Design of sub-Angstrom compact free-electron laser source
In this paper, we propose for first time practical parameters to construct a compact sub-Angstrom Free Electron Laser (FEL) based on Compton backscattering. Our recipe is based on using picocoulomb electron bunch, enabling very low emittance and ultracold electron beam. We assume the FEL is operatin...
Ausführliche Beschreibung
Autor*in: |
Bonifacio, Rodolfo [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
6 |
---|
Übergeordnetes Werk: |
Enthalten in: Effect of hawthorn seed extract on the gastrointestinal function of rats with diabetic gastroparesis - Niu, Zhenzhen ELSEVIER, 2020, Amsterdam |
---|---|
Übergeordnetes Werk: |
volume:382 ; year:2017 ; day:1 ; month:01 ; pages:58-63 ; extent:6 |
Links: |
---|
DOI / URN: |
10.1016/j.optcom.2016.07.007 |
---|
Katalog-ID: |
ELV020649401 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV020649401 | ||
003 | DE-627 | ||
005 | 20230625132245.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.optcom.2016.07.007 |2 doi | |
028 | 5 | 2 | |a GBV00000000000202A.pica |
035 | |a (DE-627)ELV020649401 | ||
035 | |a (ELSEVIER)S0030-4018(16)30594-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 530 | |
082 | 0 | 4 | |a 530 |q DE-600 |
082 | 0 | 4 | |a 580 |q VZ |
084 | |a AFRIKA |q DE-30 |2 fid | ||
084 | |a BIODIV |q DE-30 |2 fid | ||
084 | |a 42.38 |2 bkl | ||
100 | 1 | |a Bonifacio, Rodolfo |e verfasserin |4 aut | |
245 | 1 | 0 | |a Design of sub-Angstrom compact free-electron laser source |
264 | 1 | |c 2017transfer abstract | |
300 | |a 6 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a In this paper, we propose for first time practical parameters to construct a compact sub-Angstrom Free Electron Laser (FEL) based on Compton backscattering. Our recipe is based on using picocoulomb electron bunch, enabling very low emittance and ultracold electron beam. We assume the FEL is operating in a quantum regime of Self Amplified Spontaneous Emission (SASE). The fundamental quantum feature is a significantly narrower spectrum of the emitted radiation relative to classical SASE. The quantum regime of the SASE FEL is reached when the momentum spread of the electron beam is smaller than the photon recoil momentum. Following the formulae describing SASE FEL operation, realistic designs for quantum FEL experiments are proposed. We discuss the practical constraints that influence the experimental parameters. Numerical simulations of power spectra and intensities are presented and attractive radiation characteristics such as high flux, narrow linewidth, and short pulse structure are demonstrated. | ||
520 | |a In this paper, we propose for first time practical parameters to construct a compact sub-Angstrom Free Electron Laser (FEL) based on Compton backscattering. Our recipe is based on using picocoulomb electron bunch, enabling very low emittance and ultracold electron beam. We assume the FEL is operating in a quantum regime of Self Amplified Spontaneous Emission (SASE). The fundamental quantum feature is a significantly narrower spectrum of the emitted radiation relative to classical SASE. The quantum regime of the SASE FEL is reached when the momentum spread of the electron beam is smaller than the photon recoil momentum. Following the formulae describing SASE FEL operation, realistic designs for quantum FEL experiments are proposed. We discuss the practical constraints that influence the experimental parameters. Numerical simulations of power spectra and intensities are presented and attractive radiation characteristics such as high flux, narrow linewidth, and short pulse structure are demonstrated. | ||
650 | 7 | |a Free electron Laser |2 Elsevier | |
650 | 7 | |a Quantum free Electron Laser |2 Elsevier | |
650 | 7 | |a X-ray |2 Elsevier | |
650 | 7 | |a Compton backscattering |2 Elsevier | |
700 | 1 | |a Fares, Hesham |4 oth | |
700 | 1 | |a Ferrario, Massimo |4 oth | |
700 | 1 | |a W. J. McNeil, Brian |4 oth | |
700 | 1 | |a R. M. Robb, Gordon |4 oth | |
773 | 0 | 8 | |i Enthalten in |a Niu, Zhenzhen ELSEVIER |t Effect of hawthorn seed extract on the gastrointestinal function of rats with diabetic gastroparesis |d 2020 |g Amsterdam |w (DE-627)ELV004103645 |
773 | 1 | 8 | |g volume:382 |g year:2017 |g day:1 |g month:01 |g pages:58-63 |g extent:6 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.optcom.2016.07.007 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a FID-AFRIKA | ||
912 | |a FID-BIODIV | ||
