Nano-scaled Ti5Si3 evolution and Strength Enhancement of titanium matrix composites with two-scale architecture via heat treatment
To further improve the mechanical properties of Ti5Si3 and TiBw reinforced Ti6Al4V ((Ti5Si3 + TiBw)/Ti6Al4V) composites with a two-scale network structure, heat treatments were carried out to adjust nano-scaled Ti5Si3 (n-Ti5Si3) particles and matrix characteristics. The fraction of Ti5Si3 particles...
Ausführliche Beschreibung
Autor*in: |
Jiao, Y. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017transfer abstract |
---|
Schlagwörter: |
Two-scale network microstructure |
---|
Umfang: |
11 |
---|
Übergeordnetes Werk: |
Enthalten in: Generation of 3X FLAG-tagged human embryonic stem cell (hESC) line to study WNT-induced β-catenin DNA interactions (HVRDe009-A-2) - Cutts, Joshua ELSEVIER, 2021, Amsterdam |
---|---|
Übergeordnetes Werk: |
volume:701 ; year:2017 ; day:31 ; month:07 ; pages:359-369 ; extent:11 |
Links: |
---|
DOI / URN: |
10.1016/j.msea.2017.06.067 |
---|
Katalog-ID: |
ELV020383754 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV020383754 | ||
003 | DE-627 | ||
005 | 20230625131737.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.msea.2017.06.067 |2 doi | |
028 | 5 | 2 | |a GBV00000000000297A.pica |
035 | |a (DE-627)ELV020383754 | ||
035 | |a (ELSEVIER)S0921-5093(17)30828-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 600 |a 670 |a 530 | |
082 | 0 | 4 | |a 600 |q DE-600 |
082 | 0 | 4 | |a 670 |q DE-600 |
082 | 0 | 4 | |a 530 |q DE-600 |
082 | 0 | 4 | |a 570 |q VZ |
100 | 1 | |a Jiao, Y. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Nano-scaled Ti5Si3 evolution and Strength Enhancement of titanium matrix composites with two-scale architecture via heat treatment |
264 | 1 | |c 2017transfer abstract | |
300 | |a 11 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a To further improve the mechanical properties of Ti5Si3 and TiBw reinforced Ti6Al4V ((Ti5Si3 + TiBw)/Ti6Al4V) composites with a two-scale network structure, heat treatments were carried out to adjust nano-scaled Ti5Si3 (n-Ti5Si3) particles and matrix characteristics. The fraction of Ti5Si3 particles in the vicinity of first-scale TiBw reinforcements decreases with increasing quenching temperatures. When the quenching temperature is elevated to 1200°C, the Ti5Si3 particles dissolve and re-solute into the matrix. Both the size and fraction of n-Ti5Si3 particles increase with increasing aging temperatures. The size of n-Ti5Si3 particles in the β phase can be refined from 400–500nm (as-sintered) to 10–60nm after heat treatments. The strength of the heat-treated composites was significantly enhanced through heat treatments, when compared with the composites with one-scale architecture and Ti6Al4V alloy. The room temperature compressive strength and high temperature (600°C) tensile strength can reach 2245MPa and 880MPa, respectively. This can be attributed to the heat treatments adjustment of n-Ti5Si3 particles, supersaturated martensite α' phase and two-scale network structure. | ||
520 | |a To further improve the mechanical properties of Ti5Si3 and TiBw reinforced Ti6Al4V ((Ti5Si3 + TiBw)/Ti6Al4V) composites with a two-scale network structure, heat treatments were carried out to adjust nano-scaled Ti5Si3 (n-Ti5Si3) particles and matrix characteristics. The fraction of Ti5Si3 particles in the vicinity of first-scale TiBw reinforcements decreases with increasing quenching temperatures. When the quenching temperature is elevated to 1200°C, the Ti5Si3 particles dissolve and re-solute into the matrix. Both the size and fraction of n-Ti5Si3 particles increase with increasing aging temperatures. The size of n-Ti5Si3 particles in the β phase can be refined from 400–500nm (as-sintered) to 10–60nm after heat treatments. The strength of the heat-treated composites was significantly enhanced through heat treatments, when compared with the composites with one-scale architecture and Ti6Al4V alloy. The room temperature compressive strength and high temperature (600°C) tensile strength can reach 2245MPa and 880MPa, respectively. This can be attributed to the heat treatments adjustment of n-Ti5Si3 particles, supersaturated martensite α' phase and two-scale network structure. | ||
650 | 7 | |a Two-scale network microstructure |2 Elsevier | |
650 | 7 | |a Mechanical properties |2 Elsevier | |
650 | 7 | |a Heat treatments |2 Elsevier | |
650 | 7 | |a Nano-scaled Ti5Si3 characteristics |2 Elsevier | |
650 | 7 | |a Titanium matrix composites |2 Elsevier | |
700 | 1 | |a Huang, L.J. |4 oth | |
700 | 1 | |a Geng, L. |4 oth | |
700 | 1 | |a Li, X.T. |4 oth | |
700 | 1 | |a Gao, Y.N. |4 oth | |
700 | 1 | |a Qian, M.F. |4 oth | |
700 | 1 | |a Zhang, R. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Cutts, Joshua ELSEVIER |t Generation of 3X FLAG-tagged human embryonic stem cell (hESC) line to study WNT-induced β-catenin DNA interactions (HVRDe009-A-2) |d 2021 |g Amsterdam |w (DE-627)ELV007117167 |
773 | 1 | 8 | |g volume:701 |g year:2017 |g day:31 |g month:07 |g pages:359-369 |g extent:11 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.msea.2017.06.067 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
951 | |a AR | ||
