On Spieß’s conjecture on harmonic numbers
Let H n be the n -th harmonic number and let H n ( 2 ) be the n -th generalized harmonic number of order two. Spieß proved that for a nonnegative integer m and for t = 1 , 2 , and 3 , the sum R ( m , t ) = ∑ k = 0 n k m H k t can be represented as a polynomial in H n with polynomial coefficients in...
Ausführliche Beschreibung
Autor*in: |
Jin, Hai-Tao [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2013transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
4 |
---|
Übergeordnetes Werk: |
Enthalten in: Electroless deposition of a Ag matrix on semiconducting one-dimensional nanostructures - Miguel, F.L. ELSEVIER, 2013transfer abstract, [S.l.] |
---|---|
Übergeordnetes Werk: |
volume:161 ; year:2013 ; number:13 ; pages:2038-2041 ; extent:4 |
Links: |
---|
DOI / URN: |
10.1016/j.dam.2013.03.024 |
---|
Katalog-ID: |
ELV021728305 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV021728305 | ||
003 | DE-627 | ||
005 | 20230625134108.0 | ||
007 | cr uuu---uuuuu | ||
008 | 180603s2013 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.dam.2013.03.024 |2 doi | |
028 | 5 | 2 | |a GBVA2013005000018.pica |
035 | |a (DE-627)ELV021728305 | ||
035 | |a (ELSEVIER)S0166-218X(13)00171-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | |a 510 | |
082 | 0 | 4 | |a 510 |q DE-600 |
082 | 0 | 4 | |a 070 |q VZ |
082 | 0 | 4 | |a 660 |q VZ |
082 | 0 | 4 | |a 333.7 |a 610 |q VZ |
084 | |a 43.12 |2 bkl | ||
084 | |a 43.13 |2 bkl | ||
084 | |a 44.13 |2 bkl | ||
100 | 1 | |a Jin, Hai-Tao |e verfasserin |4 aut | |
245 | 1 | 0 | |a On Spieß’s conjecture on harmonic numbers |
264 | 1 | |c 2013transfer abstract | |
300 | |a 4 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Let H n be the n -th harmonic number and let H n ( 2 ) be the n -th generalized harmonic number of order two. Spieß proved that for a nonnegative integer m and for t = 1 , 2 , and 3 , the sum R ( m , t ) = ∑ k = 0 n k m H k t can be represented as a polynomial in H n with polynomial coefficients in n plus H n ( 2 ) multiplied by a polynomial in n . For t = 3 , we show that the coefficient of H n ( 2 ) in Spieß’s formula equals B m / 2 , where B m is the m -th Bernoulli number. Spieß further conjectured for t ≥ 4 such a summation takes the same form as for t ≤ 3 . We find a counterexample for t = 4 . However, we prove that the structure theorem of Spieß holds for the sum ∑ k = 0 n p ( k ) H k 4 when the polynomial p ( k ) satisfies a certain condition. We also give a structure theorem for the sum ∑ k = 0 n k m H k H k ( 2 ) . Our proofs rely on Abel’s lemma on summation by parts. | ||
520 | |a Let H n be the n -th harmonic number and let H n ( 2 ) be the n -th generalized harmonic number of order two. Spieß proved that for a nonnegative integer m and for t = 1 , 2 , and 3 , the sum R ( m , t ) = ∑ k = 0 n k m H k t can be represented as a polynomial in H n with polynomial coefficients in n plus H n ( 2 ) multiplied by a polynomial in n . For t = 3 , we show that the coefficient of H n ( 2 ) in Spieß’s formula equals B m / 2 , where B m is the m -th Bernoulli number. Spieß further conjectured for t ≥ 4 such a summation takes the same form as for t ≤ 3 . We find a counterexample for t = 4 . However, we prove that the structure theorem of Spieß holds for the sum ∑ k = 0 n p ( k ) H k 4 when the polynomial p ( k ) satisfies a certain condition. We also give a structure theorem for the sum ∑ k = 0 n k m H k H k ( 2 ) . Our proofs rely on Abel’s lemma on summation by parts. | ||
650 | 7 | |a Harmonic number |2 Elsevier | |
650 | 7 | |a Abel’s lemma |2 Elsevier | |
700 | 1 | |a Sun, Lisa H. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Miguel, F.L. ELSEVIER |t Electroless deposition of a Ag matrix on semiconducting one-dimensional nanostructures |d 2013transfer abstract |g [S.l.] |w (DE-627)ELV011300345 |
773 | 1 | 8 | |g volume:161 |g year:2013 |g number:13 |g pages:2038-2041 |g extent:4 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.dam.2013.03.024 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_130 | ||
