ZrO2 quantum dots/graphene phototransistors for deep UV detection
Electron-hole pairs are generated in the ZrO2 quantum dot film under UV light irradiation, and then holes transfer to graphene layer due to the lower energy levels for holes in graphene, leaving electrons trapped in the ZrO2 QDs, which acted as an additional light tunable gate. The graphene and ZrO2...
Ausführliche Beschreibung
Autor*in: |
Shi, Xiaoqin [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Umfang: |
5 |
---|
Übergeordnetes Werk: |
Enthalten in: Deep Learning for predicting neutralities in Offensive Language Identification Dataset▪ - Sharma, Mayukh ELSEVIER, 2021, (including crystal engineering) : an international journal reporting research on the synthesis, structure, and properties of materials, New York, NY [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:96 ; year:2017 ; pages:458-462 ; extent:5 |
Links: |
---|
DOI / URN: |
10.1016/j.materresbull.2017.05.049 |
---|
Katalog-ID: |
ELV020645015 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV020645015 | ||
003 | DE-627 | ||
005 | 20230623155312.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.materresbull.2017.05.049 |2 doi | |
028 | 5 | 2 | |a GBVA2017022000010.pica |
035 | |a (DE-627)ELV020645015 | ||
035 | |a (ELSEVIER)S0025-5408(17)31334-X | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 600 |a 670 | |
082 | 0 | 4 | |a 600 |q DE-600 |
082 | 0 | 4 | |a 670 |q DE-600 |
082 | 0 | 4 | |a 004 |q VZ |
084 | |a 54.72 |2 bkl | ||
100 | 1 | |a Shi, Xiaoqin |e verfasserin |4 aut | |
245 | 1 | 0 | |a ZrO2 quantum dots/graphene phototransistors for deep UV detection |
264 | 1 | |c 2017 | |
300 | |a 5 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Electron-hole pairs are generated in the ZrO2 quantum dot film under UV light irradiation, and then holes transfer to graphene layer due to the lower energy levels for holes in graphene, leaving electrons trapped in the ZrO2 QDs, which acted as an additional light tunable gate. The graphene and ZrO2 quantum dots act as the conducting channel and the light absorption layer respectively. | ||
650 | 7 | |a B. Optical properties |2 Elsevier | |
650 | 7 | |a D. Electronic structure |2 Elsevier | |
650 | 7 | |a A. Optical materials |2 Elsevier | |
650 | 7 | |a A. Semiconductors |2 Elsevier | |
650 | 7 | |a D. Electrical properties |2 Elsevier | |
700 | 1 | |a Liu, Xuhai |4 oth | |
700 | 1 | |a Zeng, Haibo |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Sharma, Mayukh ELSEVIER |t Deep Learning for predicting neutralities in Offensive Language Identification Dataset▪ |d 2021 |d (including crystal engineering) : an international journal reporting research on the synthesis, structure, and properties of materials |g New York, NY [u.a.] |w (DE-627)ELV006657850 |
773 | 1 | 8 | |g volume:96 |g year:2017 |g pages:458-462 |g extent:5 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.materresbull.2017.05.049 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 54.72 |j Künstliche Intelligenz |q VZ |
951 | |a AR | ||
952 | |d 96 |j 2017 |h 458-462 |g 5 | ||
953 | |2 045F |a 600 |
author_variant |
x s xs |
---|---|
matchkey_str |
shixiaoqinliuxuhaizenghaibo:2017----:r2unudtgahnpoornitrfr |
hierarchy_sort_str |
2017 |
bklnumber |
54.72 |
publishDate |
2017 |
allfields |
10.1016/j.materresbull.2017.05.049 doi GBVA2017022000010.pica (DE-627)ELV020645015 (ELSEVIER)S0025-5408(17)31334-X DE-627 ger DE-627 rakwb eng 600 670 600 DE-600 670 DE-600 004 VZ 54.72 bkl Shi, Xiaoqin verfasserin aut ZrO2 quantum dots/graphene phototransistors for deep UV detection 2017 5 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Electron-hole pairs are generated in the ZrO2 quantum dot film under UV light irradiation, and then holes transfer to graphene layer due to the lower energy levels for holes in graphene, leaving electrons trapped in the ZrO2 QDs, which acted as an additional light tunable gate. The graphene and ZrO2 quantum dots act as the conducting channel and the light absorption layer respectively. B. Optical properties Elsevier D. Electronic structure Elsevier A. Optical materials Elsevier A. Semiconductors Elsevier D. Electrical properties Elsevier Liu, Xuhai oth Zeng, Haibo oth Enthalten in Elsevier Sharma, Mayukh ELSEVIER Deep Learning for predicting neutralities in Offensive Language Identification Dataset▪ 2021 (including crystal engineering) : an international journal reporting research on the synthesis, structure, and properties of materials New York, NY [u.a.] (DE-627)ELV006657850 volume:96 year:2017 pages:458-462 extent:5 https://doi.org/10.1016/j.materresbull.2017.05.049 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 54.72 Künstliche Intelligenz VZ AR 96 2017 458-462 5 045F 600 |