952 | |d 701 |j 2017 |b 31 |c 0731 |h 359-369 |g 11 | ||
953 | |2 045F |a 600 |
author_variant |
y j yj |
---|---|
matchkey_str |
jiaoyhuangljgengllixtgaoynqianmfzhangr:2017----:aocldis3vltoadteghnacmnottnumticmoiewttocl |
hierarchy_sort_str |
2017transfer abstract |
publishDate |
2017 |
allfields |
10.1016/j.msea.2017.06.067 doi GBV00000000000297A.pica (DE-627)ELV020383754 (ELSEVIER)S0921-5093(17)30828-6 DE-627 ger DE-627 rakwb eng 600 670 530 600 DE-600 670 DE-600 530 DE-600 570 VZ Jiao, Y. verfasserin aut Nano-scaled Ti5Si3 evolution and Strength Enhancement of titanium matrix composites with two-scale architecture via heat treatment 2017transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier To further improve the mechanical properties of Ti5Si3 and TiBw reinforced Ti6Al4V ((Ti5Si3 + TiBw)/Ti6Al4V) composites with a two-scale network structure, heat treatments were carried out to adjust nano-scaled Ti5Si3 (n-Ti5Si3) particles and matrix characteristics. The fraction of Ti5Si3 particles in the vicinity of first-scale TiBw reinforcements decreases with increasing quenching temperatures. When the quenching temperature is elevated to 1200°C, the Ti5Si3 particles dissolve and re-solute into the matrix. Both the size and fraction of n-Ti5Si3 particles increase with increasing aging temperatures. The size of n-Ti5Si3 particles in the β phase can be refined from 400–500nm (as-sintered) to 10–60nm after heat treatments. The strength of the heat-treated composites was significantly enhanced through heat treatments, when compared with the composites with one-scale architecture and Ti6Al4V alloy. The room temperature compressive strength and high temperature (600°C) tensile strength can reach 2245MPa and 880MPa, respectively. This can be attributed to the heat treatments adjustment of n-Ti5Si3 particles, supersaturated martensite α' phase and two-scale network structure. To further improve the mechanical properties of Ti5Si3 and TiBw reinforced Ti6Al4V ((Ti5Si3 + TiBw)/Ti6Al4V) composites with a two-scale network structure, heat treatments were carried out to adjust nano-scaled Ti5Si3 (n-Ti5Si3) particles and matrix characteristics. The fraction of Ti5Si3 particles in the vicinity of first-scale TiBw reinforcements decreases with increasing quenching temperatures. When the quenching temperature is elevated to 1200°C, the Ti5Si3 particles dissolve and re-solute into the matrix. Both the size and fraction of n-Ti5Si3 particles increase with increasing aging temperatures. The size of n-Ti5Si3 particles in the β phase can be refined from 400–500nm (as-sintered) to 10–60nm after heat treatments. The strength of the heat-treated composites was significantly enhanced through heat treatments, when compared with the composites with one-scale architecture and Ti6Al4V alloy. The room temperature compressive strength and high temperature (600°C) tensile strength can reach 2245MPa and 880MPa, respectively. This can be attributed to the heat treatments adjustment of n-Ti5Si3 particles, supersaturated martensite α' phase and two-scale network structure. Two-scale network microstructure Elsevier Mechanical properties Elsevier Heat treatments Elsevier Nano-scaled Ti5Si3 characteristics Elsevier Titanium matrix composites Elsevier Huang, L.J. oth Geng, L. oth Li, X.T. oth Gao, Y.N. oth Qian, M.F. oth Zhang, R. oth Enthalten in Elsevier Cutts, Joshua ELSEVIER Generation of 3X FLAG-tagged human embryonic stem cell (hESC) line to study WNT-induced β-catenin DNA interactions (HVRDe009-A-2) 2021 Amsterdam (DE-627)ELV007117167 volume:701 year:2017 day:31 month:07 pages:359-369 extent:11 https://doi.org/10.1016/j.msea.2017.06.067 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA AR 701 2017 31 0731 359-369 11 045F 600 |
spelling |
10.1016/j.msea.2017.06.067 doi GBV00000000000297A.pica (DE-627)ELV020383754 (ELSEVIER)S0921-5093(17)30828-6 DE-627 ger DE-627 rakwb eng 600 670 530 600 DE-600 670 DE-600 530 DE-600 570 VZ Jiao, Y. verfasserin aut Nano-scaled Ti5Si3 evolution and Strength Enhancement of titanium matrix composites with two-scale architecture via heat treatment 2017transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier To further improve the mechanical properties of Ti5Si3 and TiBw reinforced Ti6Al4V ((Ti5Si3 + TiBw)/Ti6Al4V) composites with a two-scale network structure, heat treatments were carried out to adjust nano-scaled Ti5Si3 (n-Ti5Si3) particles and matrix characteristics. The fraction of Ti5Si3 particles in the vicinity of first-scale TiBw reinforcements decreases with increasing quenching temperatures. When the quenching temperature is elevated to 1200°C, the Ti5Si3 particles dissolve and re-solute into the matrix. Both the size and fraction of n-Ti5Si3 particles increase with increasing aging temperatures. The size of n-Ti5Si3 particles in the β phase can be refined from 400–500nm (as-sintered) to 10–60nm after heat treatments. The strength of the heat-treated composites was significantly enhanced through heat treatments, when compared with the composites with one-scale architecture and Ti6Al4V alloy. The room temperature compressive strength and high temperature (600°C) tensile strength can reach 2245MPa and 880MPa, respectively. This can be