936 | b | k | |a 43.12 |j Umweltchemie |q VZ |
936 | b | k | |a 43.13 |j Umwelttoxikologie |q VZ |
936 | b | k | |a 44.13 |j Medizinische Ökologie |q VZ |
951 | |a AR | ||
952 | |d 161 |j 2013 |e 13 |h 2038-2041 |g 4 | ||
953 | |2 045F |a 510 |
author_variant |
h t j htj |
---|---|
matchkey_str |
jinhaitaosunlisah:2013----:npecnetrohro |
hierarchy_sort_str |
2013transfer abstract |
bklnumber |
43.12 43.13 44.13 |
publishDate |
2013 |
allfields |
10.1016/j.dam.2013.03.024 doi GBVA2013005000018.pica (DE-627)ELV021728305 (ELSEVIER)S0166-218X(13)00171-6 DE-627 ger DE-627 rakwb eng 510 510 DE-600 070 VZ 660 VZ 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Jin, Hai-Tao verfasserin aut On Spieß’s conjecture on harmonic numbers 2013transfer abstract 4 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Let H n be the n -th harmonic number and let H n ( 2 ) be the n -th generalized harmonic number of order two. Spieß proved that for a nonnegative integer m and for t = 1 , 2 , and 3 , the sum R ( m , t ) = ∑ k = 0 n k m H k t can be represented as a polynomial in H n with polynomial coefficients in n plus H n ( 2 ) multiplied by a polynomial in n . For t = 3 , we show that the coefficient of H n ( 2 ) in Spieß’s formula equals B m / 2 , where B m is the m -th Bernoulli number. Spieß further conjectured for t ≥ 4 such a summation takes the same form as for t ≤ 3 . We find a counterexample for t = 4 . However, we prove that the structure theorem of Spieß holds for the sum ∑ k = 0 n p ( k ) H k 4 when the polynomial p ( k ) satisfies a certain condition. We also give a structure theorem for the sum ∑ k = 0 n k m H k H k ( 2 ) . Our proofs rely on Abel’s lemma on summation by parts. Let H n be the n -th harmonic number and let H n ( 2 ) be the n -th generalized harmonic number of order two. Spieß proved that for a nonnegative integer m and for t = 1 , 2 , and 3 , the sum R ( m , t ) = ∑ k = 0 n k m H k t can be represented as a polynomial in H n with polynomial coefficients in n plus H n ( 2 ) multiplied by a polynomial in n . For t = 3 , we show that the coefficient of H n ( 2 ) in Spieß’s formula equals B m / 2 , where B m is the m -th Bernoulli number. Spieß further conjectured for t ≥ 4 such a summation takes the same form as for t ≤ 3 . We find a counterexample for t = 4 . However, we prove that the structure theorem of Spieß holds for the sum ∑ k = 0 n p ( k ) H k 4 when the polynomial p ( k ) satisfies a certain condition. We also give a structure theorem for the sum ∑ k = 0 n k m H k H k ( 2 ) . Our proofs rely on Abel’s lemma on summation by parts. Harmonic number Elsevier Abel’s lemma Elsevier Sun, Lisa H. oth Enthalten in Elsevier Miguel, F.L. ELSEVIER Electroless deposition of a Ag matrix on semiconducting one-dimensional nanostructures 2013transfer abstract [S.l.] (DE-627)ELV011300345 volume:161 year:2013 number:13 pages:2038-2041 extent:4 https://doi.org/10.1016/j.dam.2013.03.024 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_130 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 161 2013 13 2038-2041 4 045F 510 |
spelling |
10.1016/j.dam.2013.03.024 doi GBVA2013005000018.pica (DE-627)ELV021728305 (ELSEVIER)S0166-218X(13)00171-6 DE-627 ger DE-627 rakwb eng 510 510 DE-600 070 VZ 660 VZ 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Jin, Hai-Tao verfasserin aut On Spieß’s conjecture on harmonic numbers 2013transfer abstract 4 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Let H n be the n -th harmonic number and let H n ( 2 ) be the n -th generalized harmonic number of order two. Spieß proved that for a nonnegative integer m and for t = 1 , 2 , and 3 , the sum R ( m , t ) = ∑ k = 0 n k m H k t can be represented as a polynomial in H n with polynomial coefficients in n plus H n ( 2 ) multiplied by a polynomial in n . For t = 3 , we show that the coefficient of H n ( 2 ) in Spieß’s formula equals B m / 2 , where B m is the m -th Bernoulli number. Spieß further conjectured for t ≥ 4 such a summation takes