936 | b | k | |a 42.38 |j Botanik: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 382 |j 2017 |b 1 |c 0101 |h 58-63 |g 6 | ||
953 | |2 045F |a 530 |
author_variant |
r b rb |
---|---|
matchkey_str |
bonifaciorodolfofaresheshamferrariomassi:2017----:einfuagtocmatrelcr |
hierarchy_sort_str |
2017transfer abstract |
bklnumber |
42.38 |
publishDate |
2017 |
allfields |
10.1016/j.optcom.2016.07.007 doi GBV00000000000202A.pica (DE-627)ELV020649401 (ELSEVIER)S0030-4018(16)30594-6 DE-627 ger DE-627 rakwb eng 530 530 DE-600 580 VZ AFRIKA DE-30 fid BIODIV DE-30 fid 42.38 bkl Bonifacio, Rodolfo verfasserin aut Design of sub-Angstrom compact free-electron laser source 2017transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this paper, we propose for first time practical parameters to construct a compact sub-Angstrom Free Electron Laser (FEL) based on Compton backscattering. Our recipe is based on using picocoulomb electron bunch, enabling very low emittance and ultracold electron beam. We assume the FEL is operating in a quantum regime of Self Amplified Spontaneous Emission (SASE). The fundamental quantum feature is a significantly narrower spectrum of the emitted radiation relative to classical SASE. The quantum regime of the SASE FEL is reached when the momentum spread of the electron beam is smaller than the photon recoil momentum. Following the formulae describing SASE FEL operation, realistic designs for quantum FEL experiments are proposed. We discuss the practical constraints that influence the experimental parameters. Numerical simulations of power spectra and intensities are presented and attractive radiation characteristics such as high flux, narrow linewidth, and short pulse structure are demonstrated. In this paper, we propose for first time practical parameters to construct a compact sub-Angstrom Free Electron Laser (FEL) based on Compton backscattering. Our recipe is based on using picocoulomb electron bunch, enabling very low emittance and ultracold electron beam. We assume the FEL is operating in a quantum regime of Self Amplified Spontaneous Emission (SASE). The fundamental quantum feature is a significantly narrower spectrum of the emitted radiation relative to classical SASE. The quantum regime of the SASE FEL is reached when the momentum spread of the electron beam is smaller than the photon recoil momentum. Following the formulae describing SASE FEL operation, realistic designs for quantum FEL experiments are proposed. We discuss the practical constraints that influence the experimental parameters. Numerical simulations of power spectra and intensities are presented and attractive radiation characteristics such as high flux, narrow linewidth, and short pulse structure are demonstrated. Free electron Laser Elsevier Quantum free Electron Laser Elsevier X-ray Elsevier Compton backscattering Elsevier Fares, Hesham oth Ferrario, Massimo oth W. J. McNeil, Brian oth R. M. Robb, Gordon oth Enthalten in Niu, Zhenzhen ELSEVIER Effect of hawthorn seed extract on the gastrointestinal function of rats with diabetic gastroparesis 2020 Amsterdam (DE-627)ELV004103645 volume:382 year:2017 day:1 month:01 pages:58-63 extent:6 https://doi.org/10.1016/j.optcom.2016.07.007 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-AFRIKA FID-BIODIV 42.38 Botanik: Allgemeines VZ AR 382 2017 1 0101 58-63 6 045F 530 |
spelling |
10.1016/j.optcom.2016.07.007 doi GBV00000000000202A.pica (DE-627)ELV020649401 (ELSEVIER)S0030-4018(16)30594-6 DE-627 ger DE-627 rakwb eng 530 530 DE-600 580 VZ AFRIKA DE-30 fid BIODIV DE-30 fid 42.38 bkl Bonifacio, Rodolfo verfasserin aut Design of sub-Angstrom compact free-electron laser source 2017transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this paper, we propose for first time practical parameters to construct a compact sub-Angstrom Free Electron Laser (FEL) based on Compton backscattering. Our recipe is based on using picocoulomb electron bunch, enabling very low emittance and ultracold electron beam. We assume the FEL is operating in a quantum regime of Self Amplified Spontaneous Emission (SASE). The fundamental quantum feature is a significantly narrower spectrum of the emitted radiation relative to classical SASE. The quantum regime of the SASE FEL is reached when the momentum spread of the electron beam is smaller than the photon recoil momentum. Following the formulae describing SASE FEL operation, realistic designs for quantum FEL experiments are proposed. We discuss the practical constraints that influence the experimental parameters. Numerical simulations of power spectra and intensities are