attributed to the heat treatments adjustment of n-Ti5Si3 particles, supersaturated martensite α' phase and two-scale network structure. To further improve the mechanical properties of Ti5Si3 and TiBw reinforced Ti6Al4V ((Ti5Si3 + TiBw)/Ti6Al4V) composites with a two-scale network structure, heat treatments were carried out to adjust nano-scaled Ti5Si3 (n-Ti5Si3) particles and matrix characteristics. The fraction of Ti5Si3 particles in the vicinity of first-scale TiBw reinforcements decreases with increasing quenching temperatures. When the quenching temperature is elevated to 1200°C, the Ti5Si3 particles dissolve and re-solute into the matrix. Both the size and fraction of n-Ti5Si3 particles increase with increasing aging temperatures. The size of n-Ti5Si3 particles in the β phase can be refined from 400–500nm (as-sintered) to 10–60nm after heat treatments. The strength of the heat-treated composites was significantly enhanced through heat treatments, when compared with the composites with one-scale architecture and Ti6Al4V alloy. The room temperature compressive strength and high temperature (600°C) tensile strength can reach 2245MPa and 880MPa, respectively. This can be attributed to the heat treatments adjustment of n-Ti5Si3 particles, supersaturated martensite α' phase and two-scale network structure. Two-scale network microstructure Elsevier Mechanical properties Elsevier Heat treatments Elsevier Nano-scaled Ti5Si3 characteristics Elsevier Titanium matrix composites Elsevier Huang, L.J. oth Geng, L. oth Li, X.T. oth Gao, Y.N. oth Qian, M.F. oth Zhang, R. oth Enthalten in Elsevier Cutts, Joshua ELSEVIER Generation of 3X FLAG-tagged human embryonic stem cell (hESC) line to study WNT-induced β-catenin DNA interactions (HVRDe009-A-2) 2021 Amsterdam (DE-627)ELV007117167 volume:701 year:2017 day:31 month:07 pages:359-369 extent:11 https://doi.org/10.1016/j.msea.2017.06.067 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA AR 701 2017 31 0731 359-369 11 045F 600 |
allfields_unstemmed |
10.1016/j.msea.2017.06.067 doi GBV00000000000297A.pica (DE-627)ELV020383754 (ELSEVIER)S0921-5093(17)30828-6 DE-627 ger DE-627 rakwb eng 600 670 530 600 DE-600 670 DE-600 530 DE-600 570 VZ Jiao, Y. verfasserin aut Nano-scaled Ti5Si3 evolution and Strength Enhancement of titanium matrix composites with two-scale architecture via heat treatment 2017transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier To further improve the mechanical properties of Ti5Si3 and TiBw reinforced Ti6Al4V ((Ti5Si3 + TiBw)/Ti6Al4V) composites with a two-scale network structure, heat treatments were carried out to adjust nano-scaled Ti5Si3 (n-Ti5Si3) particles and matrix characteristics. The fraction of Ti5Si3 particles in the vicinity of first-scale TiBw reinforcements decreases with increasing quenching temperatures. When the quenching temperature is elevated to 1200°C, the Ti5Si3 particles dissolve and re-solute into the matrix. Both the size and fraction of n-Ti5Si3 particles increase with increasing aging temperatures. The size of n-Ti5Si3 particles in the β phase can be refined from 400–500nm (as-sintered) to 10–60nm after heat treatments. The strength of the heat-treated composites was significantly enhanced through heat treatments, when compared with the composites with one-scale architecture and Ti6Al4V alloy. The room temperature compressive strength and high temperature (600°C) tensile strength can reach 2245MPa and 880MPa, respectively. This can be attributed to the heat treatments adjustment of n-Ti5Si3 particles, supersaturated martensite α' phase and two-scale network structure. To further improve the mechanical properties of Ti5Si3 and TiBw reinforced Ti6Al4V ((Ti5Si3 + TiBw)/Ti6Al4V) composites with a two-scale network structure, heat treatments were carried out to adjust nano-scaled Ti5Si3 (n-Ti5Si3) particles and matrix characteristics. The fraction of Ti5Si3 particles in the vicinity of first-scale TiBw reinforcements decreases with increasing quenching temperatures. When the quenching temperature is elevated to 1200°C, the Ti5Si3 particles dissolve and re-solute into the matrix. Both the size and fraction of n-Ti5Si3 particles increase with increasing aging temperatures. The size of n-Ti5Si3 particles in the β phase can be refined from 400–500nm (as-sintered) to 10–60nm after heat treatments. The strength of the heat-treated composites was significantly enhanced through heat treatments, when compared with the composites with one-scale architecture and Ti6Al4V alloy. The room temperature compressive strength and high temperature (600°C) tensile strength can reach 2245MPa and 880MPa, respectively. This can be attributed to the heat treatments adjustment of n-Ti5Si3 particles, supersaturated martensite α' phase and two-scale network structure. Two-scale network microstructure Elsevier Mechanical properties Elsevier Heat treatments Elsevier Nano-scaled Ti5Si3 characteristics Elsevier Titanium matrix composites Elsevier Huang, L.J. oth Geng, L. oth Li, X.T. oth Gao, Y.N. oth Qian, M.F. oth Zhang, R. oth Enthalten in Elsevier Cutts, Joshua ELSEVIER Generation of 3X FLAG-tagged human embryonic stem cell (hESC) line to study WNT-induced β-catenin DNA interactions (HVRDe009-A-2) 2021 Amsterdam (DE-627)ELV007117167 volume:701 year:2017 day:31 month:07 pages:359-369 extent:11 https://doi.org/10.1016/j.msea.2017.06.067 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA AR 701 2017 31 0731 359-369 11 045F 600 |