the same form as for t ≤ 3 . We find a counterexample for t = 4 . However, we prove that the structure theorem of Spieß holds for the sum ∑ k = 0 n p ( k ) H k 4 when the polynomial p ( k ) satisfies a certain condition. We also give a structure theorem for the sum ∑ k = 0 n k m H k H k ( 2 ) . Our proofs rely on Abel’s lemma on summation by parts. Let H n be the n -th harmonic number and let H n ( 2 ) be the n -th generalized harmonic number of order two. Spieß proved that for a nonnegative integer m and for t = 1 , 2 , and 3 , the sum R ( m , t ) = ∑ k = 0 n k m H k t can be represented as a polynomial in H n with polynomial coefficients in n plus H n ( 2 ) multiplied by a polynomial in n . For t = 3 , we show that the coefficient of H n ( 2 ) in Spieß’s formula equals B m / 2 , where B m is the m -th Bernoulli number. Spieß further conjectured for t ≥ 4 such a summation takes the same form as for t ≤ 3 . We find a counterexample for t = 4 . However, we prove that the structure theorem of Spieß holds for the sum ∑ k = 0 n p ( k ) H k 4 when the polynomial p ( k ) satisfies a certain condition. We also give a structure theorem for the sum ∑ k = 0 n k m H k H k ( 2 ) . Our proofs rely on Abel’s lemma on summation by parts. Harmonic number Elsevier Abel’s lemma Elsevier Sun, Lisa H. oth Enthalten in Elsevier Miguel, F.L. ELSEVIER Electroless deposition of a Ag matrix on semiconducting one-dimensional nanostructures 2013transfer abstract [S.l.] (DE-627)ELV011300345 volume:161 year:2013 number:13 pages:2038-2041 extent:4 https://doi.org/10.1016/j.dam.2013.03.024 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_130 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 161 2013 13 2038-2041 4 045F 510 |
allfields_unstemmed |
10.1016/j.dam.2013.03.024 doi GBVA2013005000018.pica (DE-627)ELV021728305 (ELSEVIER)S0166-218X(13)00171-6 DE-627 ger DE-627 rakwb eng 510 510 DE-600 070 VZ 660 VZ 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Jin, Hai-Tao verfasserin aut On Spieß’s conjecture on harmonic numbers 2013transfer abstract 4 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Let H n be the n -th harmonic number and let H n ( 2 ) be the n -th generalized harmonic number of order two. Spieß proved that for a nonnegative integer m and for t = 1 , 2 , and 3 , the sum R ( m , t ) = ∑ k = 0 n k m H k t can be represented as a polynomial in H n with polynomial coefficients in n plus H n ( 2 ) multiplied by a polynomial in n . For t = 3 , we show that the coefficient of H n ( 2 ) in Spieß’s formula equals B m / 2 , where B m is the m -th Bernoulli number. Spieß further conjectured for t ≥ 4 such a summation takes the same form as for t ≤ 3 . We find a counterexample for t = 4 . However, we prove that the structure theorem of Spieß holds for the sum ∑ k = 0 n p ( k ) H k 4 when the polynomial p ( k ) satisfies a certain condition. We also give a structure theorem for the sum ∑ k = 0 n k m H k H k ( 2 ) . Our proofs rely on Abel’s lemma on summation by parts. Let H n be the n -th harmonic number and let H n ( 2 ) be the n -th generalized harmonic number of order two. Spieß proved that for a nonnegative integer m and for t = 1 , 2 , and 3 , the sum R ( m , t ) = ∑ k = 0 n k m H k t can be represented as a polynomial in H n with polynomial coefficients in n plus H n ( 2 ) multiplied by a polynomial in n . For t = 3 , we show that the coefficient of H n ( 2 ) in Spieß’s formula equals B m / 2 , where B m is the m -th Bernoulli number. Spieß further conjectured for t ≥ 4 such a summation takes the same form as for t ≤ 3 . We find a counterexample for t = 4 . However, we prove that the structure theorem of Spieß holds for the sum ∑ k = 0 n p ( k ) H k 4 when the polynomial p ( k ) satisfies a certain condition. We also give a structure theorem for the sum ∑ k = 0 n k m H k H k ( 2 ) . Our proofs rely on Abel’s lemma on summation by parts. Harmonic number Elsevier Abel’s lemma Elsevier Sun, Lisa H. oth Enthalten in Elsevier Miguel, F.L. ELSEVIER Electroless deposition of a Ag matrix on semiconducting one-dimensional nanostructures 2013transfer abstract [S.l.] (DE-627)ELV011300345 volume:161 year:2013 number:13 pages:2038-2041 extent:4 https://doi.org/10.1016/j.dam.2013.03.024 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_130 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 161 2013 13 2038-2041 4 045F 510 |