spelling |
10.1016/j.materresbull.2017.05.049 doi GBVA2017022000010.pica (DE-627)ELV020645015 (ELSEVIER)S0025-5408(17)31334-X DE-627 ger DE-627 rakwb eng 600 670 600 DE-600 670 DE-600 004 VZ 54.72 bkl Shi, Xiaoqin verfasserin aut ZrO2 quantum dots/graphene phototransistors for deep UV detection 2017 5 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Electron-hole pairs are generated in the ZrO2 quantum dot film under UV light irradiation, and then holes transfer to graphene layer due to the lower energy levels for holes in graphene, leaving electrons trapped in the ZrO2 QDs, which acted as an additional light tunable gate. The graphene and ZrO2 quantum dots act as the conducting channel and the light absorption layer respectively. B. Optical properties Elsevier D. Electronic structure Elsevier A. Optical materials Elsevier A. Semiconductors Elsevier D. Electrical properties Elsevier Liu, Xuhai oth Zeng, Haibo oth Enthalten in Elsevier Sharma, Mayukh ELSEVIER Deep Learning for predicting neutralities in Offensive Language Identification Dataset▪ 2021 (including crystal engineering) : an international journal reporting research on the synthesis, structure, and properties of materials New York, NY [u.a.] (DE-627)ELV006657850 volume:96 year:2017 pages:458-462 extent:5 https://doi.org/10.1016/j.materresbull.2017.05.049 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 54.72 Künstliche Intelligenz VZ AR 96 2017 458-462 5 045F 600 |
allfields_unstemmed |
10.1016/j.materresbull.2017.05.049 doi GBVA2017022000010.pica (DE-627)ELV020645015 (ELSEVIER)S0025-5408(17)31334-X DE-627 ger DE-627 rakwb eng 600 670 600 DE-600 670 DE-600 004 VZ 54.72 bkl Shi, Xiaoqin verfasserin aut ZrO2 quantum dots/graphene phototransistors for deep UV detection 2017 5 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Electron-hole pairs are generated in the ZrO2 quantum dot film under UV light irradiation, and then holes transfer to graphene layer due to the lower energy levels for holes in graphene, leaving electrons trapped in the ZrO2 QDs, which acted as an additional light tunable gate. The graphene and ZrO2 quantum dots act as the conducting channel and the light absorption layer respectively. B. Optical properties Elsevier D. Electronic structure Elsevier A. Optical materials Elsevier A. Semiconductors Elsevier D. Electrical properties Elsevier Liu, Xuhai oth Zeng, Haibo oth Enthalten in Elsevier Sharma, Mayukh ELSEVIER Deep Learning for predicting neutralities in Offensive Language Identification Dataset▪ 2021 (including crystal engineering) : an international journal reporting research on the synthesis, structure, and properties of materials New York, NY [u.a.] (DE-627)ELV006657850 volume:96 year:2017 pages:458-462 extent:5 https://doi.org/10.1016/j.materresbull.2017.05.049 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 54.72 Künstliche Intelligenz VZ AR 96 2017 458-462 5 045F 600 |
allfieldsGer |
10.1016/j.materresbull.2017.05.049 doi GBVA2017022000010.pica (DE-627)ELV020645015 (ELSEVIER)S0025-5408(17)31334-X DE-627 ger DE-627 rakwb eng 600 670 600 DE-600 670 DE-600 004 VZ 54.72 bkl Shi, Xiaoqin verfasserin aut ZrO2 quantum dots/graphene phototransistors for deep UV detection 2017 5 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Electron-hole pairs are generated in the ZrO2 quantum dot film under UV light irradiation, and then holes transfer to graphene layer due to the lower energy levels for holes in graphene, leaving electrons trapped in the ZrO2 QDs, which acted as an additional light tunable gate. The graphene and ZrO2 quantum dots act as the conducting channel and the light absorption layer respectively. B. Optical properties Elsevier D. Electronic structure Elsevier A. Optical materials Elsevier A. Semiconductors Elsevier D. Electrical properties Elsevier Liu, Xuhai oth Zeng, Haibo oth Enthalten in Elsevier Sharma, Mayukh ELSEVIER Deep Learning for predicting neutralities in Offensive Language Identification Dataset▪ 2021 (including crystal engineering) : an international journal reporting research on the synthesis, structure, and properties of materials New York, NY [u.a.] (DE-627)ELV006657850 volume:96 year:2017 pages:458-462 extent:5 https://doi.org/10.1016/j.materresbull.2017.05.049 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 54.72 Künstliche Intelligenz VZ AR 96 2017 458-462 5 045F 600 |
