlines a straight-forward and low cost methodology for determining thermal properties of wall structures. The method eliminates the need to produce a step change boundary condition, and the error inherent in the departure from a step change that finite properties necessarily impose. The transient technique involves an experimental component whereby a high temperature thermal ramp boundary condition is applied to one wall face with the other exposed to the cooler ambient surroundings. Temperature and heat flux sensors are installed to monitor the transient heating behaviour at the wall faces. The measured transient wall temperature profiles are subsequently imposed as boundary equations to Fourier's equation in such a way that the analytic solution can provide a prediction of the transient surface heat flux. With this, the thermal diffusivity is estimated by using the effective thermal diffusivity of the wall material as a tuning parameter to regression fit the predicted and measured heat flux histories. Additionally, the steady solution facilitates the approximation of the effective thermal conductivity when used in conjunction with the steady surface temperature and heat flux measurements. To illustrate the technique, a test was performed on a 900mm×900mm×120mm thick solid concrete wall section. The effective thermal diffusivity was determined to be 7.2×10−7 m2/s with corresponding effective thermal conductivity of 1.64W/mK and specific heat of 0.99kJ/kgK. Each property value is within the range of published literature for concrete.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This investigation outlines a straight-forward and low cost methodology for determining thermal properties of wall structures. The method eliminates the need to produce a step change boundary condition, and the error inherent in the departure from a step change that finite properties necessarily impose. The transient technique involves an experimental component whereby a high temperature thermal ramp boundary condition is applied to one wall face with the other exposed to the cooler ambient surroundings. Temperature and heat flux sensors are installed to monitor the transient heating behaviour at the wall faces. The measured transient wall temperature profiles are subsequently imposed as boundary equations to Fourier's equation in such a way that the analytic solution can provide a prediction of the transient surface heat flux. With this, the thermal diffusivity is estimated by using the effective thermal diffusivity of the wall material as a tuning parameter to regression fit the predicted and measured heat flux histories. Additionally, the steady solution facilitates the approximation of the effective thermal conductivity when used in conjunction with the steady surface temperature and heat flux measurements. To illustrate the technique, a test was performed on a 900mm×900mm×120mm thick solid concrete wall section. The effective thermal diffusivity was determined to be 7.2×10−7 m2/s with corresponding effective thermal conductivity of 1.64W/mK and specific heat of 0.99kJ/kgK. Each property value is within the range of published literature for concrete.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Thermal conductivity</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Thermal diffusivity</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Building envelope</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Walls</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Thermal mass</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Heat transfer</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lesage, F.J.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Reilly, A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">McGranaghan, G.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Byrne, G.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">O’Hegarty, R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kinnane, O.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Plonowska, Karolina A. ELSEVIER</subfield><subfield code="t">Advanced head and neck surgical techniques: A survey of US otolaryngology resident perspectives</subfield><subfield code="d">2018</subfield><subfield code="d">an international journal of research applied to energy efficiency in the built environment</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV001764748</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:142</subfield><subfield code="g">year:2017</subfield><subfield code="g">day:1</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:139-146</subfield><subfield code="g">extent:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.enbuild.2017.02.029</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.94</subfield><subfield code="j">Hals-Nasen-Ohrenheilkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">142</subfield><subfield code="j">2017</subfield><subfield code="b">1</subfield><subfield code="c">0501</subfield><subfield code="h">139-146</subfield><subfield code="g">8</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">690</subfield></datafield></record></collection>
|
score |
7.3993254 |