allfieldsGer |
10.1016/j.dam.2013.03.024 doi GBVA2013005000018.pica (DE-627)ELV021728305 (ELSEVIER)S0166-218X(13)00171-6 DE-627 ger DE-627 rakwb eng 510 510 DE-600 070 VZ 660 VZ 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Jin, Hai-Tao verfasserin aut On Spieß’s conjecture on harmonic numbers 2013transfer abstract 4 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Let H n be the n -th harmonic number and let H n ( 2 ) be the n -th generalized harmonic number of order two. Spieß proved that for a nonnegative integer m and for t = 1 , 2 , and 3 , the sum R ( m , t ) = ∑ k = 0 n k m H k t can be represented as a polynomial in H n with polynomial coefficients in n plus H n ( 2 ) multiplied by a polynomial in n . For t = 3 , we show that the coefficient of H n ( 2 ) in Spieß’s formula equals B m / 2 , where B m is the m -th Bernoulli number. Spieß further conjectured for t ≥ 4 such a summation takes the same form as for t ≤ 3 . We find a counterexample for t = 4 . However, we prove that the structure theorem of Spieß holds for the sum ∑ k = 0 n p ( k ) H k 4 when the polynomial p ( k ) satisfies a certain condition. We also give a structure theorem for the sum ∑ k = 0 n k m H k H k ( 2 ) . Our proofs rely on Abel’s lemma on summation by parts. Let H n be the n -th harmonic number and let H n ( 2 ) be the n -th generalized harmonic number of order two. Spieß proved that for a nonnegative integer m and for t = 1 , 2 , and 3 , the sum R ( m , t ) = ∑ k = 0 n k m H k t can be represented as a polynomial in H n with polynomial coefficients in n plus H n ( 2 ) multiplied by a polynomial in n . For t = 3 , we show that the coefficient of H n ( 2 ) in Spieß’s formula equals B m / 2 , where B m is the m -th Bernoulli number. Spieß further conjectured for t ≥ 4 such a summation takes the same form as for t ≤ 3 . We find a counterexample for t = 4 . However, we prove that the structure theorem of Spieß holds for the sum ∑ k = 0 n p ( k ) H k 4 when the polynomial p ( k ) satisfies a certain condition. We also give a structure theorem for the sum ∑ k = 0 n k m H k H k ( 2 ) . Our proofs rely on Abel’s lemma on summation by parts. Harmonic number Elsevier Abel’s lemma Elsevier Sun, Lisa H. oth Enthalten in Elsevier Miguel, F.L. ELSEVIER Electroless deposition of a Ag matrix on semiconducting one-dimensional nanostructures 2013transfer abstract [S.l.] (DE-627)ELV011300345 volume:161 year:2013 number:13 pages:2038-2041 extent:4 https://doi.org/10.1016/j.dam.2013.03.024 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_130 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 161 2013 13 2038-2041 4 045F 510 |
allfieldsSound |
10.1016/j.dam.2013.03.024 doi GBVA2013005000018.pica (DE-627)ELV021728305 (ELSEVIER)S0166-218X(13)00171-6 DE-627 ger DE-627 rakwb eng 510 510 DE-600 070 VZ 660 VZ 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Jin, Hai-Tao verfasserin aut On Spieß’s conjecture on harmonic numbers 2013transfer abstract 4 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Let H n be the n -th harmonic number and let H n ( 2 ) be the n -th generalized harmonic number of order two. Spieß proved that for a nonnegative integer m and for t = 1 , 2 , and 3 , the sum R ( m , t ) = ∑ k = 0 n k m H k t can be represented as a polynomial in H n with polynomial coefficients in n plus H n ( 2 ) multiplied by a polynomial in n . For t = 3 , we show that the coefficient of H n ( 2 ) in Spieß’s formula equals B m / 2 , where B m is the m -th Bernoulli number. Spieß further conjectured for t ≥ 4 such a summation takes the same form as for t ≤ 3 . We find a counterexample for t = 4 . However, we prove that the structure theorem of Spieß holds for