allfieldsGer |
10.1016/j.msea.2017.06.067 doi GBV00000000000297A.pica (DE-627)ELV020383754 (ELSEVIER)S0921-5093(17)30828-6 DE-627 ger DE-627 rakwb eng 600 670 530 600 DE-600 670 DE-600 530 DE-600 570 VZ Jiao, Y. verfasserin aut Nano-scaled Ti5Si3 evolution and Strength Enhancement of titanium matrix composites with two-scale architecture via heat treatment 2017transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier To further improve the mechanical properties of Ti5Si3 and TiBw reinforced Ti6Al4V ((Ti5Si3 + TiBw)/Ti6Al4V) composites with a two-scale network structure, heat treatments were carried out to adjust nano-scaled Ti5Si3 (n-Ti5Si3) particles and matrix characteristics. The fraction of Ti5Si3 particles in the vicinity of first-scale TiBw reinforcements decreases with increasing quenching temperatures. When the quenching temperature is elevated to 1200°C, the Ti5Si3 particles dissolve and re-solute into the matrix. Both the size and fraction of n-Ti5Si3 particles increase with increasing aging temperatures. The size of n-Ti5Si3 particles in the β phase can be refined from 400–500nm (as-sintered) to 10–60nm after heat treatments. The strength of the heat-treated composites was significantly enhanced through heat treatments, when compared with the composites with one-scale architecture and Ti6Al4V alloy. The room temperature compressive strength and high temperature (600°C) tensile strength can reach 2245MPa and 880MPa, respectively. This can be attributed to the heat treatments adjustment of n-Ti5Si3 particles, supersaturated martensite α' phase and two-scale network structure. To further improve the mechanical properties of Ti5Si3 and TiBw reinforced Ti6Al4V ((Ti5Si3 + TiBw)/Ti6Al4V) composites with a two-scale network structure, heat treatments were carried out to adjust nano-scaled Ti5Si3 (n-Ti5Si3) particles and matrix characteristics. The fraction of Ti5Si3 particles in the vicinity of first-scale TiBw reinforcements decreases with increasing quenching temperatures. When the quenching temperature is elevated to 1200°C, the Ti5Si3 particles dissolve and re-solute into the matrix. Both the size and fraction of n-Ti5Si3 particles increase with increasing aging temperatures. The size of n-Ti5Si3 particles in the β phase can be refined from 400–500nm (as-sintered) to 10–60nm after heat treatments. The strength of the heat-treated composites was significantly enhanced through heat treatments, when compared with the composites with one-scale architecture and Ti6Al4V alloy. The room temperature compressive strength and high temperature (600°C) tensile strength can reach 2245MPa and 880MPa, respectively. This can be attributed to the heat treatments adjustment of n-Ti5Si3 particles, supersaturated martensite α' phase and two-scale network structure. Two-scale network microstructure Elsevier Mechanical properties Elsevier Heat treatments Elsevier Nano-scaled Ti5Si3 characteristics Elsevier Titanium matrix composites Elsevier Huang, L.J. oth Geng, L. oth Li, X.T. oth Gao, Y.N. oth Qian, M.F. oth Zhang, R. oth Enthalten in Elsevier Cutts, Joshua ELSEVIER Generation of 3X FLAG-tagged human embryonic stem cell (hESC) line to study WNT-induced β-catenin DNA interactions (HVRDe009-A-2) 2021 Amsterdam (DE-627)ELV007117167 volume:701 year:2017 day:31 month:07 pages:359-369 extent:11 https://doi.org/10.1016/j.msea.2017.06.067 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA AR 701 2017 31 0731 359-369 11 045F 600 |
allfieldsSound |
10.1016/j.msea.2017.06.067 doi GBV00000000000297A.pica (DE-627)ELV020383754 (ELSEVIER)S0921-5093(17)30828-6 DE-627 ger DE-627 rakwb eng 600 670 530 600 DE-600 670 DE-600 530 DE-600 570 VZ Jiao, Y. verfasserin aut Nano-scaled Ti5Si3 evolution and Strength Enhancement of titanium matrix composites with two-scale architecture via heat treatment 2017transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier To further improve the mechanical properties of Ti5Si3 and TiBw reinforced Ti6Al4V ((Ti5Si3 + TiBw)/Ti6Al4V) composites with a two-scale network structure, heat treatments were carried out to adjust nano-scaled Ti5Si3 (n-Ti5Si3) particles and matrix characteristics. The fraction of Ti5Si3 particles in the vicinity of first-scale TiBw reinforcements decreases with increasing quenching temperatures. When the quenching temperature is elevated to 1200°C, the Ti5Si3 particles dissolve and re-solute into the matrix. Both the size and fraction of n-Ti5Si3 particles increase with increasing aging temperatures. The size of n-Ti5Si3 particles in the β phase can be refined from 400–500nm (as-sintered) to 10–60nm after heat treatments. The strength of the heat-treated composites was significantly enhanced through heat treatments, when compared with the composites with one-scale architecture and Ti6Al4V alloy. The room temperature compressive strength and high temperature (600°C) tensile strength can reach 2245MPa and 880MPa, respectively. This can be attributed to the heat