presented and attractive radiation characteristics such as high flux, narrow linewidth, and short pulse structure are demonstrated. In this paper, we propose for first time practical parameters to construct a compact sub-Angstrom Free Electron Laser (FEL) based on Compton backscattering. Our recipe is based on using picocoulomb electron bunch, enabling very low emittance and ultracold electron beam. We assume the FEL is operating in a quantum regime of Self Amplified Spontaneous Emission (SASE). The fundamental quantum feature is a significantly narrower spectrum of the emitted radiation relative to classical SASE. The quantum regime of the SASE FEL is reached when the momentum spread of the electron beam is smaller than the photon recoil momentum. Following the formulae describing SASE FEL operation, realistic designs for quantum FEL experiments are proposed. We discuss the practical constraints that influence the experimental parameters. Numerical simulations of power spectra and intensities are presented and attractive radiation characteristics such as high flux, narrow linewidth, and short pulse structure are demonstrated. Free electron Laser Elsevier Quantum free Electron Laser Elsevier X-ray Elsevier Compton backscattering Elsevier Fares, Hesham oth Ferrario, Massimo oth W. J. McNeil, Brian oth R. M. Robb, Gordon oth Enthalten in Niu, Zhenzhen ELSEVIER Effect of hawthorn seed extract on the gastrointestinal function of rats with diabetic gastroparesis 2020 Amsterdam (DE-627)ELV004103645 volume:382 year:2017 day:1 month:01 pages:58-63 extent:6 https://doi.org/10.1016/j.optcom.2016.07.007 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-AFRIKA FID-BIODIV 42.38 Botanik: Allgemeines VZ AR 382 2017 1 0101 58-63 6 045F 530 |
allfields_unstemmed |
10.1016/j.optcom.2016.07.007 doi GBV00000000000202A.pica (DE-627)ELV020649401 (ELSEVIER)S0030-4018(16)30594-6 DE-627 ger DE-627 rakwb eng 530 530 DE-600 580 VZ AFRIKA DE-30 fid BIODIV DE-30 fid 42.38 bkl Bonifacio, Rodolfo verfasserin aut Design of sub-Angstrom compact free-electron laser source 2017transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this paper, we propose for first time practical parameters to construct a compact sub-Angstrom Free Electron Laser (FEL) based on Compton backscattering. Our recipe is based on using picocoulomb electron bunch, enabling very low emittance and ultracold electron beam. We assume the FEL is operating in a quantum regime of Self Amplified Spontaneous Emission (SASE). The fundamental quantum feature is a significantly narrower spectrum of the emitted radiation relative to classical SASE. The quantum regime of the SASE FEL is reached when the momentum spread of the electron beam is smaller than the photon recoil momentum. Following the formulae describing SASE FEL operation, realistic designs for quantum FEL experiments are proposed. We discuss the practical constraints that influence the experimental parameters. Numerical simulations of power spectra and intensities are presented and attractive radiation characteristics such as high flux, narrow linewidth, and short pulse structure are demonstrated. In this paper, we propose for first time practical parameters to construct a compact sub-Angstrom Free Electron Laser (FEL) based on Compton backscattering. Our recipe is based on using picocoulomb electron bunch, enabling very low emittance and ultracold electron beam. We assume the FEL is operating in a quantum regime of Self Amplified Spontaneous Emission (SASE). The fundamental quantum feature is a significantly narrower spectrum of the emitted radiation relative to classical SASE. The quantum regime of the SASE FEL is reached when the momentum spread of the electron beam is smaller than the photon recoil momentum. Following the formulae describing SASE FEL operation, realistic designs for quantum FEL experiments are proposed. We discuss the practical constraints that influence the experimental parameters. Numerical simulations of power spectra and intensities are presented and attractive radiation characteristics such as high flux, narrow linewidth, and short pulse structure are demonstrated. Free electron Laser Elsevier Quantum free Electron Laser Elsevier X-ray Elsevier Compton backscattering Elsevier Fares, Hesham oth Ferrario, Massimo oth W. J. McNeil, Brian oth R. M. Robb, Gordon oth Enthalten in Niu, Zhenzhen ELSEVIER Effect of hawthorn seed extract on the gastrointestinal function of rats with diabetic gastroparesis 2020 Amsterdam (DE-627)ELV004103645 volume:382 year:2017 day:1 month:01 pages:58-63 extent:6 https://doi.org/10.1016/j.optcom.2016.07.007 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-AFRIKA FID-BIODIV 42.38 Botanik: Allgemeines VZ AR 382 2017 1 0101 58-63 6 045F 530 |