the sum ∑ k = 0 n p ( k ) H k 4 when the polynomial p ( k ) satisfies a certain condition. We also give a structure theorem for the sum ∑ k = 0 n k m H k H k ( 2 ) . Our proofs rely on Abel’s lemma on summation by parts. Let H n be the n -th harmonic number and let H n ( 2 ) be the n -th generalized harmonic number of order two. Spieß proved that for a nonnegative integer m and for t = 1 , 2 , and 3 , the sum R ( m , t ) = ∑ k = 0 n k m H k t can be represented as a polynomial in H n with polynomial coefficients in n plus H n ( 2 ) multiplied by a polynomial in n . For t = 3 , we show that the coefficient of H n ( 2 ) in Spieß’s formula equals B m / 2 , where B m is the m -th Bernoulli number. Spieß further conjectured for t ≥ 4 such a summation takes the same form as for t ≤ 3 . We find a counterexample for t = 4 . However, we prove that the structure theorem of Spieß holds for the sum ∑ k = 0 n p ( k ) H k 4 when the polynomial p ( k ) satisfies a certain condition. We also give a structure theorem for the sum ∑ k = 0 n k m H k H k ( 2 ) . Our proofs rely on Abel’s lemma on summation by parts. Harmonic number Elsevier Abel’s lemma Elsevier Sun, Lisa H. oth Enthalten in Elsevier Miguel, F.L. ELSEVIER Electroless deposition of a Ag matrix on semiconducting one-dimensional nanostructures 2013transfer abstract [S.l.] (DE-627)ELV011300345 volume:161 year:2013 number:13 pages:2038-2041 extent:4 https://doi.org/10.1016/j.dam.2013.03.024 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_130 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 161 2013 13 2038-2041 4 045F 510 |
language |
English |
source |
Enthalten in Electroless deposition of a Ag matrix on semiconducting one-dimensional nanostructures [S.l.] volume:161 year:2013 number:13 pages:2038-2041 extent:4 |
sourceStr |
Enthalten in Electroless deposition of a Ag matrix on semiconducting one-dimensional nanostructures [S.l.] volume:161 year:2013 number:13 pages:2038-2041 extent:4 |
format_phy_str_mv |
Article |
bklname |
Umweltchemie Umwelttoxikologie Medizinische Ökologie |
institution |
findex.gbv.de |
topic_facet |
Harmonic number Abel’s lemma |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Electroless deposition of a Ag matrix on semiconducting one-dimensional nanostructures |
authorswithroles_txt_mv |
Jin, Hai-Tao @@aut@@ Sun, Lisa H. @@oth@@ |
publishDateDaySort_date |
2013-01-01T00:00:00Z |
hierarchy_top_id |
ELV011300345 |
dewey-sort |
3510 |
id |
ELV021728305 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV021728305</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625134108.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.dam.2013.03.024</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2013005000018.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV021728305</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0166-218X(13)00171-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jin, Hai-Tao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On Spieß’s conjecture on harmonic numbers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">4</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Let H n be the n -th harmonic number and let H n ( 2 ) be the n -th generalized harmonic number of order two. Spieß proved that for a nonnegative integer m and for t = 1 , 2 , and 3 , the sum R ( m , t ) = ∑ k = 0 n k m H k t can be represented as a polynomial in H n with polynomial coefficients in n plus H n ( 2 ) multiplied by a polynomial in n . For t = 3 , we show that the coefficient of H n ( 2 ) in Spieß’s formula equals B m / 2 , where B m is the m -th Bernoulli number. Spieß further conjectured for t ≥ 4 such a summation takes the same form as for t ≤ 3 . We find a counterexample for t = 4 . However, we prove that the structure theorem of Spieß holds for the sum ∑ k = 0 n p ( k ) H k 4 when the polynomial p ( k ) satisfies a certain condition. We also give a structure theorem for the sum ∑ k = 0 n k m H k H k ( 2 ) . Our proofs rely on Abel’s lemma on summation by parts.