treatments adjustment of n-Ti5Si3 particles, supersaturated martensite α' phase and two-scale network structure. To further improve the mechanical properties of Ti5Si3 and TiBw reinforced Ti6Al4V ((Ti5Si3 + TiBw)/Ti6Al4V) composites with a two-scale network structure, heat treatments were carried out to adjust nano-scaled Ti5Si3 (n-Ti5Si3) particles and matrix characteristics. The fraction of Ti5Si3 particles in the vicinity of first-scale TiBw reinforcements decreases with increasing quenching temperatures. When the quenching temperature is elevated to 1200°C, the Ti5Si3 particles dissolve and re-solute into the matrix. Both the size and fraction of n-Ti5Si3 particles increase with increasing aging temperatures. The size of n-Ti5Si3 particles in the β phase can be refined from 400–500nm (as-sintered) to 10–60nm after heat treatments. The strength of the heat-treated composites was significantly enhanced through heat treatments, when compared with the composites with one-scale architecture and Ti6Al4V alloy. The room temperature compressive strength and high temperature (600°C) tensile strength can reach 2245MPa and 880MPa, respectively. This can be attributed to the heat treatments adjustment of n-Ti5Si3 particles, supersaturated martensite α' phase and two-scale network structure. Two-scale network microstructure Elsevier Mechanical properties Elsevier Heat treatments Elsevier Nano-scaled Ti5Si3 characteristics Elsevier Titanium matrix composites Elsevier Huang, L.J. oth Geng, L. oth Li, X.T. oth Gao, Y.N. oth Qian, M.F. oth Zhang, R. oth Enthalten in Elsevier Cutts, Joshua ELSEVIER Generation of 3X FLAG-tagged human embryonic stem cell (hESC) line to study WNT-induced β-catenin DNA interactions (HVRDe009-A-2) 2021 Amsterdam (DE-627)ELV007117167 volume:701 year:2017 day:31 month:07 pages:359-369 extent:11 https://doi.org/10.1016/j.msea.2017.06.067 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA AR 701 2017 31 0731 359-369 11 045F 600 |
language |
English |
source |
Enthalten in Generation of 3X FLAG-tagged human embryonic stem cell (hESC) line to study WNT-induced β-catenin DNA interactions (HVRDe009-A-2) Amsterdam volume:701 year:2017 day:31 month:07 pages:359-369 extent:11 |
sourceStr |
Enthalten in Generation of 3X FLAG-tagged human embryonic stem cell (hESC) line to study WNT-induced β-catenin DNA interactions (HVRDe009-A-2) Amsterdam volume:701 year:2017 day:31 month:07 pages:359-369 extent:11 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Two-scale network microstructure Mechanical properties Heat treatments Nano-scaled Ti5Si3 characteristics Titanium matrix composites |
dewey-raw |
600 |
isfreeaccess_bool |
false |
container_title |
Generation of 3X FLAG-tagged human embryonic stem cell (hESC) line to study WNT-induced β-catenin DNA interactions (HVRDe009-A-2) |
authorswithroles_txt_mv |
Jiao, Y. @@aut@@ Huang, L.J. @@oth@@ Geng, L. @@oth@@ Li, X.T. @@oth@@ Gao, Y.N. @@oth@@ Qian, M.F. @@oth@@ Zhang, R. @@oth@@ |
publishDateDaySort_date |
2017-01-31T00:00:00Z |
hierarchy_top_id |
ELV007117167 |
dewey-sort |
3600 |
id |
ELV020383754 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV020383754</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625131737.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.msea.2017.06.067</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000297A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV020383754</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0921-5093(17)30828-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">600</subfield><subfield code="a">670</subfield><subfield code="a">530</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jiao, Y.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nano-scaled Ti5Si3 evolution and Strength Enhancement of titanium matrix composites with two-scale architecture via heat treatment</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">11</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To further improve the mechanical properties of Ti5Si3 and TiBw reinforced Ti6Al4V ((Ti5Si3 + TiBw)/Ti6Al4V) composites with a two-scale network structure, heat treatments were carried out to adjust nano-scaled Ti5Si3 (n-Ti5Si3) particles and matrix characteristics. The fraction of Ti5Si3 particles in the vicinity of first-scale TiBw reinforcements decreases with increasing quenching temperatures. When the quenching temperature is elevated to 1200°C, the Ti5Si3 particles dissolve and re-solute into the matrix. Both the size and fraction of n-Ti5Si3 particles increase with increasing aging temperatures. The size of n-Ti5Si3 particles in the β phase can be refined from 400–500nm (as-sintered) to 10–60nm after heat treatments. The strength of the heat-treated composites was significantly enhanced through heat treatments, when compared with the composites with one-scale architecture and Ti6Al4V alloy. The room temperature compressive strength and high temperature (600°C) tensile strength can reach 2245MPa and 880MPa, respectively. This can be attributed to the heat treatments adjustment of n-Ti5Si3 particles, supersaturated martensite α' phase and two-scale network structure.