allfieldsGer |
10.1016/j.optcom.2016.07.007 doi GBV00000000000202A.pica (DE-627)ELV020649401 (ELSEVIER)S0030-4018(16)30594-6 DE-627 ger DE-627 rakwb eng 530 530 DE-600 580 VZ AFRIKA DE-30 fid BIODIV DE-30 fid 42.38 bkl Bonifacio, Rodolfo verfasserin aut Design of sub-Angstrom compact free-electron laser source 2017transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this paper, we propose for first time practical parameters to construct a compact sub-Angstrom Free Electron Laser (FEL) based on Compton backscattering. Our recipe is based on using picocoulomb electron bunch, enabling very low emittance and ultracold electron beam. We assume the FEL is operating in a quantum regime of Self Amplified Spontaneous Emission (SASE). The fundamental quantum feature is a significantly narrower spectrum of the emitted radiation relative to classical SASE. The quantum regime of the SASE FEL is reached when the momentum spread of the electron beam is smaller than the photon recoil momentum. Following the formulae describing SASE FEL operation, realistic designs for quantum FEL experiments are proposed. We discuss the practical constraints that influence the experimental parameters. Numerical simulations of power spectra and intensities are presented and attractive radiation characteristics such as high flux, narrow linewidth, and short pulse structure are demonstrated. In this paper, we propose for first time practical parameters to construct a compact sub-Angstrom Free Electron Laser (FEL) based on Compton backscattering. Our recipe is based on using picocoulomb electron bunch, enabling very low emittance and ultracold electron beam. We assume the FEL is operating in a quantum regime of Self Amplified Spontaneous Emission (SASE). The fundamental quantum feature is a significantly narrower spectrum of the emitted radiation relative to classical SASE. The quantum regime of the SASE FEL is reached when the momentum spread of the electron beam is smaller than the photon recoil momentum. Following the formulae describing SASE FEL operation, realistic designs for quantum FEL experiments are proposed. We discuss the practical constraints that influence the experimental parameters. Numerical simulations of power spectra and intensities are presented and attractive radiation characteristics such as high flux, narrow linewidth, and short pulse structure are demonstrated. Free electron Laser Elsevier Quantum free Electron Laser Elsevier X-ray Elsevier Compton backscattering Elsevier Fares, Hesham oth Ferrario, Massimo oth W. J. McNeil, Brian oth R. M. Robb, Gordon oth Enthalten in Niu, Zhenzhen ELSEVIER Effect of hawthorn seed extract on the gastrointestinal function of rats with diabetic gastroparesis 2020 Amsterdam (DE-627)ELV004103645 volume:382 year:2017 day:1 month:01 pages:58-63 extent:6 https://doi.org/10.1016/j.optcom.2016.07.007 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-AFRIKA FID-BIODIV 42.38 Botanik: Allgemeines VZ AR 382 2017 1 0101 58-63 6 045F 530 |
allfieldsSound |
10.1016/j.optcom.2016.07.007 doi GBV00000000000202A.pica (DE-627)ELV020649401 (ELSEVIER)S0030-4018(16)30594-6 DE-627 ger DE-627 rakwb eng 530 530 DE-600 580 VZ AFRIKA DE-30 fid BIODIV DE-30 fid 42.38 bkl Bonifacio, Rodolfo verfasserin aut Design of sub-Angstrom compact free-electron laser source 2017transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this paper, we propose for first time practical parameters to construct a compact sub-Angstrom Free Electron Laser (FEL) based on Compton backscattering. Our recipe is based on using picocoulomb electron bunch, enabling very low emittance and ultracold electron beam. We assume the FEL is operating in a quantum regime of Self Amplified Spontaneous Emission (SASE). The fundamental quantum feature is a significantly narrower spectrum of the emitted radiation relative to classical SASE. The quantum regime of the SASE FEL is reached when the momentum spread of the electron beam is smaller than the photon recoil momentum. Following the formulae describing SASE FEL operation, realistic designs for quantum FEL experiments are proposed. We discuss the practical constraints that influence the experimental parameters. Numerical simulations of power spectra and intensities are presented and attractive radiation characteristics such as high flux, narrow