allfieldsSound |
10.1016/j.materresbull.2017.05.049 doi GBVA2017022000010.pica (DE-627)ELV020645015 (ELSEVIER)S0025-5408(17)31334-X DE-627 ger DE-627 rakwb eng 600 670 600 DE-600 670 DE-600 004 VZ 54.72 bkl Shi, Xiaoqin verfasserin aut ZrO2 quantum dots/graphene phototransistors for deep UV detection 2017 5 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Electron-hole pairs are generated in the ZrO2 quantum dot film under UV light irradiation, and then holes transfer to graphene layer due to the lower energy levels for holes in graphene, leaving electrons trapped in the ZrO2 QDs, which acted as an additional light tunable gate. The graphene and ZrO2 quantum dots act as the conducting channel and the light absorption layer respectively. B. Optical properties Elsevier D. Electronic structure Elsevier A. Optical materials Elsevier A. Semiconductors Elsevier D. Electrical properties Elsevier Liu, Xuhai oth Zeng, Haibo oth Enthalten in Elsevier Sharma, Mayukh ELSEVIER Deep Learning for predicting neutralities in Offensive Language Identification Dataset▪ 2021 (including crystal engineering) : an international journal reporting research on the synthesis, structure, and properties of materials New York, NY [u.a.] (DE-627)ELV006657850 volume:96 year:2017 pages:458-462 extent:5 https://doi.org/10.1016/j.materresbull.2017.05.049 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 54.72 Künstliche Intelligenz VZ AR 96 2017 458-462 5 045F 600 |
language |
English |
source |
Enthalten in Deep Learning for predicting neutralities in Offensive Language Identification Dataset▪ New York, NY [u.a.] volume:96 year:2017 pages:458-462 extent:5 |
sourceStr |
Enthalten in Deep Learning for predicting neutralities in Offensive Language Identification Dataset▪ New York, NY [u.a.] volume:96 year:2017 pages:458-462 extent:5 |
format_phy_str_mv |
Article |
bklname |
Künstliche Intelligenz |
institution |
findex.gbv.de |
topic_facet |
B. Optical properties D. Electronic structure A. Optical materials A. Semiconductors D. Electrical properties |
dewey-raw |
600 |
isfreeaccess_bool |
false |
container_title |
Deep Learning for predicting neutralities in Offensive Language Identification Dataset▪ |
authorswithroles_txt_mv |
Shi, Xiaoqin @@aut@@ Liu, Xuhai @@oth@@ Zeng, Haibo @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
ELV006657850 |
dewey-sort |
3600 |
id |
ELV020645015 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV020645015</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230623155312.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.materresbull.2017.05.049</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2017022000010.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV020645015</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0025-5408(17)31334-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">600</subfield><subfield code="a">670</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.72</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shi, Xiaoqin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">ZrO2 quantum dots/graphene phototransistors for deep UV detection</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">5</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Electron-hole pairs are generated in the ZrO2 quantum dot film under UV light irradiation, and then holes transfer to graphene layer due to the lower energy levels for holes in graphene, leaving electrons trapped in the ZrO2 QDs, which acted as an additional light tunable gate. The graphene and ZrO2 quantum dots act as the conducting channel and the light absorption layer respectively.