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To further improve the mechanical properties of Ti5Si3 and TiBw reinforced Ti6Al4V ((Ti5Si3 + TiBw)/Ti6Al4V) composites with a two-scale network structure, heat treatments were carried out to adjust nano-scaled Ti5Si3 (n-Ti5Si3) particles and matrix characteristics. The fraction of Ti5Si3 particles in the vicinity of first-scale TiBw reinforcements decreases with increasing quenching temperatures. When the quenching temperature is elevated to 1200°C, the Ti5Si3 particles dissolve and re-solute into the matrix. Both the size and fraction of n-Ti5Si3 particles increase with increasing aging temperatures. The size of n-Ti5Si3 particles in the β phase can be refined from 400–500nm (as-sintered) to 10–60nm after heat treatments. The strength of the heat-treated composites was significantly enhanced through heat treatments, when compared with the composites with one-scale architecture and Ti6Al4V alloy. The room temperature compressive strength and high temperature (600°C) tensile strength can reach 2245MPa and 880MPa, respectively. This can be attributed to the heat treatments adjustment of n-Ti5Si3 particles, supersaturated martensite α' phase and two-scale network structure.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Two-scale network microstructure</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mechanical properties</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Heat treatments</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nano-scaled Ti5Si3 characteristics</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Titanium matrix composites</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, L.J.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Geng, L.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, X.T.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Y.N.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qian, M.F.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Cutts, Joshua ELSEVIER</subfield><subfield code="t">Generation of 3X FLAG-tagged human embryonic stem cell (hESC) line to study WNT-induced β-catenin DNA interactions (HVRDe009-A-2)</subfield><subfield code="d">2021</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV007117167</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:701</subfield><subfield code="g">year:2017</subfield><subfield code="g">day:31</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:359-369</subfield><subfield code="g">extent:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.msea.2017.06.067</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">701</subfield><subfield code="j">2017</subfield><subfield code="b">31</subfield><subfield code="c">0731</subfield><subfield code="h">359-369</subfield><subfield code="g">11</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">600</subfield></datafield></record></collection>
|
author |
Jiao, Y. |
spellingShingle |
Jiao, Y. ddc 600 ddc 670 ddc 530 ddc 570 Elsevier Two-scale network microstructure Elsevier Mechanical properties Elsevier Heat treatments Elsevier Nano-scaled Ti5Si3 characteristics Elsevier Titanium matrix composites Nano-scaled Ti5Si3 evolution and Strength Enhancement of titanium matrix composites with two-scale architecture via heat treatment |
authorStr |
Jiao, Y. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV007117167 |
format |
electronic Article |
dewey-ones |
600 - Technology 670 - Manufacturing 530 - Physics 570 - Life sciences; biology |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
600 670 530 600 DE-600 670 DE-600 530 DE-600 570 VZ Nano-scaled Ti5Si3 evolution and Strength Enhancement of titanium matrix composites with two-scale architecture via heat treatment Two-scale network microstructure Elsevier Mechanical properties Elsevier Heat treatments Elsevier Nano-scaled Ti5Si3 characteristics Elsevier Titanium matrix composites Elsevier |
topic |
ddc 600 ddc 670 ddc 530 ddc 570 Elsevier Two-scale network microstructure Elsevier Mechanical properties Elsevier Heat treatments Elsevier Nano-scaled Ti5Si3 characteristics Elsevier Titanium matrix composites |
topic_unstemmed |
ddc 600 ddc 670 ddc 530 ddc 570 Elsevier Two-scale network microstructure Elsevier Mechanical properties Elsevier Heat treatments Elsevier Nano-scaled Ti5Si3 characteristics Elsevier Titanium matrix composites |
topic_browse |
ddc 600 ddc 670 ddc 530 ddc 570 Elsevier Two-scale network microstructure Elsevier Mechanical properties Elsevier Heat treatments Elsevier Nano-scaled Ti5Si3 characteristics Elsevier Titanium matrix composites |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
l h lh l g lg x l xl y g yg m q mq r z rz |
hierarchy_parent_title |
Generation of 3X FLAG-tagged human embryonic stem cell (hESC) line to study WNT-induced β-catenin DNA interactions (HVRDe009-A-2) |
hierarchy_parent_id |
ELV007117167 |
dewey-tens |
600 - Technology 670 - Manufacturing 530 - Physics 570 - Life sciences; biology |
hierarchy_top_title |
Generation of 3X FLAG-tagged human embryonic stem cell (hESC) line to study WNT-induced β-catenin DNA interactions (HVRDe009-A-2) |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV007117167 |
title |
Nano-scaled Ti5Si3 evolution and Strength Enhancement of titanium matrix composites with two-scale architecture via heat treatment |