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Let H n be the n -th harmonic number and let H n ( 2 ) be the n -th generalized harmonic number of order two. Spieß proved that for a nonnegative integer m and for t = 1 , 2 , and 3 , the sum R ( m , t ) = ∑ k = 0 n k m H k t can be represented as a polynomial in H n with polynomial coefficients in n plus H n ( 2 ) multiplied by a polynomial in n . For t = 3 , we show that the coefficient of H n ( 2 ) in Spieß’s formula equals B m / 2 , where B m is the m -th Bernoulli number. Spieß further conjectured for t ≥ 4 such a summation takes the same form as for t ≤ 3 . We find a counterexample for t = 4 . However, we prove that the structure theorem of Spieß holds for the sum ∑ k = 0 n p ( k ) H k 4 when the polynomial p ( k ) satisfies a certain condition. We also give a structure theorem for the sum ∑ k = 0 n k m H k H k ( 2 ) . Our proofs rely on Abel’s lemma on summation by parts.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Harmonic number</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Abel’s lemma</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Lisa H.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Miguel, F.L. ELSEVIER</subfield><subfield code="t">Electroless deposition of a Ag matrix on semiconducting one-dimensional nanostructures</subfield><subfield code="d">2013transfer abstract</subfield><subfield code="g">[S.l.]</subfield><subfield code="w">(DE-627)ELV011300345</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:161</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:13</subfield><subfield code="g">pages:2038-2041</subfield><subfield code="g">extent:4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.dam.2013.03.024</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.12</subfield><subfield code="j">Umweltchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.13</subfield><subfield code="j">Umwelttoxikologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.13</subfield><subfield code="j">Medizinische Ökologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">161</subfield><subfield code="j">2013</subfield><subfield code="e">13</subfield><subfield code="h">2038-2041</subfield><subfield code="g">4</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">510</subfield></datafield></record></collection>
|
author |
Jin, Hai-Tao |
spellingShingle |
Jin, Hai-Tao ddc 510 ddc 070 ddc 660 ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Elsevier Harmonic number Elsevier Abel’s lemma On Spieß’s conjecture on harmonic numbers |
authorStr |
Jin, Hai-Tao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV011300345 |
format |
electronic Article |
dewey-ones |
510 - Mathematics 070 - News media, journalism & publishing 660 - Chemical engineering 333 - Economics of land & energy 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
510 510 DE-600 070 VZ 660 VZ 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl On Spieß’s conjecture on harmonic numbers Harmonic number Elsevier Abel’s lemma Elsevier |
topic |
ddc 510 ddc 070 ddc 660 ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Elsevier Harmonic number Elsevier Abel’s lemma |
topic_unstemmed |
ddc 510 ddc 070 ddc 660 ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Elsevier Harmonic number Elsevier Abel’s lemma |
topic_browse |
ddc 510 ddc 070 ddc 660 ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Elsevier Harmonic number Elsevier Abel’s lemma |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
l h s lh lhs |
hierarchy_parent_title |
Electroless deposition of a Ag matrix on semiconducting one-dimensional nanostructures |
hierarchy_parent_id |
ELV011300345 |
dewey-tens |
510 - Mathematics 070 - News media, journalism & publishing 660 - Chemical engineering 330 - Economics 610 - Medicine & health |
hierarchy_top_title |
Electroless deposition of a Ag matrix on semiconducting one-dimensional nanostructures |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV011300345 |
title |
On Spieß’s conjecture on harmonic numbers |