linewidth, and short pulse structure are demonstrated. In this paper, we propose for first time practical parameters to construct a compact sub-Angstrom Free Electron Laser (FEL) based on Compton backscattering. Our recipe is based on using picocoulomb electron bunch, enabling very low emittance and ultracold electron beam. We assume the FEL is operating in a quantum regime of Self Amplified Spontaneous Emission (SASE). The fundamental quantum feature is a significantly narrower spectrum of the emitted radiation relative to classical SASE. The quantum regime of the SASE FEL is reached when the momentum spread of the electron beam is smaller than the photon recoil momentum. Following the formulae describing SASE FEL operation, realistic designs for quantum FEL experiments are proposed. We discuss the practical constraints that influence the experimental parameters. Numerical simulations of power spectra and intensities are presented and attractive radiation characteristics such as high flux, narrow linewidth, and short pulse structure are demonstrated. Free electron Laser Elsevier Quantum free Electron Laser Elsevier X-ray Elsevier Compton backscattering Elsevier Fares, Hesham oth Ferrario, Massimo oth W. J. McNeil, Brian oth R. M. Robb, Gordon oth Enthalten in Niu, Zhenzhen ELSEVIER Effect of hawthorn seed extract on the gastrointestinal function of rats with diabetic gastroparesis 2020 Amsterdam (DE-627)ELV004103645 volume:382 year:2017 day:1 month:01 pages:58-63 extent:6 https://doi.org/10.1016/j.optcom.2016.07.007 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-AFRIKA FID-BIODIV 42.38 Botanik: Allgemeines VZ AR 382 2017 1 0101 58-63 6 045F 530 |
language |
English |
source |
Enthalten in Effect of hawthorn seed extract on the gastrointestinal function of rats with diabetic gastroparesis Amsterdam volume:382 year:2017 day:1 month:01 pages:58-63 extent:6 |
sourceStr |
Enthalten in Effect of hawthorn seed extract on the gastrointestinal function of rats with diabetic gastroparesis Amsterdam volume:382 year:2017 day:1 month:01 pages:58-63 extent:6 |
format_phy_str_mv |
Article |
bklname |
Botanik: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Free electron Laser Quantum free Electron Laser X-ray Compton backscattering |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Effect of hawthorn seed extract on the gastrointestinal function of rats with diabetic gastroparesis |
authorswithroles_txt_mv |
Bonifacio, Rodolfo @@aut@@ Fares, Hesham @@oth@@ Ferrario, Massimo @@oth@@ W. J. McNeil, Brian @@oth@@ R. M. Robb, Gordon @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
ELV004103645 |
dewey-sort |
3530 |
id |
ELV020649401 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV020649401</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625132245.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.optcom.2016.07.007</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000202A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV020649401</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0030-4018(16)30594-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">580</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">AFRIKA</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bonifacio, Rodolfo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Design of sub-Angstrom compact free-electron laser source</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">6</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, we propose for first time practical parameters to construct a compact sub-Angstrom Free Electron Laser (FEL) based on Compton backscattering. Our recipe is based on using picocoulomb electron bunch, enabling very low emittance and ultracold electron beam. We assume the FEL is operating in a quantum regime of Self Amplified Spontaneous Emission (SASE). The fundamental quantum feature is a significantly narrower spectrum of the emitted radiation relative to classical SASE. The quantum regime of the SASE FEL is reached when the momentum spread of the electron beam is smaller than the photon recoil momentum. Following the formulae describing SASE FEL operation, realistic designs for quantum FEL experiments are proposed. We discuss the practical constraints that influence the experimental parameters. Numerical simulations of power spectra and intensities are presented and attractive radiation characteristics such as high flux, narrow linewidth, and short pulse structure are demonstrated.