ctrlnum |
(DE-627)ELV020383754 (ELSEVIER)S0921-5093(17)30828-6 |
title_full |
Nano-scaled Ti5Si3 evolution and Strength Enhancement of titanium matrix composites with two-scale architecture via heat treatment |
author_sort |
Jiao, Y. |
journal |
Generation of 3X FLAG-tagged human embryonic stem cell (hESC) line to study WNT-induced β-catenin DNA interactions (HVRDe009-A-2) |
journalStr |
Generation of 3X FLAG-tagged human embryonic stem cell (hESC) line to study WNT-induced β-catenin DNA interactions (HVRDe009-A-2) |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
zzz |
container_start_page |
359 |
author_browse |
Jiao, Y. |
container_volume |
701 |
physical |
11 |
class |
600 670 530 600 DE-600 670 DE-600 530 DE-600 570 VZ |
format_se |
Elektronische Aufsätze |
author-letter |
Jiao, Y. |
doi_str_mv |
10.1016/j.msea.2017.06.067 |
dewey-full |
600 670 530 570 |
title_sort |
nano-scaled ti5si3 evolution and strength enhancement of titanium matrix composites with two-scale architecture via heat treatment |
title_auth |
Nano-scaled Ti5Si3 evolution and Strength Enhancement of titanium matrix composites with two-scale architecture via heat treatment |
abstract |
To further improve the mechanical properties of Ti5Si3 and TiBw reinforced Ti6Al4V ((Ti5Si3 + TiBw)/Ti6Al4V) composites with a two-scale network structure, heat treatments were carried out to adjust nano-scaled Ti5Si3 (n-Ti5Si3) particles and matrix characteristics. The fraction of Ti5Si3 particles in the vicinity of first-scale TiBw reinforcements decreases with increasing quenching temperatures. When the quenching temperature is elevated to 1200°C, the Ti5Si3 particles dissolve and re-solute into the matrix. Both the size and fraction of n-Ti5Si3 particles increase with increasing aging temperatures. The size of n-Ti5Si3 particles in the β phase can be refined from 400–500nm (as-sintered) to 10–60nm after heat treatments. The strength of the heat-treated composites was significantly enhanced through heat treatments, when compared with the composites with one-scale architecture and Ti6Al4V alloy. The room temperature compressive strength and high temperature (600°C) tensile strength can reach 2245MPa and 880MPa, respectively. This can be attributed to the heat treatments adjustment of n-Ti5Si3 particles, supersaturated martensite α' phase and two-scale network structure. |
abstractGer |
To further improve the mechanical properties of Ti5Si3 and TiBw reinforced Ti6Al4V ((Ti5Si3 + TiBw)/Ti6Al4V) composites with a two-scale network structure, heat treatments were carried out to adjust nano-scaled Ti5Si3 (n-Ti5Si3) particles and matrix characteristics. The fraction of Ti5Si3 particles in the vicinity of first-scale TiBw reinforcements decreases with increasing quenching temperatures. When the quenching temperature is elevated to 1200°C, the Ti5Si3 particles dissolve and re-solute into the matrix. Both the size and fraction of n-Ti5Si3 particles increase with increasing aging temperatures. The size of n-Ti5Si3 particles in the β phase can be refined from 400–500nm (as-sintered) to 10–60nm after heat treatments. The strength of the heat-treated composites was significantly enhanced through heat treatments, when compared with the composites with one-scale architecture and Ti6Al4V alloy. The room temperature compressive strength and high temperature (600°C) tensile strength can reach 2245MPa and 880MPa, respectively. This can be attributed to the heat treatments adjustment of n-Ti5Si3 particles, supersaturated martensite α' phase and two-scale network structure. |
abstract_unstemmed |
To further improve the mechanical properties of Ti5Si3 and TiBw reinforced Ti6Al4V ((Ti5Si3 + TiBw)/Ti6Al4V) composites with a two-scale network structure, heat treatments were carried out to adjust nano-scaled Ti5Si3 (n-Ti5Si3) particles and matrix characteristics. The fraction of Ti5Si3 particles in the vicinity of first-scale TiBw reinforcements decreases with increasing quenching temperatures. When the quenching temperature is elevated to 1200°C, the Ti5Si3 particles dissolve and re-solute into the matrix. Both the size and fraction of n-Ti5Si3 particles increase with increasing aging temperatures. The size of n-Ti5Si3 particles in the β phase can be refined from 400–500nm (as-sintered) to 10–60nm after heat treatments. The strength of the heat-treated composites was significantly enhanced through heat treatments, when compared with the composites with one-scale architecture and Ti6Al4V alloy. The room temperature compressive strength and high temperature (600°C) tensile strength can reach 2245MPa and 880MPa, respectively. This can be attributed to the heat treatments adjustment of n-Ti5Si3 particles, supersaturated martensite α' phase and two-scale network structure. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
title_short |
Nano-scaled Ti5Si3 evolution and Strength Enhancement of titanium matrix composites with two-scale architecture via heat treatment |
url |
https://doi.org/10.1016/j.msea.2017.06.067 |
remote_bool |
true |
author2 |
Huang, L.J. Geng, L. Li, X.T. Gao, Y.N. Qian, M.F. Zhang, R. |
author2Str |