ctrlnum |
(DE-627)ELV021728305 (ELSEVIER)S0166-218X(13)00171-6 |
title_full |
On Spieß’s conjecture on harmonic numbers |
author_sort |
Jin, Hai-Tao |
journal |
Electroless deposition of a Ag matrix on semiconducting one-dimensional nanostructures |
journalStr |
Electroless deposition of a Ag matrix on semiconducting one-dimensional nanostructures |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 000 - Computer science, information & general works 600 - Technology 300 - Social sciences |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
zzz |
container_start_page |
2038 |
author_browse |
Jin, Hai-Tao |
container_volume |
161 |
physical |
4 |
class |
510 510 DE-600 070 VZ 660 VZ 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Jin, Hai-Tao |
doi_str_mv |
10.1016/j.dam.2013.03.024 |
dewey-full |
510 070 660 333.7 610 |
title_sort |
on spieß’s conjecture on harmonic numbers |
title_auth |
On Spieß’s conjecture on harmonic numbers |
abstract |
Let H n be the n -th harmonic number and let H n ( 2 ) be the n -th generalized harmonic number of order two. Spieß proved that for a nonnegative integer m and for t = 1 , 2 , and 3 , the sum R ( m , t ) = ∑ k = 0 n k m H k t can be represented as a polynomial in H n with polynomial coefficients in n plus H n ( 2 ) multiplied by a polynomial in n . For t = 3 , we show that the coefficient of H n ( 2 ) in Spieß’s formula equals B m / 2 , where B m is the m -th Bernoulli number. Spieß further conjectured for t ≥ 4 such a summation takes the same form as for t ≤ 3 . We find a counterexample for t = 4 . However, we prove that the structure theorem of Spieß holds for the sum ∑ k = 0 n p ( k ) H k 4 when the polynomial p ( k ) satisfies a certain condition. We also give a structure theorem for the sum ∑ k = 0 n k m H k H k ( 2 ) . Our proofs rely on Abel’s lemma on summation by parts. |
abstractGer |
Let H n be the n -th harmonic number and let H n ( 2 ) be the n -th generalized harmonic number of order two. Spieß proved that for a nonnegative integer m and for t = 1 , 2 , and 3 , the sum R ( m , t ) = ∑ k = 0 n k m H k t can be represented as a polynomial in H n with polynomial coefficients in n plus H n ( 2 ) multiplied by a polynomial in n . For t = 3 , we show that the coefficient of H n ( 2 ) in Spieß’s formula equals B m / 2 , where B m is the m -th Bernoulli number. Spieß further conjectured for t ≥ 4 such a summation takes the same form as for t ≤ 3 . We find a counterexample for t = 4 . However, we prove that the structure theorem of Spieß holds for the sum ∑ k = 0 n p ( k ) H k 4 when the polynomial p ( k ) satisfies a certain condition. We also give a structure theorem for the sum ∑ k = 0 n k m H k H k ( 2 ) . Our proofs rely on Abel’s lemma on summation by parts. |
abstract_unstemmed |
Let H n be the n -th harmonic number and let H n ( 2 ) be the n -th generalized harmonic number of order two. Spieß proved that for a nonnegative integer m and for t = 1 , 2 , and 3 , the sum R ( m , t ) = ∑ k = 0 n k m H k t can be represented as a polynomial in H n with polynomial coefficients in n plus H n ( 2 ) multiplied by a polynomial in n . For t = 3 , we show that the coefficient of H n ( 2 ) in Spieß’s formula equals B m / 2 , where B m is the m -th Bernoulli number. Spieß further conjectured for t ≥ 4 such a summation takes the same form as for t ≤ 3 . We find a counterexample for t = 4 . However, we prove that the structure theorem of Spieß holds for the sum ∑ k = 0 n p ( k ) H k 4 when the polynomial p ( k ) satisfies a certain condition. We also give a structure theorem for the sum ∑ k = 0 n k m H k H k ( 2 ) . Our proofs rely on Abel’s lemma on summation by parts. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_130 |
container_issue |
13 |
title_short |
On Spieß’s conjecture on harmonic numbers |
url |
https://doi.org/10.1016/j.dam.2013.03.024 |
remote_bool |
true |
author2 |
Sun, Lisa H. |
author2Str |
Sun, Lisa H. |
ppnlink |
ELV011300345 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1016/j.dam.2013.03.024 |
up_date |