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">B. Optical properties</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">D. Electronic structure</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">A. Optical materials</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">A. Semiconductors</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">D. Electrical properties</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Xuhai</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zeng, Haibo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Sharma, Mayukh ELSEVIER</subfield><subfield code="t">Deep Learning for predicting neutralities in Offensive Language Identification Dataset▪</subfield><subfield code="d">2021</subfield><subfield code="d">(including crystal engineering) : an international journal reporting research on the synthesis, structure, and properties of materials</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV006657850</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:96</subfield><subfield code="g">year:2017</subfield><subfield code="g">pages:458-462</subfield><subfield code="g">extent:5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.materresbull.2017.05.049</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.72</subfield><subfield code="j">Künstliche Intelligenz</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">96</subfield><subfield code="j">2017</subfield><subfield code="h">458-462</subfield><subfield code="g">5</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">600</subfield></datafield></record></collection>
|
author |
Shi, Xiaoqin |
spellingShingle |
Shi, Xiaoqin ddc 600 ddc 670 ddc 004 bkl 54.72 Elsevier B. Optical properties Elsevier D. Electronic structure Elsevier A. Optical materials Elsevier A. Semiconductors Elsevier D. Electrical properties ZrO2 quantum dots/graphene phototransistors for deep UV detection |
authorStr |
Shi, Xiaoqin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV006657850 |
format |
electronic Article |
dewey-ones |
600 - Technology 670 - Manufacturing 004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
600 670 600 DE-600 670 DE-600 004 VZ 54.72 bkl ZrO2 quantum dots/graphene phototransistors for deep UV detection B. Optical properties Elsevier D. Electronic structure Elsevier A. Optical materials Elsevier A. Semiconductors Elsevier D. Electrical properties Elsevier |
topic |
ddc 600 ddc 670 ddc 004 bkl 54.72 Elsevier B. Optical properties Elsevier D. Electronic structure Elsevier A. Optical materials Elsevier A. Semiconductors Elsevier D. Electrical properties |
topic_unstemmed |
ddc 600 ddc 670 ddc 004 bkl 54.72 Elsevier B. Optical properties Elsevier D. Electronic structure Elsevier A. Optical materials Elsevier A. Semiconductors Elsevier D. Electrical properties |
topic_browse |
ddc 600 ddc 670 ddc 004 bkl 54.72 Elsevier B. Optical properties Elsevier D. Electronic structure Elsevier A. Optical materials Elsevier A. Semiconductors Elsevier D. Electrical properties |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
x l xl h z hz |
hierarchy_parent_title |
Deep Learning for predicting neutralities in Offensive Language Identification Dataset▪ |
hierarchy_parent_id |
ELV006657850 |
dewey-tens |
600 - Technology 670 - Manufacturing 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Deep Learning for predicting neutralities in Offensive Language Identification Dataset▪ |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV006657850 |
title |
ZrO2 quantum dots/graphene phototransistors for deep UV detection |
ctrlnum |
(DE-627)ELV020645015 (ELSEVIER)S0025-5408(17)31334-X |
title_full |
ZrO2 quantum dots/graphene phototransistors for deep UV detection |
author_sort |
Shi, Xiaoqin |
journal |
Deep Learning for predicting neutralities in Offensive Language Identification Dataset▪ |
journalStr |
Deep Learning for predicting neutralities in Offensive Language Identification Dataset▪ |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
zzz |
container_start_page |
458 |
author_browse |
Shi, Xiaoqin |
container_volume |
96 |
physical |
5 |
class |
600 670 600 DE-600 670 DE-600 004 VZ 54.72 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Shi, Xiaoqin |
doi_str_mv |
10.1016/j.materresbull.2017.05.049 |
dewey-full |
600 670 004 |
title_sort |
zro2 quantum dots/graphene phototransistors for deep uv detection |
title_auth |
ZrO2 quantum dots/graphene phototransistors for deep UV detection |
abstract |