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, we propose for first time practical parameters to construct a compact sub-Angstrom Free Electron Laser (FEL) based on Compton backscattering. Our recipe is based on using picocoulomb electron bunch, enabling very low emittance and ultracold electron beam. We assume the FEL is operating in a quantum regime of Self Amplified Spontaneous Emission (SASE). The fundamental quantum feature is a significantly narrower spectrum of the emitted radiation relative to classical SASE. The quantum regime of the SASE FEL is reached when the momentum spread of the electron beam is smaller than the photon recoil momentum. Following the formulae describing SASE FEL operation, realistic designs for quantum FEL experiments are proposed. We discuss the practical constraints that influence the experimental parameters. Numerical simulations of power spectra and intensities are presented and attractive radiation characteristics such as high flux, narrow linewidth, and short pulse structure are demonstrated.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Free electron Laser</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Quantum free Electron Laser</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">X-ray</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Compton backscattering</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fares, Hesham</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ferrario, Massimo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">W. J. McNeil, Brian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">R. M. Robb, Gordon</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="a">Niu, Zhenzhen ELSEVIER</subfield><subfield code="t">Effect of hawthorn seed extract on the gastrointestinal function of rats with diabetic gastroparesis</subfield><subfield code="d">2020</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV004103645</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:382</subfield><subfield code="g">year:2017</subfield><subfield code="g">day:1</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:58-63</subfield><subfield code="g">extent:6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.optcom.2016.07.007</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-AFRIKA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.38</subfield><subfield code="j">Botanik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">382</subfield><subfield code="j">2017</subfield><subfield code="b">1</subfield><subfield code="c">0101</subfield><subfield code="h">58-63</subfield><subfield code="g">6</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">530</subfield></datafield></record></collection>
|
author |
Bonifacio, Rodolfo |
spellingShingle |
Bonifacio, Rodolfo ddc 530 ddc 580 fid AFRIKA fid BIODIV bkl 42.38 Elsevier Free electron Laser Elsevier Quantum free Electron Laser Elsevier X-ray Elsevier Compton backscattering Design of sub-Angstrom compact free-electron laser source |
authorStr |
Bonifacio, Rodolfo |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV004103645 |
format |
electronic Article |
dewey-ones |
530 - Physics 580 - Plants (Botany) |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
530 530 DE-600 580 VZ AFRIKA DE-30 fid BIODIV DE-30 fid 42.38 bkl Design of sub-Angstrom compact free-electron laser source Free electron Laser Elsevier Quantum free Electron Laser Elsevier X-ray Elsevier Compton backscattering Elsevier |
topic |
ddc 530 ddc 580 fid AFRIKA fid BIODIV bkl 42.38 Elsevier Free electron Laser Elsevier Quantum free Electron Laser Elsevier X-ray Elsevier Compton backscattering |
topic_unstemmed |
ddc 530 ddc 580 fid AFRIKA fid BIODIV bkl 42.38 Elsevier Free electron Laser Elsevier Quantum free Electron Laser Elsevier X-ray Elsevier Compton backscattering |
topic_browse |
ddc 530 ddc 580 fid AFRIKA fid BIODIV bkl 42.38 Elsevier Free electron Laser Elsevier Quantum free Electron Laser Elsevier X-ray Elsevier Compton backscattering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
h f hf m f mf j m b w jmb jmbw m r g r mrg mrgr |
hierarchy_parent_title |
Effect of hawthorn seed extract on the gastrointestinal function of rats with diabetic gastroparesis |
hierarchy_parent_id |
ELV004103645 |
dewey-tens |
530 - Physics 580 - Plants (Botany) |
hierarchy_top_title |
Effect of hawthorn seed extract on the gastrointestinal function of rats with diabetic gastroparesis |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV004103645 |
title |
Design of sub-Angstrom compact free-electron laser source |
ctrlnum |