2024-07-06T20:19:29.131Z |
_version_ |
1803862324419756032 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV021728305</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625134108.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">180603s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.dam.2013.03.024</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBVA2013005000018.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV021728305</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0166-218X(13)00171-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jin, Hai-Tao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On Spieß’s conjecture on harmonic numbers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">4</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Let H n be the n -th harmonic number and let H n ( 2 ) be the n -th generalized harmonic number of order two. Spieß proved that for a nonnegative integer m and for t = 1 , 2 , and 3 , the sum R ( m , t ) = ∑ k = 0 n k m H k t can be represented as a polynomial in H n with polynomial coefficients in n plus H n ( 2 ) multiplied by a polynomial in n . For t = 3 , we show that the coefficient of H n ( 2 ) in Spieß’s formula equals B m / 2 , where B m is the m -th Bernoulli number. Spieß further conjectured for t ≥ 4 such a summation takes the same form as for t ≤ 3 . We find a counterexample for t = 4 . However, we prove that the structure theorem of Spieß holds for the sum ∑ k = 0 n p ( k ) H k 4 when the polynomial p ( k ) satisfies a certain condition. We also give a structure theorem for the sum ∑ k = 0 n k m H k H k ( 2 ) . Our proofs rely on Abel’s lemma on summation by parts.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Let H n be the n -th harmonic number and let H n ( 2 ) be the n -th generalized harmonic number of order two. Spieß proved that for a nonnegative integer m and for t = 1 , 2 , and 3 , the sum R ( m , t ) = ∑ k = 0 n k m H k t can be represented as a polynomial in H n with polynomial coefficients in n plus H n ( 2 ) multiplied by a polynomial in n . For t = 3 , we show that the coefficient of H n ( 2 ) in Spieß’s formula equals B m / 2 , where B m is the m -th Bernoulli number. Spieß further conjectured for t ≥ 4 such a summation takes the same form as for t ≤ 3 . We find a counterexample for t = 4 . However, we prove that the structure theorem of Spieß holds for the sum ∑ k = 0 n p ( k ) H k 4 when the polynomial p ( k ) satisfies a certain condition. We also give a structure theorem for the sum ∑ k = 0 n k m H k H k ( 2 ) . Our proofs rely on Abel’s lemma on summation by parts.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Harmonic number</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Abel’s lemma</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Lisa H.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Miguel, F.L. ELSEVIER</subfield><subfield code="t">Electroless deposition of a Ag matrix on semiconducting one-dimensional nanostructures</subfield><subfield code="d">2013transfer abstract</subfield><subfield code="g">[S.l.]</subfield><subfield code="w">(DE-627)ELV011300345</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:161</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:13</subfield><subfield code="g">pages:2038-2041</subfield><subfield code="g">extent:4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.dam.2013.03.024</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.12</subfield><subfield code="j">Umweltchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.13</subfield><subfield code="j">Umwelttoxikologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.13</subfield><subfield code="j">Medizinische Ökologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">161</subfield><subfield code="j">2013</subfield><subfield code="e">13</subfield><subfield code="h">2038-2041</subfield><subfield code="g">4</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">510</subfield></datafield></record></collection>
|
score |
7.401165 |