Huang, L.J. Geng, L. Li, X.T. Gao, Y.N. Qian, M.F. Zhang, R. |
ppnlink |
ELV007117167 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth |
doi_str |
10.1016/j.msea.2017.06.067 |
up_date |
2024-07-06T17:27:20.346Z |
_version_ |
1803851493903695872 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV020383754</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625131737.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.msea.2017.06.067</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000297A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV020383754</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0921-5093(17)30828-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">600</subfield><subfield code="a">670</subfield><subfield code="a">530</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jiao, Y.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nano-scaled Ti5Si3 evolution and Strength Enhancement of titanium matrix composites with two-scale architecture via heat treatment</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">11</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To further improve the mechanical properties of Ti5Si3 and TiBw reinforced Ti6Al4V ((Ti5Si3 + TiBw)/Ti6Al4V) composites with a two-scale network structure, heat treatments were carried out to adjust nano-scaled Ti5Si3 (n-Ti5Si3) particles and matrix characteristics. The fraction of Ti5Si3 particles in the vicinity of first-scale TiBw reinforcements decreases with increasing quenching temperatures. When the quenching temperature is elevated to 1200°C, the Ti5Si3 particles dissolve and re-solute into the matrix. Both the size and fraction of n-Ti5Si3 particles increase with increasing aging temperatures. The size of n-Ti5Si3 particles in the β phase can be refined from 400–500nm (as-sintered) to 10–60nm after heat treatments. The strength of the heat-treated composites was significantly enhanced through heat treatments, when compared with the composites with one-scale architecture and Ti6Al4V alloy. The room temperature compressive strength and high temperature (600°C) tensile strength can reach 2245MPa and 880MPa, respectively. This can be attributed to the heat treatments adjustment of n-Ti5Si3 particles, supersaturated martensite α' phase and two-scale network structure.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To further improve the mechanical properties of Ti5Si3 and TiBw reinforced Ti6Al4V ((Ti5Si3 + TiBw)/Ti6Al4V) composites with a two-scale network structure, heat treatments were carried out to adjust nano-scaled Ti5Si3 (n-Ti5Si3) particles and matrix characteristics. The fraction of Ti5Si3 particles in the vicinity of first-scale TiBw reinforcements decreases with increasing quenching temperatures. When the quenching temperature is elevated to 1200°C, the Ti5Si3 particles dissolve and re-solute into the matrix. Both the size and fraction of n-Ti5Si3 particles increase with increasing aging temperatures. The size of n-Ti5Si3 particles in the β phase can be refined from 400–500nm (as-sintered) to 10–60nm after heat treatments. The strength of the heat-treated composites was significantly enhanced through heat treatments, when compared with the composites with one-scale architecture and Ti6Al4V alloy. The room temperature compressive strength and high temperature (600°C) tensile strength can reach 2245MPa and 880MPa, respectively. This can be attributed to the heat treatments adjustment of n-Ti5Si3 particles, supersaturated martensite α' phase and two-scale network structure.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Two-scale network microstructure</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mechanical properties</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Heat treatments</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nano-scaled Ti5Si3 characteristics</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Titanium matrix composites</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, L.J.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Geng, L.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, X.T.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Y.N.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qian, M.F.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Cutts, Joshua ELSEVIER</subfield><subfield code="t">Generation of 3X FLAG-tagged human embryonic stem cell (hESC) line to study WNT-induced β-catenin DNA interactions (HVRDe009-A-2)</subfield><subfield code="d">2021</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV007117167</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:701</subfield><subfield code="g">year:2017</subfield><subfield code="g">day:31</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:359-369</subfield><subfield code="g">extent:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.msea.2017.06.067</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">701</subfield><subfield code="j">2017</subfield><subfield code="b">31</subfield><subfield code="c">0731</subfield><subfield code="h">359-369</subfield><subfield code="g">11</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">600</subfield></datafield></record></collection>
|
score |
7.402772 |