(DE-627)ELV020649401 (ELSEVIER)S0030-4018(16)30594-6 |
title_full |
Design of sub-Angstrom compact free-electron laser source |
author_sort |
Bonifacio, Rodolfo |
journal |
Effect of hawthorn seed extract on the gastrointestinal function of rats with diabetic gastroparesis |
journalStr |
Effect of hawthorn seed extract on the gastrointestinal function of rats with diabetic gastroparesis |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
zzz |
container_start_page |
58 |
author_browse |
Bonifacio, Rodolfo |
container_volume |
382 |
physical |
6 |
class |
530 530 DE-600 580 VZ AFRIKA DE-30 fid BIODIV DE-30 fid 42.38 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Bonifacio, Rodolfo |
doi_str_mv |
10.1016/j.optcom.2016.07.007 |
dewey-full |
530 580 |
title_sort |
design of sub-angstrom compact free-electron laser source |
title_auth |
Design of sub-Angstrom compact free-electron laser source |
abstract |
In this paper, we propose for first time practical parameters to construct a compact sub-Angstrom Free Electron Laser (FEL) based on Compton backscattering. Our recipe is based on using picocoulomb electron bunch, enabling very low emittance and ultracold electron beam. We assume the FEL is operating in a quantum regime of Self Amplified Spontaneous Emission (SASE). The fundamental quantum feature is a significantly narrower spectrum of the emitted radiation relative to classical SASE. The quantum regime of the SASE FEL is reached when the momentum spread of the electron beam is smaller than the photon recoil momentum. Following the formulae describing SASE FEL operation, realistic designs for quantum FEL experiments are proposed. We discuss the practical constraints that influence the experimental parameters. Numerical simulations of power spectra and intensities are presented and attractive radiation characteristics such as high flux, narrow linewidth, and short pulse structure are demonstrated. |
abstractGer |
In this paper, we propose for first time practical parameters to construct a compact sub-Angstrom Free Electron Laser (FEL) based on Compton backscattering. Our recipe is based on using picocoulomb electron bunch, enabling very low emittance and ultracold electron beam. We assume the FEL is operating in a quantum regime of Self Amplified Spontaneous Emission (SASE). The fundamental quantum feature is a significantly narrower spectrum of the emitted radiation relative to classical SASE. The quantum regime of the SASE FEL is reached when the momentum spread of the electron beam is smaller than the photon recoil momentum. Following the formulae describing SASE FEL operation, realistic designs for quantum FEL experiments are proposed. We discuss the practical constraints that influence the experimental parameters. Numerical simulations of power spectra and intensities are presented and attractive radiation characteristics such as high flux, narrow linewidth, and short pulse structure are demonstrated. |
abstract_unstemmed |
In this paper, we propose for first time practical parameters to construct a compact sub-Angstrom Free Electron Laser (FEL) based on Compton backscattering. Our recipe is based on using picocoulomb electron bunch, enabling very low emittance and ultracold electron beam. We assume the FEL is operating in a quantum regime of Self Amplified Spontaneous Emission (SASE). The fundamental quantum feature is a significantly narrower spectrum of the emitted radiation relative to classical SASE. The quantum regime of the SASE FEL is reached when the momentum spread of the electron beam is smaller than the photon recoil momentum. Following the formulae describing SASE FEL operation, realistic designs for quantum FEL experiments are proposed. We discuss the practical constraints that influence the experimental parameters. Numerical simulations of power spectra and intensities are presented and attractive radiation characteristics such as high flux, narrow linewidth, and short pulse structure are demonstrated. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-AFRIKA FID-BIODIV |
title_short |
Design of sub-Angstrom compact free-electron laser source |
url |
https://doi.org/10.1016/j.optcom.2016.07.007 |
remote_bool |
true |
author2 |
Fares, Hesham Ferrario, Massimo W. J. McNeil, Brian R. M. Robb, Gordon |
author2Str |
Fares, Hesham Ferrario, Massimo W. J. McNeil, Brian R. M. Robb, Gordon |
ppnlink |
ELV004103645 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1016/j.optcom.2016.07.007 |
up_date |
2024-07-06T18:09:50.435Z |
_version_ |