Electron-hole pairs are generated in the ZrO2 quantum dot film under UV light irradiation, and then holes transfer to graphene layer due to the lower energy levels for holes in graphene, leaving electrons trapped in the ZrO2 QDs, which acted as an additional light tunable gate. The graphene and ZrO2 quantum dots act as the conducting channel and the light absorption layer respectively. |
abstractGer |
Electron-hole pairs are generated in the ZrO2 quantum dot film under UV light irradiation, and then holes transfer to graphene layer due to the lower energy levels for holes in graphene, leaving electrons trapped in the ZrO2 QDs, which acted as an additional light tunable gate. The graphene and ZrO2 quantum dots act as the conducting channel and the light absorption layer respectively. |
abstract_unstemmed |
Electron-hole pairs are generated in the ZrO2 quantum dot film under UV light irradiation, and then holes transfer to graphene layer due to the lower energy levels for holes in graphene, leaving electrons trapped in the ZrO2 QDs, which acted as an additional light tunable gate. The graphene and ZrO2 quantum dots act as the conducting channel and the light absorption layer respectively. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
ZrO2 quantum dots/graphene phototransistors for deep UV detection |
url |
https://doi.org/10.1016/j.materresbull.2017.05.049 |
remote_bool |
true |
author2 |
Liu, Xuhai Zeng, Haibo |
author2Str |
Liu, Xuhai Zeng, Haibo |
ppnlink |
ELV006657850 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1016/j.materresbull.2017.05.049 |
up_date |
2024-07-06T18:09:08.254Z |
_version_ |
1803854123636883456 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV020645015</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230623155312.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.materresbull.2017.05.049</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2017022000010.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV020645015</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0025-5408(17)31334-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">600</subfield><subfield code="a">670</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.72</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shi, Xiaoqin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">ZrO2 quantum dots/graphene phototransistors for deep UV detection</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">5</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Electron-hole pairs are generated in the ZrO2 quantum dot film under UV light irradiation, and then holes transfer to graphene layer due to the lower energy levels for holes in graphene, leaving electrons trapped in the ZrO2 QDs, which acted as an additional light tunable gate. The graphene and ZrO2 quantum dots act as the conducting channel and the light absorption layer respectively.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">B. Optical properties</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">D. Electronic structure</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">A. Optical materials</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">A. Semiconductors</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">D. Electrical properties</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Xuhai</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zeng, Haibo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Sharma, Mayukh ELSEVIER</subfield><subfield code="t">Deep Learning for predicting neutralities in Offensive Language Identification Dataset▪</subfield><subfield code="d">2021</subfield><subfield code="d">(including crystal engineering) : an international journal reporting research on the synthesis, structure, and properties of materials</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV006657850</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:96</subfield><subfield code="g">year:2017</subfield><subfield code="g">pages:458-462</subfield><subfield code="g">extent:5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.materresbull.2017.05.049</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.72</subfield><subfield code="j">Künstliche Intelligenz</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">96</subfield><subfield code="j">2017</subfield><subfield code="h">458-462</subfield><subfield code="g">5</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">600</subfield></datafield></record></collection>
|
score |
7.4018974 |