1803854167866867712 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV020649401</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625132245.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.optcom.2016.07.007</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000202A.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV020649401</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0030-4018(16)30594-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">580</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">AFRIKA</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bonifacio, Rodolfo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Design of sub-Angstrom compact free-electron laser source</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">6</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, we propose for first time practical parameters to construct a compact sub-Angstrom Free Electron Laser (FEL) based on Compton backscattering. Our recipe is based on using picocoulomb electron bunch, enabling very low emittance and ultracold electron beam. We assume the FEL is operating in a quantum regime of Self Amplified Spontaneous Emission (SASE). The fundamental quantum feature is a significantly narrower spectrum of the emitted radiation relative to classical SASE. The quantum regime of the SASE FEL is reached when the momentum spread of the electron beam is smaller than the photon recoil momentum. Following the formulae describing SASE FEL operation, realistic designs for quantum FEL experiments are proposed. We discuss the practical constraints that influence the experimental parameters. Numerical simulations of power spectra and intensities are presented and attractive radiation characteristics such as high flux, narrow linewidth, and short pulse structure are demonstrated.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, we propose for first time practical parameters to construct a compact sub-Angstrom Free Electron Laser (FEL) based on Compton backscattering. Our recipe is based on using picocoulomb electron bunch, enabling very low emittance and ultracold electron beam. We assume the FEL is operating in a quantum regime of Self Amplified Spontaneous Emission (SASE). The fundamental quantum feature is a significantly narrower spectrum of the emitted radiation relative to classical SASE. The quantum regime of the SASE FEL is reached when the momentum spread of the electron beam is smaller than the photon recoil momentum. Following the formulae describing SASE FEL operation, realistic designs for quantum FEL experiments are proposed. We discuss the practical constraints that influence the experimental parameters. Numerical simulations of power spectra and intensities are presented and attractive radiation characteristics such as high flux, narrow linewidth, and short pulse structure are demonstrated.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Free electron Laser</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Quantum free Electron Laser</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">X-ray</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Compton backscattering</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fares, Hesham</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ferrario, Massimo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">W. J. McNeil, Brian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">R. M. Robb, Gordon</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="a">Niu, Zhenzhen ELSEVIER</subfield><subfield code="t">Effect of hawthorn seed extract on the gastrointestinal function of rats with diabetic gastroparesis</subfield><subfield code="d">2020</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV004103645</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:382</subfield><subfield code="g">year:2017</subfield><subfield code="g">day:1</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:58-63</subfield><subfield code="g">extent:6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.optcom.2016.07.007</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-AFRIKA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.38</subfield><subfield code="j">Botanik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">382</subfield><subfield code="j">2017</subfield><subfield code="b">1</subfield><subfield code="c">0101</subfield><subfield code="h">58-63</subfield><subfield code="g">6</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">530</subfield></datafield></record></collection>
|
score |
7.402767 |